TRANSPORTATION IMPACT AND OPERATIONAL ANALYSIS

MEDICAL OFFICE BUILDING

SANTA CRUZ, CALIFORNIA

Prepared for:

PMB

ADVANCING HEALTHCARE REAL ESTATE

Prepared by:
Kimley»)Horn

May 2021
197165001
Copyright © Kimley-Horn and Associates, Inc.

TRANSPORTATION IMPACT AND OPERATIONAL ANALYSIS - DRAFT

FOR

MEDICAL OFFICE BUILDING

Prepared for:

PDP Santa Cruz, LLC

3394 Carmel Mountain Road, Suite 200
San Diego, California 92121

Prepared by:

Kimley-Horn and Associates, Inc.
10 South Almaden Boulevard, Suite 1250
San Jose, California 95113
669-800-1979

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by KimleyHorn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.
© May 2021
197165001

Kimley»Horn

Contents
EXECUTIVE SUMMARY 1
Project Overview 1
Vehicle Miles Traveled (CEQA Analysis) 3
Background 4
Analyzing MOB VMT 5
Scenarios 7
Scenario A Methodology 8
Scenario A Analysis 10
Scenario A Results 10
Methodology for Scenario B 12
Scenario B Analysis 13
Scenario B Results 14
Conclusion 15
Transportation Demand Management (Non-CEQA Analysis) 15
Pedestrian, Bicycle and Transit Mobility (Non-CEQA Analysis) 19
Parking Supply and Demand Evaluation (Non-CEQA Analysis) 20
Local Mobility Analysis (Non-CEQA Analysis) 22
Transportation Improvement Area Fees (Non-CEQA Analysis) 31
Other Transportation Analysis 32
Summary of Favorable Transportation Considerations 32

1. INTRODUCTION 1
Project Description 1
Project Transportation Improvements 2
Report Approach 7
Report Organization 7
2. VEHICLE MILES TRAVELED 8
Background 8
Analyzing MOB VMT 9
Scenarios 11
Scenario A Methodology 12
Scenario A Analysis 16
Scenario A Results 17
Methodology for Scenario B 19

Kimley»"Horn

Scenario B Analysis 22
Scenario B Results 24
Conclusion 25
3. TRANSPORTATION DEMAND MANAGEMENT (NON-CEQA ANALYSIS) 27
Employee-Focused TDM Measures 27
Member-Focused TDM Measures. 29
Other TDM Considerations 32
4. TRANSIT, BICYCLE, AND TRANSIT MOBILITY (NON-CEQA ANALYSIS) 33
Pedestrian-Oriented Policies: 33
Bicycle-Oriented Policies: 33
Project Transportation Improvements 34
Pedestrian Mobility 35
Bicycle Mobility 36
Transit Mobility 38
Transit Vehicle Delay 40
Summary of Findings 41
5. PARKING SUPPLY AND DEMAND EVALUATION (NON-CEQA ANALYSIS) 42
Proposed Parking Supply 42
Santa Cruz County Code Parking Requirements 42
Proposed Tenant's Typical Parking Standards 44
Other Parking Considerations 44
Parking Evaluation Summary of Findings 46
6. LOCAL MOBILITY ANALYSIS (LOS) (NON-CEQA ANALYSIS) 48
Level of Service (LOS) 48
Analytical Methods and Information 52
Existing Conditions 52
Trip Generation Estimates. 62
Project Transportation Improvements 69
Existing Plus Project Conditions 72
Near Term Conditions 87
Cumulative Conditions 104
Highway 1 Overcrossing and $41^{\text {st }}$ Avenue Corridor Improvements 125
7. HIGHWAY 1 AND HIGHWAY 17 OPERATIONAL EVALUATION (NON-CEQA ANALYSIS) 128
Highway 1 129

Kimley»)Horn

Highway 17 138
8. TRANSPORTATION IMPROVEMENT AREA FEES (NON-CEQA ANALYSIS) 142
9. OTHER TRANSPORTATION ANALYSIS. 145
Transportation Hazards 145
APPENDICES 146

Kimley»)Horn

Figures
Figure ES-F1 - Typical Effect of a MOB on VMTES-6
Figure F-1 - Project Location Map 5
Figure F-2 - Project Site Plan 6
Figure F-3 - Typical Effect of a MOB on VMT 10
Figure F-4 - Proposed Tenant Facility Locations 17
Figure F-6 - Existing and Population Growth Member Locations for the Proposed Tenant 23
Figure F-7 - Other Healthcare System Patient Locations 24
Figure F-8 - Planned Chanticleer Bike Bridge 37
Figure F-9 - Existing Conditions Lane Geometry and Intersection Control. 57
Figure F-10 - Existing Conditions Peak Hour Turning Movement Volumes 58
Figure F-11 - Project Trip Distribution 67
Figure F-12 - Net Project Peak Hour Trip Assignment 68
Figure F-13 - Existing Plus Project Conditions Lane Geometry and Intersection Control 80
Figure F-14 - Existing Plus Project Conditions Peak Hour Turning Movement Volumes 81
Figure F-15 - Near Term Conditions Lane Geometry and Intersection Control 89
Figure F-16 - Near Term Conditions Peak Hour Turning Movement Volumes 90
Figure F-17 - Near Term Plus Project Conditions Lane Geometry and Intersection Control 97
Figure F-18- Near Term Plus Project Conditions Peak Hour Turning Movement Volumes 98
Figure F-19 - Cumulative (2040) Conditions Lane Geometry and Intersection Control 107
Figure F-20 - Cumulative (2040) Conditions Peak Hour Turning Movement Volumes 108
Figure F-21 - Cumulative (2040) Plus Project Conditions Lane Geometry and Intersection Control 112
Figure F-22 - Cumulative (2040) Plus Project Conditions Peak Hour Turning Movement Volumes 113
Figure F-23 - Change in 2040 Daily Volumes Due to Potential 17th Avenue Overcrossing 127
Figure F-24 - Typical Peak-Hour Congestion along SR 1 (Source: Google Maps) 131

Kimley»Horn

Tables
Table ES-T1 - Total Vehicle Miles Traveled by Scenario ES-4
Table ES-T2 - Total Vehicle Miles Traveled by Scenario ES-11
Table ES-T3 - Total Vehicle Miles Traveled ES-14
Table ES-T4 - Total Vehicle Miles Traveled ES-15
Table ES-T5 - TDM Trip Calculations ES-17
Table ES-T6 - TDM Measure Summary ES-18
Table ES-T7 - Parking Spaces Provided by the Project. ES-20
Table ES-T8 - County MOB Parking Requirements ES-21
Table ES-T9 - County Required ADA Accessible Parking ES-21
Table ES-T10 - Project ADA Accessible Parking ES-22
Table ES-T11 - Study Intersections ES-24
Table ES-T12 - Project Deficiencies and Improvements ES-26
Table ES-T13 - Transportation Improvement Area Fee Calculations ES-32
Table ES-T14 - Summary of Benefits ES-33
Table T-1 - Trip Generation Rate Comparison for Medical Office Buildings 13
Table T-2 - Population Demand for Medical Services 16
Table T-3 - Total Vehicle Miles Traveled by Scenario 18
Table T-4 - Location of Competing Other Healthcare Provider Facilities 21
Table T-5 - Total Vehicle Miles Traveled by Medical Facility and Service Type 25
Table T-6 - Total Vehicle Miles Traveled by Scenario 26
Table T-7 - TDM Measure Summary 31
Table T-8 - TDM Trip Calculations 32
Table T-9 - Summary of Near-Term Conditions Transit Delay 41
Table T-10 - Parking Spaces Provided by the Project 42
Table T-11 - Santa Cruz County Code Parking Requirements (Chapter 13.10) 43
Table T-12 - County Required ADA Accessible Parking 43
Table T-13 - Project ADA Accessible Parking 44
Table T-14 - ITE Parking Generation (Medical Office) 45

Kimley»)Horn

Table T-15 - ITE Parking Generation (Clinic) 45
Table T-16 - Municipal Parking Requirement Comparison 46
Table T-17 - Intersection Level of Service Definitions 49
Table T-18 - 2016 vs. 2019 Traffic Count Comparison. 56
Table T-19 - Existing Conditions Intersection Level of Service. 61
Table T-20 - Project Trip Generation 65
Table T-21 - Base Critical Gaps. 71
Table T-22 - Average Available Gaps 71
Table T-23 - Soquel Drive \& Paul Sweet Road / Hwy 1 On-Off-Ramps (Intersection \#4) Critical Movement v/c Calculation 73
Table T-24 - Soquel Avenue / 40 ${ }^{\text {th }}$ Avenue \& Gross Road (Intersection \#9) Critical Movement v/c Calculation 74
Table T-25 - $\quad 41^{\text {st }}$ Avenue \& Highway 1 Southbound Ramps (Intersection \#14) Critical Movement v/c Calculation 75
Table T-26 - $\quad 41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) Critical Movement v/c Calculation 76
Table T-27 - Brommer Street \& 30 ${ }^{\text {th }}$ Avenue (Intersection \#24) Critical Movement v/c Calculation 78
Table T-28 - Existing Plus Project Conditions Intersection Level of Service 82
Table T-29 - Improved Existing Plus Project Conditions Intersection Level of Service 83
Table T-30 - Near Term Conditions Intersection Level of Service 91
Table T-31 - Soquel Drive \& Paul Sweet Road / Hwy 1 On-Off- Ramps (Intersection \#4) Critical Movement v/c Calculation. 93
Table T-32 - Soquel Avenue / 40 ${ }^{\text {th }}$ Avenue \& Gross Road (Intersection \#9) Critical Movement v/c Calculation 94
Table T-33 - $41^{\text {st }}$ Avenue \& Highway 1 Southbound Ramps (Intersection \#14) Critical Movement v/c Calculation. 94
Table T-34 - $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) Critical Movement v/c Calculation 95
Table T-35 - Brommer Street \& $30^{\text {th }}$ Avenue (Intersection \#24) Critical Movement v/c Calculation 96
Table T-36 - Near Term Plus Project Conditions Intersection Level of Service 99
Table T-37 - Improved Near Term Plus Project Conditions Conclusions 100

Kimley»)Horn

Table T-38 - Cumulative (2040) Conditions Intersection Level of Service 109
Table T-39 - Soquel Drive \& Paul Sweet Road / Hwy 1 On-Off Ramps (Intersection \#4) Critical Movement v/c Calculation 115
Table T-40 - Soquel Avenue / 40 ${ }^{\text {th }}$ Avenue \& Gross Road (Intersection \#9) Critical Movement v/c Calculation 117
Table T-41 - $41^{\text {st }}$ Avenue \& Highway 1 Southbound Ramps (Intersection \#14) Critical Movement v/c Calculation 118
Table T-42 - $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) Critical Movement v/c Calculation 118
Table T-43 - Brommer Street \& 30 ${ }^{\text {th }}$ Avenue (Intersection \#24) Critical Movement v/c Calculation 119
Table T-44 - Cumulative Plus Project Conditions Intersection Level of Service 121
Table T-45 - Improved Cumulative Plus Project Conditions Conclusions 123
Table T-46 - Highway 1 Baseline Measures of Effectiveness (Peak Hour) 129
Table T-47 - Existing Plus Project Conditions Segment Analysis (Highway 1) 133
Table T-48 - Near Term Plus Project Conditions Segment Analysis (Highway 1) 134
Table T-49 - Cumulative Plus Project Conditions Segment Analysis (Highway 1) 135
Table T-50 - Existing Plus Project Conditions Segment Analysis (Highway 17) 140
Table T-51 - Near Term Plus Project Conditions Segment Analysis (Highway 17) 140
Table T-52 - Cumulative Plus Project Conditions Segment Analysis (Highway 17) 141
Table T-53 - Transportation Improvement Area Fee Calculations 143

APPENDICES

APPENDIX A. EXISTING CONDITIONS TRAFFIC COUNTS
APPENDIX B. EXISTING CONDITIONS SYNCHRO OUTPUT SHEETS
APPENDIX C. EXISTING PLUS PROJECT CONDITIONS SYNCHRO OUTPUT SHEETS
APPENDIX D. NEAR TERM CONDITIONS SYNCHRO OUTPUT SHEETS
APPENDIX E. NEAR TERM PLUS PROJECT CONDITIONS SYNCHRO OUTPUT SHEETS
APPENDIX F. CUMULATIVE CONDITIONS SYNCHRO OUTPUT SHEETS
APPENDIX G. CUMULATIVE PLUS PROJECT CONDITIONS SYNCHRO OUTPUT SHEETS

APPENDIX H. IMPROVED CONDITIONS SYNCHRO OUTPUT SHEETS
APPENDIX I. SOQUEL AVENUE STRIPING IMPROVEMENT CONCEPT LAYOUTS
APPENDIX J. SIGNAL WARRANT WORKSHEETS
APPENDIX K. FULL SCCRTP IMPROVEMENT LIST
APPENDIX L. PENDING PROJECTS LIST
APPENDIX M. DIAGONAL DIVERTER \& WAYFINDING SIGNAGE CONCEPT LAYOUTS AND TRAVEL TIMES

APPENDIX N. HIGHWAY 1 INTERCHANGE LAYOUTS
APPENDIX O. HIGHWAY CAPACITY SOFTWARE (HCS) INPUTS AND RESULTS
APPENDIX P. SR 1 HOV LANE WIDENING PROJECT SUPPLEMENTAL REPORT (MAY 2010)

APPENDIX Q. SIMILAR KAISER MEDICAL OFFICE TRIP GENERATION COUNT DATA
APPENDIX R. PIVOTAL MARKET DATA
APPENDIX S. PROPOSED TENANT MEMBERSHIP FORECASTS
APPENDIX T. PROJECT AND NO PROJECT MEMBERSHIP BASIS
APPENDIX U. SOUTHBOUND HIGHWAY 1 \& SOQUEL AVENUE IMPROVEMENTS SYNCHRO OUTPUT SHEETS

APPENDIX V. TRUCK TURNING TEMPLATE
APPENDIX W. VIRTUAL CARE BACKUP
APPENDIX X. 17TH AVENUE OVERCROSSING MODEL RESULTS
APPENDIX Y. COUNTY OF SANTA CRUZ VMT/TDM POLICY
APPENDIX Z. DETAILED VMT ANALYSIS METHODOLOGY

Kimley»)Horn

EXECUTIVE SUMMARY

This study presents the Transportation Impact and Operational Analysis ("TIOA") findings for the proposed Medical Office Building ("MOB") Project (the "Project") at 5940 Soquel Avenue in the County of Santa Cruz ("County"), California. It is proposed that Kaiser Permanente ("Kaiser" or "Proposed Tenant") will occupy the Project if PDP Santa Cruz, LLC (the "Applicant") is successful in obtaining Project entitlements The TIOA covers two key components: (1) a vehicle miles traveled ("VMT") analysis required by the California Environmental Quality Act ("CEQA") that evaluates the amount and distance of automobile travel associated with the Project, and (2) a mobility analysis that evaluates the Project's impacts on automobile delay and traffic congestion, which is not relevant to CEQA, but is relevant to a consideration of the Project's consistency with the County of Santa Cruz's 1994 General Plan and Local Coastal Plan ("General Plan"). Kaiserrelated data and assumptions were used to inform the VMT analysis. ${ }^{1}$ The VMT analysis separately breaks down the traffic impacts associated with the Proposed Tenant's employees that will provide healthcare and support services in the Project and its patients, visitors and non-clinical affiliated members ("Members") traveling to the Project.

Project Overview

Project Setting

The Project proposes to construct a new MOB and parking garage that will be located in the southwest quadrant of the intersection of Soquel Avenue \& Mattison Lane, which is approximately $3 / 4$ miles west of the $41^{\text {st }}$ Avenue \& Soquel Avenue intersection and $3 / 4$ miles east of the Soquel Drive \& Soquel Avenue intersection. Development of a MOB at the Project site will fill a service gap that the Proposed Tenant currently has in the County, which causes many of its Members to travel out of the County and to the Proposed Tenant's facilities in the City of San Jose Metropolitan Area ("San Jose") for health care. Consequently, the Project is expected to reduce traffic along Highway 17 to/from those San Jose facilities while providing a centrally located MOB that offers a wide range of health services to the residents of the County.

The Project site is currently leased to a variety of light industrial uses including a towing service, an outdoor vehicle storage area, and a concrete subcontractor. If the Project is successful in obtaining its entitlements, then all of the existing structures will be removed prior to construction of the Project.

[^0]
Kimley»)Horn

Project Description

The Project proposes to construct a MOB, containing approximately 160,000 square feet of gross building floor area, and a parking garage. The parking garage is proposed to contain 730 vehicle parking spaces, 47 of which will be designated as clean air vehicle spaces and equipped with future electric vehicle charging capabilities and 38 motorcycle spaces. Within the parking garage on the first level, 160 bike spaces including 124 racks and 36 lockers are proposed. In addition, the Project will also provide 6 surface vehicle parking spaces adjacent to the parking garage.

The Project also proposes to construct two access points along Soquel Avenue. The main Project driveway will be signalized and will provide full access to the site as shown in the Project site plan. A secondary driveway, east of the main driveway, will provide an access point for pickups and deliveries, as well as quiet ambulatory ingress and egress. The parking garage will not be accessible from the secondary driveway. Thus, it is not anticipated that employees or Members will utilize the secondary driveway. The secondary driveway will be stop-controlled on the northbound approach from the site and will be located along the easterly site boundary.

Project Operations

The Project's standard business hours will be from 8:30 AM to 5:30 PM Monday through Friday, with two minor exceptions. The first is urgent care, which will comprise approximately 9,600 square feet or 6 percent of the programmed square footage, and is anticipated to operate 24 hours per day, 7 days per week. The second is the post anesthesia care unit, which will compose approximately 4,800 square feet, or 3 percent of the programed square footage, and may operate beyond standard business hours 5 days a week depending on the medical condition of a Member. The Project is planning to provide the following programs and services, which could include, but are not limited to: Obstetrics, Head and Neck Surgery, Surgery, Urology, Endocrinology, Gastroenterology, Hematology/Oncology, Infectious Diseases, Rheumatology, Nephrology, Pulmonology, Sleep Lab, Orthopedics, Podiatry, Pain Medicine, Physical Medicine and Rehabilitation, Primary Care (Internal Medicine or Family Practice), Dermatology, Allergy, Urgent Care, Chemotherapy Infusion, Audiology, Optometry, Ophthalmology, Imaging, Pharmacy, Laboratories, Sterile Processing, Blood Bank, Recovery, Building Support, Café, Vision Essentials, Administrative Offices, and Conference Spaces.

Project Mobility Improvements

The Project will provide numerous mobility improvements, including the following:
Main Traffic Driveway Signal: The Project site will be accessed from Soquel Avenue. The Project will construct one main signalized driveway entrance for employees and Members, which will provide access to the patient loading and unloading area, as well as the proposed parking garage. The main driveway will include a protected westbound left-turn pocket and eastbound right-turn pocket into the Project site from Soquel Avenue, as well as northbound left- and rightturn lanes exiting the Project site.

Kimley»)Horn

Soquel Avenue Two-Way Left-Turn Lane Striping Improvements: The Project will implement approximately 3,500 feet of Two-Way Left-Turn Lane ("TWLTL") striping (and restriping) along Soquel Avenue from Paul Minnie Avenue to the existing creek crossing (east of Mattison Lane).

Green Bike Lanes Along Soquel Avenue: The Project will provide approximately 4,200 feet of Class 2 bike lane with green colored striping along Soquel Avenue from Paul Minnie Avenue to just east of Mattison Lane.

Sidewalk Installation Along Soquel Avenue: The Project will construct American with Disabilities Act ("ADA") compliant sidewalks along the north Project frontage (south side of Soquel Avenue), which will extend along the south side of Soquel Avenue and fill an existing gap in the County's sidewalk network.

Soquel Avenue / 40 Avenue \& Gross Road: The Project will install a diagonal diverter extending from the northwest corner to the southeast corner at this intersection. The diverter will prevent cut through traffic on Gross Road through the residential neighborhood, and eliminate the congestion caused by the all-way stop currently existing at the intersection.
$41^{\text {st }}$ Avenue \& Gross Road Overhead Wayfinding Signage: The Project will install overhead signs and roadway markings to improve lane selection and use on the eastbound approach of Gross Road. The lane selection would be for southbound Highway 1 and northbound Highway 1 movements. The Project will also install a physical barrier between the limit line and the diverge of the Highway 1 southbound on-ramp on $41^{\text {st }}$ Avenue. This barrier will prevent vehicles from jumping the queue for southbound on-ramp traffic and improve bicycle rider safety in the Class II bike lane at the Highway 1 southbound on-ramp at $41^{\text {st }}$ Avenue.

Vehicle Miles Traveled (CEQA Analysis)

This chapter documents the Vehicle Miles Traveled ("VMT") analysis completed for the Project. The Project will be part of a network of medical facilities that provide various general and specialized medical services for the Proposed Tenant's Member-based medical system. As such, this analysis considers how the introduction of the Project, including its location and the nature of the services provided, affects the Proposed Tenant's Members' VMT. The Proposed Tenant's service area that was evaluated includes existing facilities which serve Members residing in the County. While most of the Proposed Tenant's existing facilities are located within the County, others are located outside of the County in locations such as Gilroy and San Jose. The facilities outside of the County are used by Members needing specialized services not provided by facilities inside the County. The Project, which will be located within the County along Soquel Avenue, is planned to provide expanded services so that only a small portion of the Proposed Tenant's Members will have to travel to facilities outside of the County. As described herein and shown in Table ES-T1 below, the Project will result in a reduction of at least 20,322 vehicle miles traveled, and thus will have a less than significant impact on transportation.

Kimley»)Horn

Table ES-T1 - Total Vehicle Miles Traveled by Scenario

Analysis Scenario	Combined Total
Patient + Employee Vehicle Miles Traveled (VMT)	
A1: Existing No Project	121,843
A2: Existing Plus Project	$\mathbf{7 7 , 4 2 6}$
Net Reduction in VMT	$-44,416$
A3: 2040 No Project	121,168
A4: 2040 Plus Project	75,862
Net Reduction in VMT	$\mathbf{- 4 5 , 3 0 6}$
B1: Cumulative No Project	$\mathbf{9 6 , 1 8 4}$
B2: Cumulative Plus Project	$\mathbf{7 5 , 8 6 2}$
Net Reduction in VMT	$\mathbf{- 2 0 , 3 2 2}$

Definitions

The following definitions are provided for the purpose of having a common understanding of the analysis provided within this section:

Existing Members: Current Members of the Proposed Tenant's healthcare system.
Healthcare Consumer: Consumers of healthcare services in the County, including Members and Other Healthcare Systems' patients.
Members: The Proposed Tenant's patients, visitors and non-clinical affiliated members. Collectively, as the context requires, the term "Members" may refer to Existing Members, Population Growth Members and Transferee Members.

Population Growth Members: Member growth that will occur over time via population growth.

Other Healthcare Systems: Sutter Health and Dignity Health.
Transferee Member: Member growth attributable to patients switching from Other Healthcare Systems to the Proposed Tenant.

Background

In 2013 and 2018, respectively, CEQA and its implementing guidelines ("CEQA Guidelines") were significantly amended regarding the methods by which lead agencies are to evaluate a project's transportation impacts. As described in CEQA Guidelines Section 15064.3(a):

Generally, vehicle miles travelled is the most appropriate measure of transportation impacts. For the purposes of this section, "vehicle miles traveled" refers to the amount and distance of automobile travel attributable to a project. Other relevant considerations may include the effects of the project on transit and non-motorized travel. Except as provided in subdivision (b)(2) below (regarding roadway capacity), a project's effect on automobile delay shall not constitute a significant environmental impact.

Kimley»)Horn

The CEQA Guidelines have eliminated traffic congestion and automobile delay from the list of issues required to be analyzed as part of a potential project's CEQA analysis and instead clarify that the appropriate criteria for analyzing a potential project's transportation impacts is VMT. This is because California needs to reduce VMT to achieve the State's long-term greenhouse gas ("GHG") reduction climate goals. Half of California's GHG emissions come from the transportation sector; therefore, reducing VMT is an effective climate strategy. ${ }^{2}$ A VMT-focused transportation analysis encourages a reduction in VMT, as opposed to the former approach of evaluating transportation impacts based on level of service ("LOS") impacts, which often leads to roadway improvements that increase roadway capacity and, consequently, can induce more VMT, traffic and GHG emissions. ${ }^{3}$

Effective July 1, 2020, CEQA Guidelines section 15064.3(c) now requires lead agencies to assess transportation impacts based on VMT. On June 16, 2020, the County adopted its own thresholds based on the requirements of CEQA (Public Resources Code section 21099) and the CEQA Guidelines. ${ }^{4}$ As further described below, the threshold of significance, methodology, and analysis provided for in this section are based upon these adopted thresholds and the associated direction from County staff.

Analyzing MOB VMT

As required by the California State legislature pursuant to SB 743, the California Governor's Office of Planning and Research ("OPR") prepared guidance to facilitate the adoption of VMT thresholds of significance by California jurisdictions. Although the 2018 Guidance ${ }^{5}$ does not specifically discuss MOBs, it does address the approach for analyzing land uses with the attributes of a MOB:

For office projects that feature a customer component, such as a government office that serves the public, a lead agency can analyze the customer VMT component of the project using the methodology for retail development (see below).

Santa Cruz County provided for this VMT analysis approach in its VMT thresholds adopted on June 16, 2020. ${ }^{6}$ Based on County requirements, MOB's are classified under the heading of "All
${ }^{2}$ California Air Resources Board (Nov. 2018) 2018 Progress Report on California's Sustainable Communities and Climate Protection Act, pp. 4, 5.
${ }^{3}$ Technical Advisory on Evaluating Transportation Impacts in CEQA (2018), California Governor's Office of Planning and Research, Page 5 [addition of through lanes, including general purpose lanes, HOV lanes, peak period lanes, auxiliary lanes or lanes through grade-separated interchanges would likely lead to measurable and substantial increases in vehicle travel]).
${ }^{4}$ Board of Supervisors of the County of Santa Cruz, Resolution No. 146-2020, adopted June 16, 2020.
${ }^{5}$ Technical Advisory on Evaluating Transportation Impacts in CEQA (2018), California Governor's Office of Planning and Research, Page 5
${ }^{6}$ Board of Supervisors of the County of Santa Cruz, Resolution No. 146-2020, adopted June 16, 2020 providing that a project will have a significant transportation impact unless it generates VMT meeting the following thresholds: (i) Residential Projects: 15 percent below Countywide per capita average VMT; (ii) Office and Service Projects: 15 percent below the Countywide per employee average VMT; (iii) Retail Projects: no net increase in the Countywide average VMT; (v) All Other Land Uses: no net increase in VMT. The Project is not a Residential or Retail Project and should not be classified as an "Office and Service Project" either for purposes of analyzing VMT given that an "Office

Kimley»)Horn

other land uses," which provides for a threshold of significance of "no net increase in VMT". Accordingly, the Project will not have a significant transportation impact under CEQA if it results in no net increase in VMT.

The basic concept behind this analysis approach is that MOB's are similar to local retail uses in that they primarily serve pre-existing needs (i.e., they do not generate new trips, instead they meet a demand that would exist with or without the Project). Based on this, it can be presumed that the introduction of a new MOB will result in existing trips being redistributed, potentially resulting in shorter trip lengths when the MOB opens for service and is geographically located inbetween existing healthcare facilities. Given that the relative number of trips is constant, shorter trip lengths result in a VMT reduction. Essentially, a typical doctor visit is assumed to occur regardless of the proximity of the facility, but the proximity of the facility will determine the length of that trip and the resultant impact to the overall transportation system. Subsequently, this characteristic is used in this analysis to calculate the potential net increases or decrease in the overall VMT when the Project is constructed.

Figure ES-F1, below, demonstrates the concept described in this section visually and the measure of a "Net Change" in VMT as the metric by which the Project's potential transportation impact is determined.

Figure ES-F1 - Typical Effect of a MOB on VMT

[^1]
Kimley»)Horn

As shown in the above graphic, the introduction of a new MOB often has the effect of redistributing existing patient trips in a manner that reduces average trip lengths, thereby resulting in a VMT reduction (i.e. trip segments that were 3 miles prior to the new MOB are reduced to 1 mile with the addition of the new MOB).

Scenarios

This TIOA provides two separate and independent analyses of the Project under the threshold of "no net increase in VMT."

The first analysis, identified as "Scenario A," considers the effect of the Project on the Proposed Tenant's Members. This scenario represents the Proposed Tenant's goal of providing nearly all medical services required by its Santa Cruz County Members in the geographical boundaries of the County itself. This will benefit the Proposed Tenant's Members residing in the County by providing improved access to necessary medical services, thereby reducing the percentage of trips that travel to the San Jose area for specialized services. Members that travel outside of the County necessarily add substantial VMT to the existing system. These trips will be reduced with the construction of the Project. Based on the forecasted data provided by the Proposed Tenant, it is estimated that the number of Member trips accessing services outside of the County will be significantly reduced when the Project becomes operational (from 29\% without the Project to 2.4\% with the Project, as shown below).

The second analysis, identified as "Scenario B," provides a more conservative VMT analysis by also considering the potential for Healthcare Consumers from Other Healthcare Systems to become Transferee Members who also receive healthcare services at the Project (in addition to the Proposed Tenant's Existing Members and Population Growth Members).

The two scenarios are described in more detail below.

Scenario A

Under Scenario A, the following is considered:
A1: Existing No Project: VMT is evaluated under existing conditions (i.e., baseline). Specifically, VMT for Existing Members is determined based on current patterns, where most Members receive care at one of the Proposed Tenant's facilities in the County, but where almost 29-percent of Existing Member trips travel out of the County predominantly to receive specialized services. There are no new employees (because there is no Project) so employee VMT is based on the Proposed Tenant's existing facility locations in and outside of the County.
A2: Existing Plus Project: VMT is evaluated under exiting conditions, but with the addition of the Project. VMT for Members is determined based on the assumption that most Members receive care at the Project or one of the Proposed Tenant's existing facilities in the County. In this scenario, only about 2.4-percent of Members needing specific and highly specialized services that will not be provided at the Project continue to travel out of the County and the remaining Members currently traveling out of the County are redirected to the Project instead. VMT associated with Project employees is also

Kimley»)Horn

included. For purposes of this analysis, it is assumed that the Project is fully occupied and operational.

A3: No Project 2040: 2040 VMT is evaluated based on a Healthcare Consumer distribution that represents forecasted 2040 household locations, which thereby impacts trip lengths (i.e., more density means shorter trip lengths because a higher concentration of people live near services). Members receive care at one of the Proposed Tenant's facilities in the County, but almost 29-percent of Member trips travel out of the County to receive specialized services. There are no new employees (because there is no Project) so employee VMT is based on existing facility locations.

A4: Plus Project 2040: 2040 VMT is evaluated based on a Healthcare Consumer distribution that represents forecasted 2040 household locations and assumes the addition of the Project. VMT for Members is determined based on the assumption that care is received at the Project or one of the Proposed Tenant's existing facilities in the County. In this scenario, most Members receive specialized services at the Project and about 2.4-percent of Members continue to travel out of the County for specific and highly specialized services that will not be provided at the Project. VMT associated with Project employees is also included.

Scenario A Methodology

Santa Cruz Country Travel Demand Model ("SCC TDM") data and related modeling techniques were used as the principle tool to determine VMT. Travel demand models are broadly considered to be the most accurate of available tools to assess VMT. Based on data provided by the Proposed Tenant about the facilities its Members in the County currently utilize, as well as limitations of the SCC TDM (i.e., it does not include areas outside of the County), a hybrid approach that relied on both the SCC TDM and other spatial analysis techniques was developed to meet the County's VMT analysis requirements. This approach accounted for the unique trip distribution and trip generation characteristics of the Project, as well as for the portion of VMT that would occur outside of the area covered by the SCC TDM.

Assumptions and Facts - Scenario A

The following assumptions and facts are applicable to the analysis for Scenario A:

1. The trip distribution (i.e., trip length), used for the calculation of VMT and trip generation was developed based on the assumption that all patients travel to the closest facility that provides the medical services they require. Although some individuals may select a less optimal choice based on personal preference, the probability of this would likely be no different under any Scenario A condition (or Scenario B condition). Given this and the fact that there is not a sufficient basis or data to undertake such analysis, the TIOA reflects the assumption that the most optimal medical facility location, based on distance, is always selected by a Healthcare Consumer. It is further assumed that existing facilities of both the Proposed Tenant and Other Healthcare Systems can accommodate the demand for medical services based on this approach to trip distribution.

Kimley»)Horn

2. In order to account for the effect of the Project on Healthcare Consumers, VMT from a variety of sources are considered, including for Members and employees of existing healthcare facilities operated by the Proposed Tenant inside and outside of the County.
3. The facilities selected for this analysis are based on market data ${ }^{7}$ (as further described in Assumption \#8) developed that tracked the number of visits by service required at facilities operated by the Proposed Tenant. This includes six facilities located outside of the County and six facilities, including the Project, located within the County.
4. Based on information provided by the Proposed Tenant, approximately 29percent of current Member trips are estimated to be served by facilities located outside of the County currently, mostly seeking services that the Proposed Tenant currently does not provide within the County. Based on information provided by the Proposed Tenant, when the Project becomes operational, it is assumed that trips to facilities outside of the County will be reduced to about 2.4percent of the total Member trips. These trips would be for highly specialized services that are not expected to be available at the Project, such as pediatric neurology or spine surgery. With the Project, it is assumed that other specialized services required by Members will be provided by the Project.
5. Based on data provided by the Proposed Tenant, it is understood that on average, the Project will employ 300 individuals per day. For the purposes of this VMT analysis, only employee commute trips were accounted for as a part of the VMT analysis. This equates to 600 total Project trips (i.e., 2 times 300 one-way trips), as all employee trips were conservatively assumed to be single occupancy trips for purposes of this analysis.
6. Employee trip generation is based on the proportion of employees (300 total) that matches the allocation of Healthcare Consumers to each healthcare facility, regardless of system. The origin of employees is based on the existing Longitudinal Employer-Household Dynamics (LEHD) data.
7. Other trips, such as deliveries, were assumed to be minor in number and are adequately represented in terms of VMT by Healthcare Consumer and/or employee trips included the analysis (the full trip generation, as used for this analysis, accounts for all Project trips). It is assumed that other elements of the analysis are a reasonable proxy for minor differences in any trip lengths.
8. This TIOA VMT analysis separates Member trips among 28 different services based on market data provided by the Applicant.
[^2]
Kimley»)Horn

9. The Proposed Tenant's membership forecasts for its Santa Cruz County MOBs for 2020 through 2040 were used as the basis for determining what percentage of trips were distributed amongst Members. This data is provided in Appendix S.

Scenario A Analysis

As described above, Scenario A evaluates the effect of the Project on the Proposed Tenant's Members. To determine the impact of the addition of the Project on the total VMT for the Proposed Tenant's Members, the distance traveled by each Member to the facility that provides the service required was determined for both Existing and 2040 Conditions. This distance was then multiplied by the number of trips the Proposed Tenant's Members and employees in Santa Cruz County take in an average day to each of the Proposed Tenant's facilities. This was completed both for Project an No Project conditions.

The number of trips analyzed under Scenario A represents both the estimated current trip generation of existing facilities and the full utilization of the Project facility as determined based on the daily trip generation rate for Clinics (same rate as used in the TIOA) included in the Trip Generation Manual, $10^{\text {th }}$ Edition published by the Institute of Transportation Engineers (ITE). Based on information provided by the Proposed Tenant it is understood that for the No Project scenario, nearly 29-percent of Member trips include facilities outside of the County, while only 2.4-percent of member trips include facilities outside of the County in the Plus Project scenario. Once the number of daily trips was determined for all facilities, the trips were distributed to the Member and corresponding employee locations throughout the County based on an optimized solution which considers both the availability of a service for a given facility as well as the proximity of that facility to a Member. Member locations are based on the Existing and 2040 population locations provided by the Santa Cruz County Travel Demand Model (SCC TDM), while the employee locations are based on Census employment data. The resultant trips were then multiplied by the distance of the shortest travel time to each facility to determine VMT in the aggregate for each scenario. A more detailed explanation of this methodology is provided in Appendix Z.

Scenario A Results

The VMT results for Healthcare Consumers under Scenario A are summarized below in Table ES-T2. For both Scenario A. 2 (Existing Plus Project) and Scenario A. 4 (2040 Plus Project conditions), the Project results in a net reduction of more than 44,000 VMT per day. The table includes VMT for both Member and employee trips. The results reflect that with the addition of the Project, there is a reduction in VMT, primarily due to the reduction in trips to facilities outside of the County as compared to the No Project scenarios.

Kimley»)Horn

Table ES-T2 - Total Vehicle Miles Traveled by Scenario

Analysis A		Patient Vehicle Miles Traveled (VMT)	Employee Vehicle Miles Traveled (VMT)	Combined Total
Existing	A1: Existing No Project	97,275	24,567	121,843
	A2: Existing Plus Project	53,300	24,126	77,426
	Net Reduction in VMT	$-43,975$	-441	$-44,416$
$\mathbf{2} \mathbf{2 0 4 0}$	A3: 2040 No Project	96,601	24,567	121,168
	A4: 2040 Plus Project	51,736	24,126	75,862
	Net Reduction in VMT	$\mathbf{- 4 4 , 8 6 4}$	-441	$-45,306$

SCENARIO B ANALYSIS

As noted above, Scenario B considers a conservative approach to defining the No Project condition. Scenario B is predicated on a set of circumstances where a significant catalyst for growth results from patients of Other Healthcare Systems transferring to the Proposed Tenant's system as new Members once the Project is constructed (i.e., Transferee Members) to receive healthcare services at the Project. Accordingly, in the No Project condition for Scenario B (B1), VMT associated with these Transferee Members is allocated to Other Healthcare Systems in the Project condition for Scenario B (B2), VMT associated with these Transferee Members is allocated to the Project instead because they have become Healthcare Consumers that receive healthcare services at the Project. ${ }^{8}$ Given that a variety of considerations influence the growth of medical networks, including employer/employee selection, cost, and personal preferences, the transfer of patients from Other Healthcare Systems to become Transferee Members of the Proposed Tenant contemplated in this Scenario B represents the most conservative analysis.

B1: Cumulative No Project: 2040 VMT is evaluated based on a Healthcare Consumer distribution that represents forecasted 2040 household locations. In this scenario, Member trips are adjusted to account for Existing Members and Population Growth Members (i.e., new Members projected based on projected population growth). Most Existing Members and Population Growth Members receive care at one of the Proposed Tenant's facilities in the County, but almost 29-percent of Existing Member and Population Growth Member trips travel out of the County to receive medical services, since those specialized services are not offered at existing facilities in the County There are no new employees (because there is no Project) so employee VMT is based on existing facility locations. Under this Scenario B1, Transferee Members remain with the Other Healthcare System in which they are assumed to belong and their VMT contribution is estimated based on their use of that system.

B2: Cumulative Plus Project: Under this condition, Transferee Members have transferred to the Proposed Tenant's membership base and are reflected in the Project's VMT, rather than in VMT attributable to the Other Healthcare Providers. VMT for Existing

[^3]
Kimley»)Horn

Members and Population Growth Members is determined based on the assumption that care is received at the Project or at one of the Proposed Tenant's facilities in the County. In this scenario, most Members receive specialized services at the Project and very few continue to travel out of the County for specific and highly specialized services that will not be provided at the Project. VMT associated with employees is also included.

Methodology for Scenario B

The methodology described above for estimating VMT for Scenario A, including with respect to Project trip generation, also applies to the Scenario B analysis. Like Scenario A, the Scenario B analysis is also based on the accommodation of 6,106 Project trips (representing the same number of Members and employees). As such, the Scenario B analysis only considers the circumstances of Transferee Members and Population Growth Members that are forecasted to join the Proposed Tenant's network, as well as Members currently within the Proposed Tenant's network residing within the County. This basis maintains an "apples-to-apples" comparison basis for the two scenarios as required by SB 743. ${ }^{9}$

As discussed further in Chapter 2, this TIOA VMT analysis utilizes a trip generation rate based on the ITE Trip Generation Manual that overstates the VMT of the Project by 37-percent, as compared to traffic counts collected from area MOBs. This overly conservative ITE rate likely results in a substantial decrease (37-percent) for Transferee Members' VMT under Scenario B.2's (Cumulative Plus Project) condition as compared to Scenario B. 1 Cumulative No Project condition. For purposes of providing the most conservative analysis possible as part of this TIOA, however, this likely trip reduction is not considered in this report's VMT analysis, which instead is based on ITE trip generation rates.

Assumptions and Facts - Scenario B

The assumptions and facts that are specific to Scenario B are provided below:

1. All of the Assumptions and Facts applicable to Scenario A also apply to Scenario B and are incorporated herein by reference, except Assumptions Number 2 (VMT sources) and 9 (membership forecasts) provided in Scenario A are modified as provided below.
2. In order to account for the effect of the Project on Healthcare Consumers, VMT from a variety sources are considered, including those for Existing Members, Population Growth Members, Transferee Members and healthcare facilities in the County. This is a modification for Scenario A, Assumption No. 2 in that it evaluates VMT impacts associated with Other Healthcare Systems based on market data
[^4]
Kimley»)Horn

provided by Pivotal Analytics ${ }^{10}$ for Cumulative No Project and Cumulative plus Project conditions.
3. The Proposed Tenant's Membership forecasts for its in-County MOBs for 2020 through 2040 was used as the basis for determining what percentage of trips were distributed across each of the three sources of Members (i.e., Existing Members, Population Growth Members or Transferee Members). These data are provided in Appendix T. This is a modification for Scenario A, Assumption No. 9 modified for Scenario B in order to provide for the consideration of Existing Members, Population Growth Members and Transferee Members.
4. The Proposed Tenant's Member growth under Scenario B. 2 cumulative conditions (Population Growth Members) is based on the population growth percentage between 2019 and 2040, as provided for in the SCC TDM. Appendix S contains a detailed breakdown of these values.
5. Transferee Members that are Healthcare Consumers of Other Healthcare Systems under the Cumulative No Project condition have 33 facilities to choose from, 18 for 15 for Dignity Health ("Healthcare System A") and Sutter Health ("Healthcare System B").

Scenario B Analysis

Generally, Scenario B follows the same analytical techniques outlined under the Scenario A analysis above. The primary differences between the two scenario analyses is the analysis of the prior trip patterns of Transferee Members under the Cumulative No Project condition (when they are participants in Other Healthcare Systems) versus their trip patterns under the Cumulative Plus Project condition (after they become Members that receive health care at the Project).

The number of Existing Members in 2020 and the Proposed Tenant's projected membership in 2040 for Santa Cruz County, as provided by the Proposed Tenant, was used as the basis for distributing Members across each of the three member sources: Existing Members, Population Growth Members, and Transferee Members. As shown in Appendix S, the 2020 Membership is estimated to be 35,071 , while the 2040 Membership is projected to be 87,729 , for a 20 -year growth of 52,658 Members. The SCC TDM was used as the basis to determine the population growth over the same period. It was determined that the population would grow by approximately 12.5 percent. As with Scenario A, the SCC TDM population distribution is the basis for the determination of Healthcare Consumer origins.

To determine Population Growth Members, the 2020 membership was multiplied by the population growth percentage for the County, resulting in a Membership growth of 4,394. The remaining growth of 48,264 is assumed to be the result of Transferee Members. As a result, the Cumulative Plus Project conditions assume that Membership is made up of 40-percent Existing Members, 5-percent Population Growth Members, and 55-percent Transferee Members, as

[^5]
Kimley»)Horn

shown in Appendix T. Under the Scenario B. 1 Cumulative No Project conditions, the 55-percent of Transferee Member are analyzed as participants in Other Healthcare Systems.

As with Scenario A, the Applicant-provided market data were the basis of identifying the distribution of Member visits by service type and by facility for Scenario B1 and Scenario B2. Similarly, the data shows that almost 29-percent of Existing Members and Population Growth Members would travel outside the County for specialized services under the Scenario B. 1 Cumulative No Project Condition and almost 2.4-percent of total Member trips would continue to travel outside the County under the Scenario B. 2 Cumulative Plus Project condition for the purposes of obtaining highly specialized services that are not expected to be provided by the Project.

VMT for the Scenario B. 1 Cumulative No Project and the Scenario B. 2 Cumulative Plus Project condition was calculated in the same manner as Scenario A (see Appendix Z for more details). The primary difference being that the Cumulative No Project condition considers the VMT of Transferee Members as it relates to Other Healthcare Systems. Employees were also handled consistently with Scenario A.

Scenario B Results

The VMT results for Healthcare Consumers under Scenario B are summarized in Table ES-T3. For Scenario B. 2 (Cumulative Plus Project) conditions, the Project results in a net reduction of more than 20,000 VMT per day. The table includes the effect of Transferee Members leaving Other Healthcare Providers to become new Proposed Tenant Members receiving care at the Project instead. VMT was calculated for both Member trips and employee trips. The results reflect that with the addition of the Project in the Scenario B. 2 (Cumulative Plus Project) condition, there is a reduction in VMT primarily due to trips outside the County being significantly reduced as compared to the B. 1 (Cumulative No Project scenario).

Table ES-T3 - Total Vehicle Miles Traveled

Analysis B	Combined Total
Patient Vehicle Miles Traveled (VMT)	
B1: Cumulative No Project	
B2: Cumulative Plus Project	$\mathbf{7 0 , 9 0 6}$
Net Reduction in VMT	
Employee Vehicle Miles Traveled (VMT)	
B1: Cumulative No Project	$\mathbf{2 5 , 2 7 9}$
B2: Cumulative Plus Project	$\mathbf{2 4 , 1 2 6}$
Net Reduction in VMT	
Patient + Employee Vehicle Miles Traveled (VMT)	
B1: Cumulative No Project	$\mathbf{- 1 , 1 5 2}$
B2: Cumulative Plus Project	
Net Reduction in VMT	
$\mathbf{y y y}$	$\mathbf{7 5}, 862$

Kimley»)Horn

With the addition of the Project, the Healthcare Consumers allocated to Healthcare System A and Healthcare System B become Transferee Members and their trips are diverted from the Other Healthcare Systems to the Project. VMT associated with Healthcare Consumers that currently are, and that after construction of the Project will continue to be patients of the Healthcare System A or Healthcare System B are not reflected in this Table.

Conclusion

Conclusion: As shown in Table ES-T4 below, under all conditions for the Scenario A and Scenario B analyses, the Project results in a net VMT reduction. In Scenario A, which focuses on VMT associated with Members who receive services at the Proposed Tenant's existing facilities should the Project not be constructed, the Project results in reduction of 44,416 VMT in the Scenario A. 2 (Existing Plus Project) condition and a reduction of 35,306 VMT in the Scenario A. 4 (2040 Plus Project) condition as shown in Table ES-T2. In Scenario B, which provides a more conservative analysis that considers the VMT associated with Existing, Population Growth and Transferee Members, the Project results in a reduction of 20,322 VMT in the Scenario B. 2 (Cumulative Plus Project) condition as shown in Table ES-T3. In both Scenario A and Scenario B, this ultimate reduction in VMT with the Project is primarily due to the reduction in the number of trips outside the County for specialized services since the majority of those services will be provided by the Project.

Table ES-T4 - Total Vehicle Miles Traveled

Analysis Scenario	Combined Total
Patient + Employee Vehicle Miles Traveled (VMT)	
A1: Existing No Project	$\mathbf{1 2 1 , 8 4 3}$
A2: Existing Plus Project	$\mathbf{7 7 , 4 2 6}$
Net Reduction in VMT	$\mathbf{- 4 4 , 4 1 6}$
A3: 2040 No Project	$\mathbf{1 2 1 , 1 6 8}$
A4: 2040 Plus Project	75,862
Net Reduction in VMT	$\mathbf{- 4 5 , 3 0 6}$
B1: Cumulative No Project	$\mathbf{9 6 , 1 8 4}$
B2: Cumulative Plus Project	$\mathbf{7 5 , 8 6 2}$
Net Reduction in VMT	$\mathbf{- 2 0 , 3 2 2}$

Based on the results of this TIOA analysis, the Project would not result in a net increase in VMT and, accordingly, would not have a significant transportation impact under CEQA.

Transportation Demand Management (Non-CEQA Analysis)

Transportation Demand Management ("TDM") measures are programs that can be implemented to reduce single occupancy vehicle ("SOV") travel to and from homes or places of work by offering travelers mode choice options. TDM options are intended to reduce roadway congestion and provide more choices for how to travel, both of which will assist in promoting business, providing

Kimley»)Horn

access to opportunity, and improving the quality of life across the state. The County recognizes the value of TDM measures in its General Plan ${ }^{11}$ and Trip Reduction Ordinance. ${ }^{12}$

The Project has no significant transportation impacts under CEQA (as assessed by VMT), and therefore is not legally required to provide or incorporate TDM measures to mitigate such impacts. Nonetheless, the Project will voluntarily implement TDM measures to reduce reliance on SOVs and to assist in achieving state and local GHG reduction commitments, preserving the environment, improving health and safety, and reducing congestion on local streets and highways. The trip generation assumptions used in this TIOA to analyze the Project's impacts on County roadways were not discounted to account for the implementation of TDM.

The Project proposes a targeted TDM strategy focusing on separate measures for employees and Members, as summarized below.

Employee-Focused TDM Measures

The Project proposes to provide the following TDM benefits to employees:

- Bike Share Program
- Commute Management Platform and Rideshare Support
- Emergency Ride Home Program
- TDM Coordinator
- Safe, Well-Lit, and Accessible Pedestrian/Bicycle Facilities along Soquel Avenue

Based on the information identified in Table, it is anticipated that the TDM measures would reduce employee trip generation by approximately 15.5 percent.

Member-Focused TDM Measures

The Project will also provide the following TDM measures intended to benefit Members:

- Virtual Care Strategy
- Safe, Well-Lit, and Accessible Pedestrian/Bicycle Facilities along Soquel Avenue

Based on information identified in Table ES-T5, it is anticipated that these TDM measures would reduce Member trip generation by approximately 20.5 percent.

It should be noted that since the Project proposes to implement and fund the TDM improvements described above, it is anticipated that trip generation estimates provided in this TIOA and used in the operational LOS analyses are very conservative because it does not incorporate the anticipated TDM measures in the overall analysis. In fact, with implementation of the TDM measures, it is anticipated that the Project will generate fewer trips than as analyzed in this TIOA, roughly on the order of 1,165 daily trips. This estimate is based on 300 employees working at the Project making trips during the AM and PM peak hours. The remainder of the daily 6,106 trips are made by Members and project support services (i.e., deliveries, pickups and drop-offs) of which

[^6]
Kimley»)Horn

5% of the project support service trips are excluded from the TDM trip calculations shown below in Table ES-T5.

Table ES-T5 - TDM Trip Calculations

TDM Trip Calculations	Daily trips	AM trips	PM trips	\% TDM	Daily trips	AM trips	PM trips
					TDM Trips		
Project Trip Generation	6106	590	525				
Employee Trips	600	300	300	15.50\%	93	47	47
Member and Project Support Service Trips	5506	290	225				
Project Support Service Trip Reduction (5\%)	-275	-15	-11				
Net Member Trips	5231	275	214	20.50\%	1072	56	44
Total TDM Trips					1165	103	91

Moreover, trip generation rates used in this TIOA are based on ITE assumptions as discussed with County staff. As further described in CHAPTER 2. VEHICLE MILES TRAVELED on Page 8 of this report, traffic data was collected at comparable facilities at the County's request (Appendix Q).

The traffic counts collected indicate that ITE assumptions overstate actual trip generation by between 23 percent and 52 percent. Based on implementation of TDM and the potential overestimation of trips utilizing ITE assumptions, it is likely that operational deficiencies to the local transportation will be substantially less than what is published in this TIOA.

Kimley»)Horn

Table ES-T6 - TDM Measure Summary

TDM Measure	Description	TDM Type	Estimated Trip Reduction (\%)	Trip Reduction Source
Employees Only				
Bike Share Program	Bicycle share programs provide convenient rental bicycles to users. This allows urban residents and visitors to bicycle without needing to purchase, store and maintain a bike.	Incentive	4\%	Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, August 2010.
Commute Management Platform (Ride Amigos or similar service) and Rideshare Support	Increases vehicle occupancy by providing rideshare matching services, designating preferred parking for ride-share participants, designing adequate passenger loading/unloading and waiting areas for ride-share vehicles, and providing a website or message board to connect riders and coordinate rides.	Incentive	2.5\%	This service is already available to employees in the County and would only be a continuation/extension to employees at the Project.
Emergency Ride Home Program (ERH)	Provides an occasional subsidized ride to commuters who use alternative modes and eliminates a common constraint to the use of alternative modes. Guaranteed ride home for people if they need to go home in the middle of the day due to an emergency or stay late and need a ride at a time when transit service is not available. ERH programs may use taxies, company vehicles or rental cars.	Incentive	3\%	Guaranteed Ride Home Programs: A Study of Program Characteristics, Utilization, and Cost by William B. Menczer (Federal Transit Administration); Guaranteed Ride Home Program Evaluation 2013 by Alameda CTC.
On-site TDM Program Coordinator and TDM marketing materials	A TDM coordinator to monitor overall program progress, marketing and public outreach to promote awareness of TDM program.	Infrastructure	4\%	Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, August 2010.
Safe, well-lit, and accessible pedestrian/bicycle facilities	Enhance the route for employees walking or bicycling to transit (typically off-site). Implements pedestrian network improvements throughout and around the Project site that encourages people to walk.	Infrastructure	2\%	Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, August 2010.
Estimated Total Trip Reduction for Employees Only				15.5\%
Members Only				
Virtual Care Strategy	Resources to allow Members to access healthcare services or communicate with healthcare staff through online or off-site programs.	Infrastructure	20\%	Based on the Proposed Tenant's ongoing program results. See Appendix W.
Safe, well-lit, and accessible pedestrian/bicycle facilities	Enhance the route for Members walking or bicycling to transit (typically off-site). Implements pedestrian network improvements throughout and around the Project site that encourages people to walk.	Infrastructure	0.5\%	Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, August 2010.
Estimated Total Trip Reduction for Members Only				20.5\%
Notes: 1. An Incentive is a measure that would entice a candidate employee or patient to make a mode shift choice and reduce their SOV trips. 2. Infrastructure type is a physical feature that makes it more enticing for an employee or patient to make a mode choice from SOV to an alternative mode. 3. TDM reduction percentages are consistent with the County's most recent VMT reduction strategies. The County TDM Policy is Attached in Appendix Z.				

Kimley»)Horn

Pedestrian, Bicycle and Transit Mobility (Non-CEQA Analysis)

Pedestrian Mobility

No sidewalk currently exists along the Project site frontage along Soquel Avenue. The Project will construct ADA-compliant sidewalks and ramps along its frontage on the south side of Soquel Avenue, which will extend west and east beyond its frontage and connect to existing sidewalk facilities along Soquel Avenue. These improvements will fill a critical gap in the County's pedestrian facility network and will improve pedestrian connectivity along Soquel Avenue. Additionally, internal pedestrian connections will link the Project's entrance with the parking areas, as well as the Soquel Avenue frontage. Lighting will be installed to enhance the safety and usability of new pedestrian paths of travel. Therefore, with construction of the Project and sidewalk improvements, employees and Members choosing to walk to the site would not be adversely affected based on pedestrian mobility, accessibility, or safety.

These improvements will further pedestrian travel policies set forth in the General Plan, including those that: require adequate lighting for pedestrian movement; require dedication and construction of walkways for through pedestrian traffic and internal pedestrian circulation in new development; provide for pedestrian movement in the design of parking areas; and incorporate ADA standards in the design of new projects. (General Plan, Policies 3.10.1-3.10.10.)

Bicycle Mobility

The Project will provide approximately 4,200 feet of Class 2 bike lane along Soquel Avenue from Paul Minnie Avenue to just east of Mattison Lane, as illustrated in concept drawings included in
Appendix I. These proposed improvements would improve safety and fill critical gaps in the County's bicycle network, as well as provide bicycle access to the Project site via Soquel Avenue. Striping for the bike lane will be colored green, which is expected to reduce collisions by 19 percent, according to a study on Safety Performance Functions for Bicycle Crashes in New Zealand and Australia (2011), further described in the Bicycle Mobility section of this TIOA on page 36. This results in a reduction of approximately two bike collisions out of every 10 bike collisions. Restriping the improved Class 2 bike lanes is a safety improvement per NCHRP.

These bicycle mobility improvements further General Plan policies addressing the bikeway system and bikeway safety by furthering the bikeway network's integration with other modes of transportation, including transit stations and other activity centers, and designing and constructing bikeways in accordance with County, Caltrans and state standards. (General Plan, Policies 3.8.13.8.4, 3.9.1-3.9.3.)

The Project will support bike share initiatives within the County once a bike rental service is implemented.

Transit Mobility

METRO currently does not have plans or funding to construct a bus stop and run a transit route along Soquel Avenue near the Project site. A $1 / 4$-mile walk (around 5 minutes) to a bus stop is typically considered the maximum acceptable distance for average transit riders, as documented in the USDOT Federal Highway Administration's "Course on Bicycle and Pedestrian

Kimley»)Horn

Transportation" Coursebook ${ }^{13}$. The closest bus stops are approximately 1 mile walking distance, which is approximately a 20 minute walk or a 7 minute bike ride according to Google Maps. These bus stops are located at the intersections of $7^{\text {th }}$ Avenue/Soquel Drive, $7^{\text {th }}$ Avenue/Capitola Road, and at the Transit Center at the Capitola Mall. METRO buses are equipped with bike racks.

Transit service directly to the Project site will be available for disabled persons via the METRO operated ParaCruz service according to personal communication with METRO ParaCruz on $8 / 11 / 2020$. Santa Cruz METRO ParaCruz is a shared-ride service, providing door-to-door public transportation for people who have a temporary or permanent physical, cognitive, or psychiatric disability that prevents them from making some or all of their trips on METRO's fixed route bus system. Lift Line, a program operated by Community Bridges, also provides free door-to-door rides to qualifying seniors and people with disabilities needing transportation to medical appointments throughout the County, and this service is expected to be available to qualified Members utilizing the Project.

Summary of Findings

The Project's on-site and off-site improvements will improve pedestrian and bicycle mobility, and the roadway improvements that will be constructed as part of the Project will improve transit mobility. Therefore, the Project will not adversely affect local pedestrian, bicycle, and/or transit facilities and will implement several General Plan goals relative to pedestrian and bicycle mobility.

Parking Supply and Demand Evaluation (Non-CEQA Analysis)

The Project will construct a five-level parking garage, which will include a total of 730 vehicle parking stalls (including 619 standard spaces, 67 ADA spaces and 47 clean air vehicle spaces (including three ADA spaces). 38 motorcycle spaces will be provided in the parking garage as well. A total of 160 bike spaces will also be provided, consisting of 36 bike locker spaces and 124 bike rack spaces. In addition, the Project will also provide 6 surface vehicle parking spaces adjacent to the parking garage. The Project is providing a total of 736 parking spaces (garage + surface), which is 24 spaces more than the minimum Code required parking. Table ES-T7 summarizes the Project's proposed parking supply.

Table ES-T7 - Parking Spaces Provided by the Project				
Land Use Description	Type	Rate	No. of Units	Spaces Provided by the Project
Medical Office	Vehicle Parking	1 space per 217.4 square feet of gross floor area	160,000	736
	Bike Parking	1 space per 1,000 square seet of gross floor area		160

[^7]
Kimley»)Horn

Section 13.10.552 of the County's Code requires one vehicle parking space per 225 square feet of gross floor area. The Code also requires one bike parking space per 1,000 square feet of gross floor area.

The Project will construct approximately 160,000 square feet of medical office uses. Therefore, based on Table ES-T8, the County Code requires the Project to provide at least 712 vehicle parking spaces, and 160 bike parking spaces.

Table ES-T8 - County MOB Parking Requirements				
Land Use Description	Type	Rate	No. of Units	Spaces Required
Medical Office	Vehicle Parking	1 space per 225 square feet of gross floor area	160,000 square feet	712
	Bike Parking	1 space per 1,000 square feet of gross floor area	160	

In addition to the above general parking requirements, the County's Code requires that for a project proposing between 501 and 1,000 parking spaces, two percent of the total spaces be ADA accessible. However, because the Project is a medical office, the County Planning department is requiring the Project to provide the following ADA parking requirements based on the Applicant's Development Review Group meeting conducted on November 8, 2018 (Table ES-T9 below):

- Approximately 3\% of the parking spaces that serve the Project's employees shall be ADA accessible per California Building Code 11B-208
- Approximately 11% of the parking spaces that serve the Project's Members and visitors shall be ADA accessible per California Building Code 11B-208.2.1

Table ES-T9 - County Required ADA Accessible Parking					
Project Functional Program Summary	Building Area (Square Feet)	\% of building	Total New Parking Spaces	California Building Code ADA Space Requirement (Project ADA Space Requirement)	Accessible Parking Requirement
TOTAL Employees	48,405	30%	223	$11 \mathrm{~B}-208(3 \%)$	7
TOTAL Members/Visitors	111,595	70%	513	$11 \mathrm{~B}-208.2 .1(11 \%)$	56
Project TOTAL	160,000	100%	736		63

As shown in Table ES-T10 below, the Project is providing four more ADA parking spaces than required by the County Planning Department to accommodate for future flexibility in Potential Tenant's programming requirements.

Kimley»)Horn

Table ES-T10 - Project ADA Accessible Parking	
Project ADA Parking Space Summary	
County Required ADA Accessible Spaces	63
Project Proposed ADA Accessible Spaces	67
Additional ADA Accessible Spaces Above County Requirement	+4

Local Mobility Analysis (Non-CEQA Analysis)

The County's General Plan Circulation Element requires development projects to analyze level of service ("LOS") impacts in order to assess roadway capacity. The information from an LOS analysis can be used to identify operating deficiencies on the roadway network, determine the effects of a project and potential improvements to offset such effects, and to more accurately update and apply the County's impact fee program. This LOS analysis is not a CEQA analysis, which provides specifically that "automobile delay, as described solely by level of service or similar measures of vehicular capacity or traffic congestion shall not be considered a significant impact on the environment." (Public Resources Code, §21099(b)(2); see also CEQA Guidelines, §15064.3(a) ["a project's effect on automobile delay shall not constitute a significant environmental impact."]) CEQA no longer focuses on LOS-based analyses because such analyses tend to result in mitigation measures calling for new or expanded roadways, which leads to more VMT and GHG emissions in contravention of the purposes of SB 743 (2013) and the State's climate change laws, including AB 32 (2006), requiring a reduction in state GHG emissions to 1990 levels by 2020, and SB 32 (2016), requiring at least a 40 percent reduction in GHG emissions from 1990 levels by 2030. Accordingly, the local mobility analysis is provided at the request of the County for informational purposes only and not for purposes of evaluating the Project's transportation impacts under CEQA.

Level of Service

LOS is a qualitative measure used to describe operational conditions. LOS ranges from A (best), which represents minimal delay, to F (worst), which represents heavy delay and a facility that is operating at or near its functional capacity. LOS analyses model whether deficient operations along the local transportation network would occur as a result of a proposed project. Thus, a detailed operational (i.e., LOS and other traffic operational measures) analysis was conducted as part of this TIOA to determine whether an acceptable LOS would be maintained with the addition of the Project. Potential improvements were identified where deficient/unacceptable LOS would likely occur within the County due to the Project.

Although not required by the General Plan, for informational purposes only, this report considers LOS standards of the County and other agencies having jurisdiction over roadways and

Kimley»)Horn

intersections located outside the County that will be impacted by the Project. Applicable LOS standards are set forth below.

(a) Santa Cruz County

Project-related deficiencies at study intersections occur:

- If the intersection operates at an acceptable LOS (i.e., LOS A, B, C, or D) without the Project during the weekday peak hour and degrades to an unacceptable LOS (i.e. LOS E or F) with the Project during the weekday peak hour; or
- If the intersection operates at an unacceptable LOS (i.e., LOS E or F) without the Project during the weekday peak hour, and the volume to capacity ("v/c") ratio of the sum of all critical movements at the intersection increases by 1 percent or more with the Project.
(b) City of Santa Cruz

An intersection maintained by City of Santa Cruz operates at an acceptable level of service if it maintains a LOS D or better at signalized intersections. (City of Santa Cruz 2030 General Plan, Chapter 5, Mobility Element, p.55, Goal M.3.1.3, M3.1.4.)
(c) City of Capitola

An intersection maintained by City of City of Capitola operates at an acceptable level of service if it maintains a LOS C, with the exception of the Village Area, Bay Avenue, and $41^{\text {st }}$ Avenue (for which there is no LOS standard).

(d) California Department of Transportation (Caltrans)

Caltrans no longer requires a LOS analysis for CEQA purposes due to the enactment of SB 743. However, for informational purposes only, a LOS-based analysis of Caltrans facilities is provided using the previously applied LOS standards for Caltrans and the County:

Project-related deficiencies at study intersections occur when the addition of Project traffic:

- Cause operations to deteriorate from an acceptable level (LOS C or better) to an unacceptable level (LOS D or worse); or
- Causes the existing measure of effectiveness (average delay) to deteriorate at a Stateoperated intersection operating at LOS D or worse.

In addition, volume to capacity ratios ("v/c ratios") were also considered in this study's freeway analysis because the study freeway network is considerably oversaturated during the peak periods (with and without the Project) and roadway density measures of effectiveness do not provide accurate representations of congestion conditions for oversaturated facilities. The v/c ratios reflect the actual volume demand, which is higher than what is observed in one peak hour (the peak period occurs over several hours), versus the roadway capacity.

Kimley»)Horn

Study Intersections and Freeway Segments

The study intersections identified below in Table ES-T11 were selected for LOS analysis based on Project trip generation, estimated trip distribution, and guidance from County staff. The Project trip distribution was developed based on current traffic patterns in the study area, the local travel demand model, and knowledge of the study area.

Table ES-T11 - Study Intersections			
\#	Intersection	\#	Intersection
1	Soquel Ave \& Capitola Rd ${ }^{1}$	14	$41^{\text {st }}$ Ave \& Hwy 1 SB Ramps ${ }^{2}$
2	Soquel Ave \& $7^{\text {th }}$ Ave ${ }^{4}$	15	$41^{\text {st }}$ Ave \& Gross Rd ${ }^{2}$
3	Soquel Dr / Soquel Ave \& Soquel Ave ${ }^{3}$	16	$41^{\text {st }}$ Ave \& Clares St^{4}
4	Soquel Dr \& Paul Sweet Rd / Hwy 1 On-Off Ramps ${ }^{3}$	17	$41^{\text {st }}$ Ave \& Capitola Rd ${ }^{4}$
5	Soquel Ave \& Hwy 1 SB On-Off Ramps ${ }^{4}$	18	$41^{\text {st }}$ Ave \& Brommer St/Jade St ${ }^{4}$
6	Soquel Ave \& $17^{\text {th }}$ Ave ${ }^{4}$	19	Capitola Rd \& $7^{\text {th }}$ Avenue ${ }^{4}$
7	Soquel Ave \& Chanticleer ${ }^{4}$	20	Capitola Rd \& 17 ${ }^{\text {th }}$ Avenue ${ }^{4}$
8	Soquel Ave \& Project Driveway ${ }^{1}$	21	Capitola Rd \& Chanticleer Ave ${ }^{4}$
9	Soquel Ave / 40 ${ }^{\text {th }}$ Ave \& Gross Rd ${ }^{1}$	22	Capitola Rd and 30 ${ }^{\text {th }}$ Ave 4
10	40th Ave \& Deanes Ln (NOT STUDIED) ${ }^{5}$	23	Brommer St \& $17^{\text {th }}$ Ave ${ }^{1}$
11	40th Ave \& Clares St (NOT STUDIED ${ }^{5}$	24	Brommer St \& $30^{\text {th }}$ Ave ${ }^{4}$
12	$41^{\text {st }}$ Ave \& Soquel Dr ${ }^{2}$	25	$17^{\text {th }}$ Ave \& Portola Dr ${ }^{4}$
13	$41^{\text {st }}$ Ave \& Hwy 1 NB Ramps ${ }^{2}$		

Notes:

1. Count data collected on May 17, 2018
2. Count data collected on October 18, 2016
3. Count data collected on March 6, 2018
4. Count data collected October 3, 2018
5. Intersection \#10 and \#11 were not analyzed in this analysis because the Project is not expected to distribute traffic to these intersections since a barrier exists at $40^{\text {th }}$ Avenue and Deans Lane and the Project does not propose to remove it (nor are any pending plans to remove the barrier). In all subsequent sections in this report, these two intersections are labelled as "Not Studied."
The following freeway segments were analyzed using Highway Capacity Software ("HCS"), which is based on Highway Capacity Manual $6{ }^{\text {th }}$ Edition (HCM 6), October 2016 methodologies, an industry standard:
6. Highway 1 - Morrissey Blvd to Soquel Dr
7. Highway 1 - Soquel Dr to $41^{\text {st }}$ Ave
8. Highway $1-41^{\text {st }}$ Ave to Porter St/Bay Ave
9. Highway 17 - Pasatiempo Overcrossing to Highway 1

Analytical Methods and Information

The LOS analysis uses methods defined in the HCM 6 and Synchro 10 traffic analysis software, the latter of which is consistent with HCM 6. HCM 6 methodologies include procedures for analyzing side-street stop-controlled ("SSSC"), all-way stop-controlled ("AWSC"), and signalized intersections. The SSSC procedure defines LOS as a function of average control delay for each

Kimley»"Horn

minor street approach movement. Conversely, the AWSC and signalized intersection procedures define LOS as a function of average control delay for the overall intersection.

Project-related deficiencies are determined by comparing conditions without the Project to those with the Project. Project-related deficiencies at study intersections are created when traffic from the Project causes the LOS to fall below the LOS standard identified for the County in Chapter 6 of this report. LOS analyses for study intersections maintained by agencies other than the County are provided for information purposes only. The LOS analysis set forth herein evaluates the following scenarios: Existing Conditions, the Existing Plus Project, Near Term Conditions, Near Term Plus Project, Cumulative Conditions and Cumulative Plus Project.

LOS Results

Detailed operational effects associated with the forecasted Project traffic were evaluated for weekday AM and PM peak one-hour periods, which is consistent with accepted County guidelines and industry standards. Traffic data was collected during typical weekdays when local schools were in session and the weather was fair. Traffic data is collected over a peak period (two hours or more) and then the busiest one hour is analyzed. This is consistent with industry standard and HCM requirements. Given that County peak periods extend well over more than just one AM or PM peak hour, this analysis represents the busiest one hour during each peak period (i.e., the peak hour of the peak period conditions). In general, the PM peak period experiences higher delays in the County and around the Project site than the AM peak period.

The LOS findings were used to identify measures to improve vehicular delays, decrease travel times, and/or prevent cut-through traffic and measures/improvements that would provide operational benefits to the local roadway network. LOS deficiencies and potential identified improvements are summarized in Table ES-T12 below.

Kimley»"Horn

Table ES-T12 - Project Deficiencies and Improvements

Int \#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement
\#3	Soquel Drive / Soquel Avenue \& Soquel Avenue	Cumulative and Cumulative Plus Project	The addition of the Project traffic worsens the LOS from C to D in the PM and cause a deficiency.	Caltrans plans to widen Highway 1/Soquel Drive interchange. One westbound left-turn lane, one westbound right-turn lane, and a new southbound Highway 1 off-ramp will be constructed at this intersection. A conceptual layout is shown in Appendix O. These improvements are currently not funded, are not included in the County Capital Improvement Project (CIP), and may be constructed after 2040. The Cumulative deficiency will remain until the improvement is constructed. The State Route 1 HOV Lane Widening Project Supplemental Report (May 2010) analyzed these improvements for the Santa Cruz Route 1 Tier I and Tier II FEIR and the results are included in Appendix P for reference. More detail on the EIR https://sccrtc.org/projects/streets-highways/hwy 1 corridor/environmental-documents. The deficiency is anticipated to be eliminated with implementation of the Caltrans improvements.
\#7	Soquel Avenue / Chanticleer Avenue	Cumulative and Cumulative Plus Project Conditions	The addition of Project traffic worsens the side street LOS from Chanticleer Avenue from LOS D to LOS F in the PM.	The Project will restripe Soquel Avenue to include a continuous TWLTL from the Highway 1 SB Ramps past Chanticleer Avenue. The installation of this measure will provide sufficient space for waiting and or weaving for vehicles heading northbound on Soquel Avenue. In addition, the installation of the signal will also improve gaps in the traffic flow in the northbound direction. This is an improvement over the current very short 50 -foot merge lane that is inadequate to accommodate these movements in the future. The improvement will remove the deficiency caused by the Project.
\#9	Soquel Avenue $/ 40^{\text {th }}$ Avenue \& Gross Road	Existing and Existing Plus Project Conditions	The addition of Project traffic worsens the LOS from E to F in the PM. The critical v/c increases by more than 1% on all the critical approach movements.	Install a diagonal diverter extending from the northwest corner to the southeast corner at this intersection. Residents in the neighborhood would exit the neighborhood at Rodeo Gulch Drive onto Soquel Avenue. If this improvement is not installed, cut through traffic along Gross Road and the delay at the $41^{\text {st }}$ Avenue intersection will continue and degrade further in the future until the freeway is improved. The diverter will prevent cut through traffic on Gross Road through the residential neighborhood and eliminate the congestion caused by the all-way stop at the intersection. Queues at this intersection are expected to shorten with these recommended improvements. This commute is slightly longer than the direct connection to $41^{\text {st }}$ Avenue via Gross Road, but the benefits of removing cut through traffic through the neighborhood and the improvement of operations at the Gross Road $/ 40^{\text {th }}$ Avenue intersection, warrants the installation of this improvement. With this
		Near Term and Near Term Plus Project Conditions	The addition of Project traffic worsens the LOS from E to F in the PM. The critical v/c increases by more than 1% on all the critical approach movements.	

Kimley»"Horn

Table ES-T12 - Project Deficiencies and Improvements

Int \#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement

Kimley»"Horn

Table ES-T12 - Project Deficiencies and Improvements

Int \#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement
		Cumulative and Cumulative Plus Project Conditions	The addition of Project traffic worsens the LOS from E to F in the AM. The critical v/c increases by more than 1% on all the critical approach movements.	The State Route 1 HOV Lane Widening Project Supplemental Report (May 2010) analyzed these improvements for the Santa Cruz Route 1 Tier I and Tier II FEIR and the results are included in Appendix P for reference. These improvements will also improve operations at the intersections because of the close spacing of the intersection to the Highway $1 / 41^{\text {st }}$ Avenue interchange. https://sccrtc.org/projects/streets-highways/hwy1corridor/environmental-documents. If the Project installs the Caltrans improvement and the overhead signage and the barrier, the existing deficiency and the deficiencies caused by the Project will be reduced and/or eliminated. Conditions at this intersection would be further improved by the City of Capitola's planned signal improvements as well as the planned Highway 1 improvements. Although this intersection is not subject to General Plan LOS policy because it is not a County intersection the Project proposes improvements that will eliminate the Project caused deficiency.
\#24	Brommer Street \& $30^{\text {th }}$ Avenue	Existing and Existing Plus Project Conditions	The intersection operates at LOS F in PM Peak without Project and continues to operate at LOS F with the Project. The average delay increases from 38.4 seconds per vehicle to 39.1 seconds per vehicle with the addition of Project traffic. The critical v/c increases by more than 1% on the northbound and southbound critical movements.	Install signal control with permissive left-turn phasing. Peak Hour Signal Warrant \#3 based on California Manual on Uniform Traffic Control Devices (CAMUTCD) is satisfied with Existing Conditions traffic and in Existing plus Project Conditions traffic. With existing geometry, signal control, eastbound/westbound split phasing, and permissive left-turn phasing, this intersection would operate at acceptable LOS with Cumulative plus Project conditions traffic volumes. The Peak Hour Signal Warrant \#3 evaluation is included in Appendix J . For Existing Conditions, the intersection will improve the PM delay by 17.1 seconds per vehicle with installation of the signal. For Near Term Conditions the intersection will improve the PM delay by 30.9 seconds per vehicle with installation of the signal. For Cumulative Conditions the intersection will improve the PM delay by 19.3 seconds per vehicle with installation of the signal.

Kimley»Horn

Table ES-T12 - Project Deficiencies and Improvements

Int \#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement
		Near Term and Near Term Plus Project Conditions	The intersection operates at LOS F in PM Peak without Project and continues to operate at LOS F with the Project. The average delay increases from 55.7 seconds per vehicle to 56.5 seconds per vehicle with the addition of Project traffic. The critical v/c increases by more than 1% on the northbound and southbound critical movements.	Installation of a signal control with permissive left-turn phasing would cause the intersection to operate at an acceptable LOS in the Existing Plus Project and Near Term Plus Project and Cumulative Plus Project Conditions. The Project will pay a fair share of 14% towards the improvement and the Project will eliminate its incremental addition to the LOS deficiency (Project Trips through intersection / All Future trips through intersection).
		Cumulative and Cumulative Plus Project Conditions	The intersection operates at LOS F in PM Peak without Project and continues to operate at LOS F with the Project. The average delay increases from 41.2 seconds per vehicle to 41.9 seconds per vehicle with the addition of Project traffic. The critical v/c increases by more than 1% on the northbound and southbound critical movements.	

Kimley»)Horn

LOS Conclusions

County Intersections - Existing Plus Project, Near Term Plus Project and Cumulative Plus Project. The Project is not fully consistent with the County's LOS policy because, although the Project does not cause any County intersections to degrade from an acceptable LOS to an unacceptable LOS, it does cause the v / c ratio at any critical movement operating at an unacceptable LOS to increase by 1 percent or more with the Project.

- In the Existing Plus Project, Near Term Plus Project and Cumulative Plus Project scenarios, the Project will increase delays at the Soquel Avenue / 40 Avenue \& Gross Road intersection (Intersection \#9) which will already be operating at an unacceptable LOS without the Project. The Project will install a diagonal diverter extending from the northwest corner to the southeast corner at this intersection to eliminate the all-way stop. This improvement will eliminate the LOS deficiency. The improvement will also improve traffic conditions along other nearby roadways, reducing the time it takes to travel from Soquel Drive \& Rodeo Gulch Road to the southbound Highway 1 on-ramp from 8.15 minutes to 4.53 minutes.
- In the Existing Plus Project, Near Term Plus Project and Cumulative Plus Project scenarios, the Project will cause the Brommer Street \& $30^{\text {th }}$ Avenue intersection (Intersection \#24) to exacerbate the LOS E and/or F deficient conditions by adding delay, if no improvements are installed. The critical movement v / c increases by more than 1% for the northbound and southbound critical volumes. Installation of a signal control with permissive left-turn phasing would cause the intersection to operate at an acceptable LOS. The Project will pay a fair share of 14% towards the improvement and the Project will eliminate its incremental addition to the LOS deficiency (Project Trips through intersection / All Future trips through intersection).
- In the Cumulative Plus Project Condition, the Project would cause the Soquel Avenue / Chanticleer Avenue (Intersection \#7) delays during the PM peak hour for the northbound movement of this intersection to go from 25.6 seconds (LOS D) to 53.1 seconds (LOS F) if no improvements were installed. However, the Project will install approximately 3,500 feet of TWLTL striping (and restriping) along Soquel Avenue from Paul Minnie Avenue to the existing creek crossing (east of Mattison Lane). With this improvement, the intersection would operate at LOS C with 20.9 seconds of delay in the Cumulative Plus Project condition. Therefore, the Project will eliminate this LOS deficiency.
- As noted above, the TWLTL eliminates the deficiency for the northbound movement of this intersection in the Cumulative Plus Project condition and the LOS will improve from F to D .

Kimley»)Horn

Transportation Improvement Area Fees (Non-CEQA Analysis)

The Project is required to pay Transportation Improvement Area fees ("TIA Fees") based on daily net new trips. The Project is located within the Live Oak TIA fee area and fees collected in this area are currently (as of August 2020) assessed at $\$ 300$ per net new daily trip to fund roadside improvements and $\$ 300$ per net new daily trip to fund transportation improvements.

The Project is expected to generate 6,106 gross daily trips based on ITE assumptions, as shown on Table ES-T13 below and described further in Chapter 6 of this TIOA. As described in the Transportation Demand Management chapter (Chapter 3), the Project will implement a TDM program that is expected to reduce trips by 15.5 percent for employees and 20.5 percent for Members. For purposes of calculating TIA Fees, however, no reduction will be taken initially for the implementation of TDM measures. If TDM measures are proven to be effective, as evidenced by driveway counts to be performed after construction of the Project, a partial refund of TIA fees may be given to the Applicant to the extent it is shown that the actual trips to the Project site are less than what are assumed in this TIOA.

Table ES-T-13, below, provides a summary of existing trip credits, Project trips, and applicable TIA fee amounts:

- A gross TIA fee of $\mathbf{\$ 3 , 6 6 3 , 6 0 0}$ is estimated for the Project based on the assumption that it will generate 6,106 gross daily trips. This includes transportation improvement fees $(6,106$ trips $\times \$ 300=\$ 1,831,800)$ and roadside improvement fees $(6,106$ trips $\times \$ 300=$ $\$ 1,831,800)$.
- A total fee credit of $\mathbf{\$ 8 0 , 4 0 0}$ is estimated for the existing 134 trips per day generated from the light industrial land uses on the Project site that will be relocated/demolished prior to construction of the Project. This includes transportation improvement fees $(\$ 40,200)$ and roadside improvement fees $(\$ 40,200)$.
- Therefore, considering the above fee credit, it is estimated that the Project will be responsible for paying a total of $\$ 3,583,200$ (i.e., $\$ 3,663,600$ gross impact fee minus $\$ 80,400$ total fee credit $=\$ 3,583,200)$ in County TIA Fees.

Kimley»)Horn

Table ES-T13 - Transportation Improvement Area Fee Calculations						
LTE classification for Existing and Project Uses	Roadside Improvement Fee				Transportation Improvement Fee	
Project	Daily Trips	Fee per Trip (\$)	Total (\$)	Fee per Trip (\$)	Total (\$)	Total Fee (\$)
Clinic (Project use)	6,106	$\$ 300$	$\$ 1,831,800$	$\$ 300$	$\$ 1,831,800$	$\$ 3,663,600$
Credit	Daily Trips	Credit per Trip (\$)	Total (\$)	Credit per Trip (\$)	Total (\$)	Total Credit (\$)
Light Industrial (Existing Use)	134	$\$ 300$	$\$ 40,200$	$\$ 300$	$\$ 40,200$	$\$ 80,400$
Net Project TIA Fees (i.e., Potential Project Fees- Credit Fees)	$\$ 1,791,600$	$\$ 1,791,600$	$\$ 3,583,200$			

Other Transportation Analysis

Transportation Hazards

All geometric improvements identified in this study as Project improvements will be designed and constructed per industry, local agency, and Caltrans standards and are not anticipated to substantially increase hazards or result in incompatible uses. The installation of the barrier between the through lane and the right-turn lane along the section between Gross Road and the Southbound On-Ramp on $41^{\text {st }}$ Avenue in the northbound direction will reduce conflicts between vehicles that jump the queue and reduce conflicts between vehicles and bicycles.

Emergency Access

The Project has two driveways off Soquel Avenue. These driveways both provide Emergency Vehicle access. Moreover, the Project will install a number of traffic improvements that will improve circulation in the Project vicinity. As such, the Project will not result in inadequate emergency access.

Summary of Favorable Transportation Considerations

The following Table ES-T14 provides a summary of expected transportation benefits arising from the Project as further described in this TIOA.

Kimley»)Horn

Table ES-T14 - Summary of Benefits

$\#$	Benefit
1	Reduced VMT

The Project will reduce VMT by approximately over 35,000 vehicle-miles per day under the Scenario A analysis (i.e., 44,416 for Existing Plus Project and 35,306 for the 2040 Plus Project) and by more than 20,000 vehicle miles per day (i.e., 20,322 for Cumulative Plus Project) under the Scenario B analysis, including eliminating a significant number of trips associated with Healthcare Consumers traveling to San Jose for healthcare services

2 Transportation Demand Management (TDM) Program

Abstract

The Project will implement a robust TDM program for employees that will include a bike share program, commute management platform and rideshare support, emergency ride home benefit, TDM coordinator, and safe, well-lit and accessible pedestrian/bicycle facilities along Soquel Avenue. In addition, TDM measures will be employed for Members, including the availability of virtual care strategy that will reduce the number of trips that Members will make to the Project site, and safe, well-lit and accessible pedestrian/bicycle facilities along Soquel Avenue. In all, it is anticipated that the proposed TDM measures could result in a trip reduction of approximately 15.5 percent employee trips and 20.5 percent Member trips.

\section*{3 Soquel Avenue Sidewalk and Crosswalk Construction}

The Project will construct ADA-compliant sidewalk and curb ramps along its frontage on the south side of Soquel Avenue, which will extend west and east beyond its frontage and connect to existing sidewalk facilities along Soquel Avenue. These improvements will fill a critical gap in the County's pedestrian facility network and will improve pedestrian connectivity along Soquel Avenue.

4 Soquel Avenue Class II Bike Lanes

The Project will install approximately 4,200 feet of Class II bike lanes along Soquel Avenue from Paul Minnie Avenue to just east of Mattison Lane. These improvements will include restriping existing bike lanes and adding new green bike lane striping. It is anticipated that providing the green bike lanes would improve the safety of bicyclists by approximately 19 percent. The provision of these bike lanes will close the gap to the major new Chanticleer Avenue Highway 1 bicycle and pedestrian overcrossing towards Soquel Drive, close to the Project site. From a regional connectivity standpoint, this is a major improvement for bicyclists in the County.

5 Construct Traffic Signal at Main Project Driveway

The Project will construct a traffic signal at the Main Project Driveway. This improvement will benefit motorists traveling along Soquel Avenue and wishing to access local side-street stop-controlled roads along Soquel Avenue (such as Mattison Lane and Chanticleer Avenue) with a benefit of increased gaps for turning onto/or off-of Soquel Ave.

$6 \quad$ Soquel Avenue Two-Way Left-Turn Lane

The Project will implement approximately 3,500 feet of Two-Way Left-Turn Lane ("TWLTL") striping (and restriping) along Soquel Avenue from Paul Minnie Avenue to the existing creek crossing (east of Mattison Lane). Providing TWLTL along this segment of roadway will provide drivers the ability to make left-turns out of adjacent side-streets in two movements, rather than crossing two lanes of traffic at the same time.

$7 \quad$ Soquel Avenue \& 40 ${ }^{\text {th }}$ Avenue / Gross Road Diverter

The Project will construct a diagonal diverter at the intersection of Soquel Avenue \& Gross Road. This diverter would improve operations at this intersection and the Gross Road \& $41^{\text {st }}$ Avenue intersection by reducing vehicle queues and delays. In addition, existing cut-through traffic through the Gross Road and $40^{\text {th }}$ Avenue neighborhoods would no longer be possible. Travel time from Soquel Drive \& Rodeo Gulch Road to SB Highway 1 would be improved from 8.15 minutes in Existing Only conditions to 4.53 minutes in Existing Plus Project conditions with this improvement.

Kimley»)Horn

Table ES-T14 - Summary of Benefits	
$\#$	Benefit
8	$41^{\text {st }}$ Avenue \& Gross Road Overhead Wayfinding Signage and Lane Channelization Barrier

The Project will install overhead signs and roadway markings to improve lane selection and use of the eastbound approach along Gross Road. The lane selection would be for southbound Highway 1 and eastbound $41^{\text {st }}$ Avenue movements. A physical barrier will also be installed between the limit line and the diverge of the Highway 1 southbound on-ramp on $41^{\text {st }}$ Avenue.
The installation of signage and roadway markings will improve operations in the area by reducing weaving amongst travel lanes on eastbound $41^{\text {st }}$ Avenue. In addition, the barrier improvement will improve traffic operations in the area by preventing vehicles from jumping the queue for southbound on-ramp traffic as well as improve bicycle rider safety in the Class II bike lane at the Highway 1 southbound on-ramp at $41^{\text {st }}$ Avenue.
$9 \quad$ Highway 17 Safety Effect
Construction of the Project will require that only 1.15% of Member trips to travel along Highway 17 to receive health care services in the San Jose area because they will be served at the Project site, thereby decreasing traffic along Highway 17 and consequently decreasing potential traffic collisions by a proportional 0.65 percent (approximately).

10 Transportation Improvement Area Fees

The Project will pay TIA Fees based on ITE trip generation assumptions, even though actual trips will be lower due to the implementation of Project TDM measures. In addition, no reduction in trip generation will be requested upfront for the implementation of TDM measures. The County of Santa Cruz collects Transportation Improvement Area Fees for new development in the Live Oak area. This fee includes both a transportation improvement fee to fund improvements to transportation infrastructure and a roadside improvement fee to fund roadside-related improvements. Based on the trip generation for the project, the Transportation Impact and Operational Analysis estimates this combined fee payment to be $\$ 3,583,200$. The fees would be utilized to contribute toward needed roadway or roadside improvements as determined by the Department of Public Works to maintain operations, safety, and bicycle/pedestrian connectivity based on County's Capital Improvement Program, corridor plans, and active transportation plans. The Department of Public Works may also require additional improvements to pedestrian and bicycle facilities in the nearby network and may apply the Transportation Improvement Area Fees toward these improvements. If the Applicant demonstrates, through driveway counts, that actual generated trips are less than what was assumed for purposes of calculating TIA Fees, then the Applicant may be entitled to a refund for the corresponding overpayment of fees.

| 11 | $41^{\text {st }}$ Avenue |
| :---: | :--- | :--- |
| The Project will contribute towards the potential installation of long-term planned improvements along the $41^{\text {st }}$ | |
| Avenue corridor, which includes improvements along $41^{\text {st }}$ Avenues between Clares Street and Cory Street to | |
| facilitate north-south vehicular, pedestrian and bicycle circulation. These proposed future improvements along the | |
| $41^{\text {st }}$ Avenue roadway would be supported by additional improvements along Gross Road, $40^{\text {th }}$ Avenue, and Clares | |
| Street; as well as at the intersections of Soquel Avenue and Gross Road, Gross Road and $41^{\text {st }}$, Auto Plaza Drive | |
| and $41^{\text {st }}$, Clares Street and $40^{\text {th }}$ Avenue, and Clares Street and $41^{\text {st }}$ Avenue. The improvements include signal | |
| modifications, intersection control changes, restriping, sidewalk and bicycle lane improvements, and installation of | |
| a cycle track on $41^{\text {st }}$ Avenue between Gross Road and Cory Street on the Highway 1 overpass. | |

12 Brommer Street \& 30 ${ }^{\text {th }}$

The project applicant has also proposed a fair share contribution toward improvements at the intersection of Brommer Street and 30th Avenue to install traffic signal controls with permissive left-turn phasing. Installation of the signal would occur within the existing road right-of-way. Existing stop signs at the intersection would be removed. Installation of a signal control with permissive left-turn phasing would cause the intersection to operate at an acceptable LOS.

Kimley»"Horn

Table ES-T14 - Summary of Benefits

\# Benefit

The Project will pay an approximately 14% fair share payment or $\$ 105,000$ (i.e. $\$ 750,000 * 14 \%=\$ 105,000$)
towards the potential installation of a signal at the intersection.

Kimley»)Horn

1. INTRODUCTION

This Transportation Impact and Operational Analysis ("TIOA") reports the findings of the traffic analysis conducted for the proposed Medical Office Building ("MOB") Project (the "Project") at 5940 Soquel Avenue in the County of Santa Cruz ("County"), California. The TIOA covers two key components: (1) a vehicle miles traveled ("VMT") analysis required by the California Environmental Quality Act ("CEQA") that evaluates the amount and distance of automobile travel associated with the Project, and (2) a mobility analysis that evaluates the Project's impacts on automobile delay and traffic congestion, which is not relevant to CEQA but is relevant to a consideration of the Project's consistency with the County's General Plan. It is proposed that Kaiser Permanente ("Kaiser" or "Proposed Tenant") will occupy the Project if PDP Santa Cruz, LLC (the "Applicant") is successful in obtaining Project entitlements. Kaiser-related data and assumptions were used to inform the VMT analysis, ${ }^{14}$ which are set forth in Appendix \mathbf{S} to this document. The VMT analysis separately breaks down the traffic impacts associated with the Proposed Tenant's employees that will provide healthcare and support services in the Project ("employees") and its patients, visitors and non-clinical affiliated members ("Members") traveling to the Project.

This TIOA was prepared based on meetings with County Planning Department and Public Works staff, comments provided by the local community during two open house community meetings held on December 13, 2018 and January 30, 2019, and agency and public comments received in response to the Project's Notice of Preparation published on March 24, 2020. County Staff also provided comments to a draft Transportation Impact Study Assumptions Memorandum prepared be Kimley-Horn and Associates, which was finalized and dated September 19, 2018. This study complies with CEQA and Santa Cruz County, City of Santa Cruz, City of Capitola, and California Department of Transportation (Caltrans) traffic study guidelines and criteria.

Project Description

The Project proposes to construct a MOB, containing approximately 160,000 square feet of gross building floor area, and a parking garage as shown in Figure F-1. The parking garage is proposed to contain 730 vehicle parking spaces, 47 of which will be designated as clean air vehicle spaces equipped with future electric vehicle charging capabilities and 38 motorcycle spaces. Within the parking garage on the first level, 160 bike spaces including 124 racks and 36 lockers are proposed. In addition, the Project will also provide 6 surface vehicle parking spaces adjacent to the parking garage.

[^8]
Kimley»)Horn

The Project also proposes to construct two access points along Soquel Avenue. The main Project driveway will be signalized and will provide full access to the site as shown in the Project site plan. A secondary driveway, east of the main driveway, will provide an access point for pickups and deliveries, as well as quiet ambulatory ingress and egress. The parking garage will not be accessible from the secondary driveway. Thus, it is not anticipated that employees or Members will utilize the secondary driveway. The secondary driveway will be stop-controlled on the northbound approach from the site and will be located along the easterly site boundary.

The Project's standard business hours will be from 8:30 AM to 5:30 PM Monday through Friday, with two minor exceptions. The first is urgent care, which will comprise approximately 9,600 square feet or 6 percent of the programmed square footage, and is anticipated to operate 24 hours per day, 7 days per week. The second is the post anesthesia care unit, which will compose approximately 4,800 square feet, or 3 percent of the programed square footage, and may operate beyond standard business hours 5 days a week depending on the medical condition of a Member.

The Project is planning to provide the following programs and services, which could include, but are not limited to: Obstetrics, Head and Neck Surgery, Surgery, Urology, Endocrinology, Gastroenterology, Hematology/Oncology, Infectious Diseases, Rheumatology, Nephrology, Pulmonology, Sleep Lab, Orthopedics, Podiatry, Pain Medicine, Physical Medicine and Rehabilitation, Primary Care (Internal Medicine or Family Practice), Dermatology, Allergy, Urgent Care, Chemotherapy Infusion, Audiology, Optometry, Ophthalmology, Imaging, Pharmacy, Laboratories, Sterile Processing, Blood Bank, Recovery, Building Support, Café, Vision Essentials, Administrative Offices and Conference Spaces.

Project Transportation Improvements

Project Site Access and Circulation

The Project site will be accessed from Soquel Avenue. The Project will construct one main signalized driveway entrance for employees and Members, which will provide access to the patient loading and unloading area, as well as the proposed parking garage. The main driveway will include a protected westbound left-turn pocket and eastbound right-turn pocket into the Project site from Soquel Avenue, as well as northbound left- and right-turn lanes exiting the Project site.

A secondary driveway will also be constructed east of the main entrance for deliveries, pickups, and ambulances. The secondary driveway south leg will be stop controlled and Soquel Avenue traffic will be free flow. The secondary driveway will experience very low and infrequent volumes throughout the day and no signal is anticipated for this location.

As shown in the Project site plan Figure F-2, the Project will construct a roadway through the center of the site, with the Project parking garage on the west side of the site and the MOB on the east side of the site. The parking garage will have two entrances/exits, one at the northeast end of the garage and one at the southeast end.

Kimley»)Horn

A Member drop-off/pick-up zone will be provided near the main building entrance and accessed via the main Project Driveway. The drop-off/pick-up zone will provide capacity for approximately seven vehicles at a time.

For motorists traveling to the site, the north entrance/exit will allow for free right-turn movements into the garage. Traffic wishing to bypass the main garage entrance will use the southbound through lane, which will be stop-controlled, rather than the free southbound right-turn to bypass the main garage entrance and continue south. Motorists bypassing the main garage driveway will then access the secondary garage driveway or continue around to the drop-off/pick-up zone adjacent to the MOB. For motorists wishing to park in the garage after dropping-off Members in the loading/unloading zone adjacent to the MOB, motorists will have the opportunity to make a northbound right-turn at the north garage entrance/exit at turn into the garage to seek a parking space.

For motorists leaving the site, both garage exits will be stop controlled. The north entrance/exit will allow for the most direct route to leaving the site, by permitting motorists to make an eastbound right turn, which will bring them to the proposed Soquel Avenue \& Project Driveway signal. For travelers exiting from the south garage driveway, motorists would take an eastbound right turn, travel north past the drop-off/pick-up area, stop at the northbound through stop-controlled movement at the north garage entrance/exit, and then continue to the Soquel Avenue \& Project Driveway signal.

An east/west high visibility pedestrian crosswalk will be provided across the south leg of the north garage entrance/exit. Pedestrians will be able to utilize this proposed crosswalk to access the MOB after parking their vehicles and bikes. The Project will construct wayfinding signage to direct pedestrians to the crosswalk. Conflicting traffic will be stop controlled and pedestrians will have the right of way to cross at this location.

Bikes will access the site via the Soquel Avenue \& Project Driveway signalized intersection, traveling south and parking near the north parking garage entrance/exit, as shown in Figure F-2. After parking their bikes at the designated bike parking area, pedestrians will utilize the previously discussed east/west pedestrian crosswalk to access the Project site.

The Project will also construct ADA-compliant sidewalks along the north Project frontage (south side of Soquel Avenue), which will extend along the south side of Soquel Avenue and fill the existing gap in the County's sidewalk network.

Project Mobility Improvements

The Project will provide numerous mobility improvements, including the following:
Main Traffic Driveway Signal: The Project site will be accessed from Soquel Avenue. The Project will construct one main signalized driveway entrance for employees and Members, which will provide access to the patient loading and unloading area, as well as the proposed parking garage. The main driveway will include a protected westbound left-turn pocket and eastbound right-turn pocket into the Project site from Soquel Avenue, as well as northbound left- and rightturn lanes exiting the Project site.

Kimley»"Horn

Soquel Avenue Two-Way Left-Turn Lane Striping Improvements: The Project will implement approximately 3,500 feet of Two-Way Left-Turn Lane ("TWLTL") striping (and restriping) along Soquel Avenue from Paul Minnie Avenue to the existing creek crossing (east of Mattison Lane).

Green Bike Lanes Along Soquel Avenue: The Project will provide approximately 4,200 feet of Class 2 bike lane with green colored striping along Soquel Avenue from Paul Minnie Avenue to just east of Mattison Lane.

Sidewalk Installation Along Soquel Avenue: The Project will construct ADA-compliant sidewalks along the north Project frontage (south side of Soquel Avenue), which will extend along the south side of Soquel Avenue and fill an existing gap in the County's sidewalk network.

Soquel Avenue / $40^{\text {th }}$ Avenue \& Gross Road: The Project will install a diagonal diverter extending from the northwest corner to the southeast corner at this intersection. The diverter will prevent cut through traffic on Gross Road through the residential neighborhood, and eliminate the congestion caused by the all-way stop currently existing at the intersection.

41 ${ }^{\text {st }}$ Avenue \& Gross Road Overhead Wayfinding Signage: The Project will install overhead signs and roadway markings to improve lane selection and use on the eastbound approach of Gross Road. The lane selection would be for southbound Highway 1 and northbound Highway 1 movements. The Project will also install a physical barrier between the limit line and the diverge of the Highway 1 southbound on-ramp on $41^{\text {st }}$ Avenue. This barrier will prevent vehicles from jumping the queue for southbound on-ramp traffic and improve bicycle rider safety in the Class II bike lane at the Highway 1 southbound on-ramp at $41^{\text {st }}$ Avenue.

Medical Office Building
Figure 1
Project Location Map

Kimley») Horn
Medical Office Building
Figure 2
Project Site Plan

Kimley»)Horn

Report Approach

The analysis in this report is broken down into two key components: a VMT-based analysis required by CEQA, and a mobility-based analysis that is provided for evaluating consistency with the County's General Plan, but which is not relevant for evaluating the significance of transportation-related environmental impacts. More specifically, in addition to the VMT analyses, this report considers transportation demand management ("TDM") measures, pedestrian, bicycle and transit mobility, parking supply and demand evaluation, local mobility analysis, Highway 1 and Highway 17 analyses, transportation impact area fees, and other transportation analyses for the Project.

Report Organization

This report is organized as follows:
Chapter 2 (Vehicle Miles Traveled) discusses the methodology, assumptions, analysis, and findings of the Project's specific vehicle miles traveled evaluation.

Chapter 3 (Transportation Demand Management) describes potential TDM measures that the Project will implement to reduce the Project's trip generation and parking demand.

Chapter 4 (Pedestrian, Bicycle and Transit Mobility) presents the Project's potential effects on pedestrian, bicycle, and transit mobility.

Chapter 5 (Parking Supply and Demand Evaluation) describes the Project's proposed on-site parking supply. County Code requirements, ITE parking demand estimates, and a parking requirement comparison of other local communities are also presented in this chapter to evaluate the sufficiency of the proposed parking supply given anticipated demand.

Chapter 6 (Local Mobility Analysis) discusses the Project's trip generation characteristics, as well as the methodologies and assumptions used to estimate trip credits and net Project traffic added to the study roadway network. The Project's impact on the level of service ("LOS") of various intersections in the study area under Existing Conditions, Existing Plus Project Conditions, Near Term Conditions with and without the Project and Cumulative Conditions with and without the Project are also discussed.

Chapter 7 (Highway 1 and Highway 17 Evaluation) presents an evaluation of Highway 1 and Highway 17 study segment operational characteristics with and without the Project for Existing, Near Term, and Cumulative development conditions. Furthermore, the Project's potential effects on safety, as well as a discussion of Caltrans' planned improvements along Highway 1, are also included in this chapter.

Chapter 8 (Transportation Improvement Area Fees) provides estimates of the Project's Transportation Improvement Area fee responsibilities.

Chapter 9 (Other Transportation Analysis) provides a discussion of potential traffic hazards and emergency access associated with the Project.

A technical appendix is also attached containing information provided by the Applicant and Proposed Tenant to support the VMT analysis, traffic count data, future Highway 1 improvement details, concept layouts, signal warrants, and operational analysis output sheets.

Kimley»)Horn

2. VEHICLE MILES TRAVELED

This chapter documents the Vehicle Miles Traveled ("VMT") analysis completed for the Project. The Project will be part of a network of medical facilities that provide various general and specialized medical services for the Proposed Tenant's Member-based medical system. As such, this analysis considers how the introduction of the Project, including its location and the nature of the services provided, affects the Proposed Tenant's Members' VMT. The Proposed Tenant's service area that was evaluated includes existing facilities which serve Members residing in the County. While most of the Proposed Tenant's existing facilities are located within the County, others are located outside of the County in locations such as Gilroy and San Jose. The facilities outside of the County are used by members needing specialized services not provided by facilities inside the County. As described herein, the Project will result in a reduction of at least 20,322 vehicle miles traveled, and thus will have a less than significant impact on transportation. The Project, which will be located within the County along Soquel Avenue, is planned to provide expanded services so that only a small portion of the Proposed Tenant's Members will have to travel to facilities outside of the County.

Definitions

The following definitions are provided for the purpose of having a common understanding of the analysis provided within this section:

Existing Members: Current Members of the Proposed Tenant's healthcare system.
Healthcare Consumer: Consumers of healthcare services in the County, including Members and Other Healthcare Systems' patients.

Members: The Proposed Tenant's patients, visitors and non-clinical affiliated members. Collectively, as the context requires, the term "Members" may refer to Existing Members, Population Growth Members and Transferee Members.

Population Growth Members: Member growth that will occur over time via population growth.
Other Healthcare Systems: Sutter Health and Dignity Health.
Transferee Member: Member growth attributable to patients switching from Other Healthcare Systems to the Proposed Tenant.

Background

In 2013 and 2018, respectively, CEQA and its implementing guidelines ("CEQA Guidelines") were significantly amended regarding the methods by which lead agencies are to evaluate a project's transportation impacts. As described in CEQA Guidelines Section 15064.3(a):

Generally, vehicle miles travelled is the most appropriate measure of transportation impacts. For the purposes of this section, "vehicle miles traveled" refers to the amount and distance of automobile travel attributable to a project. Other relevant considerations may include the effects of the project on transit and non-motorized travel. Except as provided

Kimley»)Horn

in subdivision (b)(2) below (regarding roadway capacity), a project's effect on automobile delay shall not constitute a significant environmental impact.

The CEQA Guidelines have eliminated traffic congestion and automobile delay from the list of issues required to be analyzed as part of a potential project's CEQA analysis and instead clarify that the appropriate criteria for analyzing a potential project's transportation impacts is VMT. This is because California needs to reduce VMT to achieve the State's long-term greenhouse gas ("GHG") reduction climate goals. Half of California's GHG emissions come from the transportation sector; therefore reducing VMT is an effective climate strategy. ${ }^{15}$ A VMT-focused transportation analysis encourages a reduction in VMT, as opposed to the former approach of evaluating transportation impacts based on level of service ("LOS") impacts, which often leads to roadway improvements that increase roadway capacity and, consequently, can induce more VMT, traffic and GHG emissions. ${ }^{16}$

Effective July 1, 2020, CEQA Guidelines section 15064.3(c) now requires lead agencies to assess transportation impacts based on VMT. On June 16, 2020, the County adopted its own thresholds based on the requirements of CEQA (Public Resources Code section 21099) and the CEQA Guidelines. ${ }^{17}$ As further described below, the threshold of significance, methodology, and analysis provided for in this section are based upon these adopted thresholds and the associated direction from County staff.

Analyzing MOB VMT

As required by the California State legislature pursuant to SB 743, the California Governor's Office of Planning and Research ("OPR") prepared guidance to facilitate the adoption of VMT thresholds of significance by California jurisdictions. Although the 2018 Guidance ${ }^{18}$ does not specifically discuss MOBs, it does address the approach for analyzing land uses with the attributes of a MOB:

For office projects that feature a customer component, such as a government office that serves the public, a lead agency can analyze the customer VMT component of the project using the methodology for retail development (see below).

Santa Cruz County provided for this VMT analysis approach in its VMT thresholds adopted on June 16, 2020. ${ }^{19}$ Based on County requirements, MOB's are classified under the heading of "All

[^9]
Kimley»)Horn

other land uses," which provides for a threshold of significance of "no net increase in VMT". Accordingly, the Project will not have a significant transportation impact under CEQA if it results in no net increase in VMT.

The basic concept behind this analysis approach is that MOB's are similar to local retail uses in that they primarily serve pre-existing needs (i.e., they do not generate new trips, instead they meet a demand that would exist with or without the Project). Based on this, it can be presumed that the introduction of a new MOB will result in existing trips being redistributed, potentially resulting in shorter trip lengths when the MOB opens for service and is geographically located inbetween existing healthcare facilities. Given that the relative number of trips is constant, shorter trip lengths result in a VMT reduction. Essentially, a typical doctor visit is assumed to occur regardless of the proximity of the facility, but the proximity of the facility will determine the length of that trip and the resultant impact to the overall transportation system. Subsequently, this characteristic is used in this analysis to calculate the potential net increases or decrease in the overall Project VMT when the Project is constructed.

Figure F-3, below, demonstrates the concept described in this section visually and the measure of a "Net Change" in VMT as the metric by which the Project's potential transportation impact is determined.

Figure F-3 - Typical Effect of a MOB on VMT

As shown in the above graphic, the introduction of a new MOB often has the effect of redistributing existing patient trips in a manner that reduces average trip lengths, thereby resulting in a VMT

[^10]
Kimley»)Horn

reduction. (i.e. trip segments that were 3 miles prior to the new MOB are reduced to 1 mile with the addition of the new MOB).

Scenarios

This TIOA provides two separate and independent analyses of the Project under the threshold of "no net increase in VMT."

The first analysis, identified as "Scenario A," considers the effect of the Project on the Proposed Tenant's Members. This scenario represents the Proposed Tenant's goal of providing nearly all medical services required by its Santa Cruz County Members in the geographical boundaries of the County itself. This will benefit the Proposed Tenant's Members residing in the County by providing improved access to necessary medical services, thereby reducing the percentage of trips that travel to the San Jose area for specialized services. Members that travel outside of the County necessarily add substantial VMT to the existing system. These trips will be reduced with the construction of the Project. Based on the forecasted data provided by the Proposed Tenant, it is estimated that the number of Member trips accessing services outside of the County will be significantly reduced when the Project becomes operational (from 29\% without the Project to 2.4% with the Project, as shown below).

The second analysis, identified as Scenario B, provides a more conservative VMT analysis by also considering the potential for Healthcare Consumers from Other Healthcare Systems to become Transferee Members who also receive healthcare services at the Project (in addition to the Proposed Tenant's Existing Members and Population Growth Members).

The two scenarios are described in more detail below.

Scenario A

Under Scenario A, the following is considered:
A1: Existing No Project: VMT is evaluated under existing conditions (i.e., baseline). Specifically, VMT for Existing Members is determined based on current patterns, where most Members receive care at one of the Proposed Tenant's facilities in the County, but where almost 29-percent of Existing Member trips travel out of the County predominantly to receive specialized services. There are no new employees (because there is no Project) so employee VMT is based on the Proposed Tenant's existing facility locations in and outside of the County.
A2: Existing Plus Project: VMT is evaluated under exiting conditions, but with the addition of the Project. VMT for Members is determined based on the assumption that most Members receive care at the Project or one of the Proposed Tenant's existing facilities in the County. In this scenario, only about 2.4-percent of Members needing specific and highly specialized services that will not be provided at the Project continue to travel out of the County and the remaining Members currently traveling out of the County are redirected to the Project instead. VMT associated with Project employees is also included. For purposes of this analysis, it is assumed that the Project is fully occupied and operational.
A3: No Project 2040: 2040 VMT is evaluated based on a Healthcare Consumer distribution that represents forecasted 2040 household locations, which thereby impacts trip lengths

Kimley»)Horn

because a higher concentration of people live near services, thus shortening trip lengths. Members receive care at one of the Proposed Tenant's facilities in the County, but almost 29percent of Member trips travel out of the County to receive specialized services. There are no new employees (because there is no Project) so employee VMT is based on existing facility locations.

A4: Plus Project 2040: 2040 VMT is evaluated based on a Healthcare Consumer distribution that represents forecasted 2040 household locations and assumes the addition of the Project. VMT for Members is determined based on the assumption that care is received at the Project or one of the Proposed Tenant's existing facilities in the County. In this scenario, most Members receive specialized services at the Project and about 2.4-percent of Members continue to travel out of the County for specific and highly specialized services that will not be provided at the Project. VMT associated with Project employees is also included.

Scenario A Methodology

Santa Cruz County Travel Demand Model ("SCC TDM") data and related modeling techniques were used as the principle tool to determine VMT. Travel demand models are broadly considered to be the most accurate of available tools to assess VMT. Based on data provided by the Proposed Tenant about the facilities its Members in the County currently utilize, as well as limitations of the SCC TDM (i.e., it does not include areas outside of the County), a hybrid approach that relied on both the SCC TDM and other spatial analysis techniques was developed to meet the County's VMT analysis requirements. This approach accounted for the unique trip distribution and trip generation characteristics of the Project, as well as for the portion of VMT that would occur outside of the area covered by the SCC TDM.

Project Trip Generation

As described in more detail below, for purposes of maintaining a conservative analysis, this TIOA assumes that the Project will produce 6,106 daily trips based on the trip generation rate for Clinics (the same rate as used in the TIOA). However, this number likely overstates the actual Project trip generation since, based on previously collected trip generation data for the Proposed Tenant, the Project is forecasted to produce significantly fewer trips than that. As shown in the trip generation comparison Table T-1 below, the average number of trips per 1,000 square-feet (sf) of similar sites operated by the Proposed Tenant in the vicinity of the Project is 24.21 daily trips. For the proposed 160,000 s.f. Project, this equates to approximately 3,874 daily trips, or only about 63-percent of the number of trips assumed and used in this VMT analysis. Trip generation is discussed in greater detail in Chapter 3.

The trip generation rate for the Project is understood to be lower than typical MOBs as a result of several unique operational characteristics specific to the Proposed Tenant, including:

- Not requiring referrals for out-of-network specialty care,
- Extensive use of telemedicine,
- Grouping visits and providing multiple services at one site, and
- An emphasis on preventative care.

Kimley»)Horn

Note that the lower trip generation rate described above was not used as the basis of the VMT analysis contained herein and that the analysis is instead based on the typical trip generation characteristics of a Clinic as described in the current ITE Trip Generation Manual. As such, it is reasonable to assume that this TIOA analysis overstates the VMT of the Project (as compared to a typical MOB as defined by ITE) by approximately 37-percent (i.e., 63% is Proposed Tenant trip generation data). For purposes of this VMT analysis, Scenario A and Scenario B are based on the accommodation of the same total number of Project trips (representing the same number of Members and 300 employees). As such, existing conditions and future conditions analysis only consider the circumstances of Members that are forecasted to join the Proposed Tenant's network and Members currently within the Proposed Tenant's network residing within the County. This basis maintains an "apples-to-apples" comparison basis for the scenarios as required by SB $743 .{ }^{20}$

Table T-1 - Trip Generation Rate Comparison for Medical Office Buildings

		Independent Variable		Daily Trips		AM PEAK HOUR TRIPS						PM PEAK HOUR TRIPS					
Development	Data Source	Size ${ }^{4}$	Unit	Rate	TOTAL DAILY	Rate	\% Entering	\% Exiting	Trips Entering	Trips Exiting	TOTAL AM	Rate	\% Entering	\% Exiting	Trips Entering	Trips Exiting	$\left\lvert\, \begin{gathered} \text { TOTAL } \\ \text { PM } \end{gathered}\right.$
Proposed Project																	
Kaiser MOB	$\begin{array}{\|c\|} \hline \text { ITE LUC } 630 \\ \text { (Clinic) }^{1} \\ \hline \end{array}$	160.000	KSF	38.16	6,106	3.69	78\%	22\%	461	130	591	3.28	29\%	71\%	152	373	525
	$\begin{gathered} \text { ITE LUC } 720 \\ (\mathrm{MOB})^{2} \end{gathered}$	160.000	KSF	34.80	5,568	2.78	78\%	22\%	347	98	445	4.10	39\%	61\%	256	400	656
Similar Sites (2019) ${ }^{3}$																	
$\begin{aligned} & \text { Sutter/PAMF } \\ & \text { (Urgent Care) } \end{aligned}$	Counts	67.000	KSF	46.03	3,084	4.51	57\%	43\%	172	130	302	3.51	36\%	64\%	84	151	235
$\begin{array}{\|c} \text { Sutter/PAMF } \\ \text { (OB Office) } \\ \hline \end{array}$	Counts	63.306	KSF	16.85	1,067	1.04	50\%	50\%	33	33	66	1.44	32\%	68\%	29	62	91
Skyport MOB (Kaiser)	Counts	143.700	KSF	17.65	2,537	1.54	68\%	32\%	150	71	221	1.52	23\%	77\%	51	167	218
Dublin MOB (Kaiser)	Counts	215.000	KSF	16.28	3,501	1.41	83\%	17\%	251	53	304	1.46	30\%	70\%	93	220	313
Similar Sites Average:		122.252	KSF	24.21	--	2.13	64\%	36\%	--	--	--	1.98	30\%	70\%	--	--	--

Notes:
2. ITE Land Use Code 720 (Medical Office Building) was used in the Santa Cruz Assumptions Memo based on ITE 10th Edition Data.
3. Similar sites driveway counts were performed on October 22, 2019 and used to determine trip generation characteristics.
4. Building size information provided by applicant.
5. Trip generation is discussed in greater detail in Chapter 3.

Assumptions and Facts - Scenario A

The following assumptions and facts are applicable to the analysis for Scenario A:
A1. The trip distribution (i.e., trip length), used for the calculation of VMT and trip generation was developed based on the assumption that all patients travel to the closest facility that provides the medical services they require. Although some individuals may select a less optimal choice based on personal preference, the probability of this would likely be no different under any Scenario A condition (or Scenario B condition). Given this and the fact that there is not a sufficient basis or data to undertake such analysis, the TIOA reflects the assumption that the

[^11]
Kimley»)Horn

most optimal medical facility location, based on distance, is always selected by a Healthcare Consumer. It is further assumed that existing facilities of both the Proposed Tenant and Other Healthcare Systems can accommodate the demand for medical services based on this approach to trip distribution.

A2. In order to account for the effect of the Project on Healthcare Consumers, VMT from Members and employees of existing healthcare facilities operated by the Proposed Tenant inside and outside of the County.
A3. The facilities selected for this analysis are based on market data ${ }^{21}$ (as further described in Assumption \#8) that tracked the number of visits by service required at facilities operated by the Proposed Tenant. This includes six facilities located outside of the County and six facilities, including the Project, located within the County.

A4. Based on information provided by the Proposed Tenant, approximately 29percent of current Member trips are estimated to be served by facilities located outside of the County currently, mostly seeking services that the Proposed Tenant currently does not provide within the County. Based on information provided by the Proposed Tenant, when the Project becomes operational, it is assumed that trips to facilities outside of the County will be reduced to about 2.4percent of the total Member trips. These trips would be for highly specialized services that are not expected to be available at the Project, such as pediatric neurology or spine surgery. With the Project, it is assumed that other specialized services required by Members will be provided by the Project.

A5. Based on data provided by the Proposed Tenant, it is understood that on average, the Project will employ 300 individuals per day. For the purposes of this VMT analysis, only employee commute trips were accounted for as a part of the VMT analysis. This equates to 600 total Project trips (i.e., 2 times 300 one-way trips), as all employee trips for purposes of this analysis were conservatively assumed to be single occupancy trips.

A6. Employee trip generation for the Project is based on the proportion of employees (300 total) that matches the allocation of Healthcare Consumers to each healthcare facility, regardless of system. The origin of employees is based on the existing Longitudinal Employer-Household Dynamics (LEHD) data.

A7. Other trips, such as deliveries, were assumed to be minor in number and are adequately represented in terms of VMT by a Healthcare Consumer and/or employee trips included the analysis (the full trip generation, as used for this analysis, accounts for all Project trips). It is assumed that other elements of the analysis are a reasonable proxy for minor differences in any trip lengths.

[^12]
Kimley»)Horn

A8. This TIOA VMT analysis separates Member trips among twenty-eight different services based on market data provided by the Applicant. This data provided is based on a market analysis produced by Pivotal Analytics for specific medical services and is summarized in Table T-2, below. Pivotal Analytics ${ }^{22}$ provided Kimley-Horn with industry standard data that shows Healthcare Consumer information for the County and facilities located outside of the County operated by the Proposed Tenant used by Members located within the County. Pivotal Analytics is based on insurance claims data and together with the market data provided by the Proposed Tenant provides a comprehensive analysis of all medical services provided to residents of the County, including those of the Proposed Tenants and Healthcare Consumers served by other healthcare systems. The data provides current and future healthcare demand for services by service line using insurance claims information provided by healthcare insurance companies and demographic information provided by Geolytics. ${ }^{23}$ Additional data detail is provided in Appendix \mathbf{R}.

A9. The Proposed Tenant's membership forecasts for its Santa Cruz County MOBs for 2020 through 2040 were used as the basis for determining what percentage of trips were distributed amongst Members. This data is provided in Appendix S.

[^13]
Kimley»)Horn

Table T-2 - Population Demand for Medical Services

Service	Distribution of Total Visits	Total Visits
Cardiology - Outpatient	2.80\%	16,074
Cosmetic Procedures - Outpatient	0.22\%	1,263
Dermatology - Outpatient	2.80\%	16,098
Endocrinology - Outpatient	0.29\%	1,638
ENT - Outpatient	1.22\%	6,980
Evaluation and Management - Outpatient	49.80\%	286,044
Gastroenterology - Outpatient	1.36\%	7,784
General Surgery - Outpatient	0.50\%	2,845
Gynecology \& Obstetrics	1.84\%	10,544
Lab - Outpatient	4.08\%	23,410
Miscellaneous Services - Outpatient	5.61\%	32,206
Nephrology - Outpatient	0.25\%	1,432
Neurology - Outpatient	0.62\%	3,567
Neurosurgery - Outpatient	0.06\%	316
Oncology - Outpatient	0.73\%	4,183
Ophthalmology - Outpatient	2.58\%	14,846
Orthopedics - Outpatient	1.81\%	10,389
Pain Management - Outpatient	0.71\%	4,106
Physical Therapy/Rehabilitation - Outpatient	3.09\%	17,769
Podiatry - Outpatient	0.34\%	1,936
Psychiatry - Outpatient	4.00\%	22,970
Pulmonology - Outpatient	0.39\%	2,259
Radiology - Outpatient	10.65\%	61,187
Spine - Outpatient	0.09\%	490
Thoracic Surgery - Outpatient	0.01\%	69
Trauma - Outpatient	2.80\%	16,105
Urology - Outpatient	1.05\%	6,055
Vascular - Outpatient	0.32\%	1,843
	100\%	574,408

Scenario A Analysis

As described above, Scenario A evaluates the effect of the Project on the Proposed Tenant's Members. To determine the impact of the addition of the Project on the total VMT for the Proposed Tenant's Members, the distance traveled by each Member to the facility that provides the service required was determined for both Existing and 2040 Conditions. The location of each of the Proposed Tenant's facilities can be seen in Figure F-4 below. This distance was then multiplied by the number of trips the Proposed Tenant's Members and employees in Santa Cruz County take in an average day to each of the Proposed Tenant's facilities. This was completed both for Project an No Project conditions.

The number of trips analyzed under Scenario A represents both the estimated current trip generation of existing facilities and the full utilization of the Project facility as determined based on the daily trip generation rate for Clinics (the same rate as used in the TIOA) included in the Trip Generation Manual, $10^{\text {th }}$ Edition published by the Institute of Transportation Engineers (ITE). Based on information provided by the Applicant it is understood that for the No Project scenario, nearly 29-percent of Member trips include facilities outside of the County, while only 2.4-percent of member trips include facilities outside of the County in the Plus Project scenario. Once the

Kimley»)Horn

number of daily trips was determined for all facilities, the trips were distributed to the Member and corresponding employee locations throughout the County based on an optimized solution which considers both the availability of a service for a given facility as well as the proximity of that facility to a Member. Member locations are based on the Existing and 2040 population locations provided by the Santa Cruz County Travel Demand Model (SCC TDM), while the employee locations are based on Census employment data. The resultant trips were then multiplied by the distance of the shortest travel time to each facility to determine VMT in the aggregate for each scenario. A more detailed explanation of this methodology is provided in Appendix Z.

Figure F-4 - Proposed Tenant Facility Locations

Scenario A Results

The VMT results for Healthcare Consumers under Scenario A are summarized below in Table T-3. For both Scenario A. 2 (Existing Plus Project) and Scenario A. 42040 (2040 Plus Project) conditions, the Project results in a net reduction of more than 44,000 VMT per day. The table includes VMT for both Member and employee trips. The results reflect that with the addition of the Project, there is a reduction in VMT, primarily due to the reduction in trips to facilities outside of the County as compared to the No Project scenarios.

Kimley»)Horn

Table T-3 - Total Vehicle Miles Traveled by Scenario

Analysis A		Patient Vehicle Miles Traveled (VMT)	Employee Vehicle Miles Traveled (VMT)	Combined Total
Existing	A1: Existing No Project	97,275	24,567	121,843
	A2: Existing Plus Project	53,300	24,126	77,426
	Net Reduction in VMT	$-43,975$	-441	$-44,416$
$2 \mathbf{2 0 4 0}$	A3: 2040 No Project	96,601	24,567	121,168
	A4: 2040 Plus Project	51,736	24,126	75,862
	Net Reduction in VMT	$-44,864$	-441	$-45,306$

SCENARIO B ANALYSIS

As noted above, Scenario B considers a conservative approach to defining the No Project condition. Scenario B is predicated on a set of circumstances where a significant catalyst for growth results from patients of Other Healthcare Systems transferring to the Proposed Tenant's system as new Members once the Project is constructed (i.e., Transferee Members) to receive healthcare services at the Project. Accordingly, in the No Project condition for Scenario B (B1), VMT associated with these Transferee Members is allocated to Other Healthcare Systems in the Project condition for Scenario B (B2), VMT associated with these Transferee Members is allocated to the Project instead because they have become Healthcare Consumers that receive healthcare services at the Project. ${ }^{24}$ Given that a variety of considerations influence the growth of medical networks, including employer/employee selection, cost, and personal preferences, the transfer of patients from Other Healthcare Systems to become Transferee Members of the Proposed Tenant contemplated in this Scenario B likely represents the most conservative analysis.

B1: Cumulative No Project: 2040 VMT is evaluated based on a Healthcare Consumer distribution that represents forecasted 2040 household locations. In this scenario, Member trips are adjusted to account for Existing Members and Population Growth Members (i.e., new Members projected based on projected population growth). Most Existing Members and Population Growth Members receive care at one of the Proposed Tenant's facilities in the County, but almost 29-percent of Existing Member and Population Growth Member trips travel out of the County to receive medical services, since those specialized services are not offered at existing facilities in the County. There are no new employees (because there is no Project) so employee VMT is based on existing facility locations. Under this Scenario B1, Transferee Members remain with the Other Healthcare System in which they are assumed to belong and their VMT contribution is estimated based on their use of that system.
B2: Cumulative Plus Project: Under this condition, Transferee Members have transferred to the Proposed Tenant's membership base and the Project and are reflected in the Project's VMT, rather than in VMT attributable to the Other Healthcare Providers. VMT for Existing Members and Population Growth Members is determined based on the assumption that

[^14]
Kimley»)Horn

care is received at the Project or at one of the Proposed Tenant's facilities in the County. In this scenario, most Members receive specialized services at the Project and very few continue to travel out of the County for specific and highly specialized services that will not be provided at the Project. VMT associated with employees is also included. From a mathematical standpoint, this Scenario B2 is identical to Scenario A: Plus Project 2040 and has the same resultant VMT.

Methodology for Scenario B

The methodology described above for estimating VMT for Scenario A, including with respect to Project trip generation, also applies to the Scenario B analysis. Like Scenario A, the Scenario B analysis is also based on the accommodation of 6,106 Project trips (representing the same number of Members and employees). As such, the Scenario B analysis only considers the circumstances of Transferee Members and Population Growth Members that are forecasted to join the Proposed Tenant's network, as well as Members currently within the Proposed Tenant's network residing within the County. This basis maintains an "apples-to-apples" comparison basis for the two scenarios as required by SB $743 .{ }^{25}$

As noted with respect to Scenario A, this TIOA VMT analysis utilizes a trip generation rate based on the ITE Trip Generation Manual that overstates the VMT of the Project by 37 -percent, as compared to traffic counts collected from area MOBs (see Table T-4). This overly conservative ITE rate likely results in a substantial decrease (37-percent) for Transferee Members' VMT under Scenario B.2's (Cumulative Plus Project) condition as compared to Scenario B. 1 Cumulative No Project condition. For purposes of providing the most conservative analysis possible as part of this TIOA, however, this likely trip reduction is not considered in this report's VMT analysis, which instead is based on ITE trip generation rates instead.

Assumptions and Facts - Scenario B

The assumptions and facts that are specific to Scenario B are provided below:
B1. All of the Assumptions and Facts applicable to Scenario A also apply to Scenario B and are incorporated herein by reference, except Assumptions Number 2 (VMT sources) and 9 (membership forecasts) provided in Scenario A are modified as provided below.

B2. In order to account for the effect of the Project on Healthcare Consumers, VMT from a variety sources are considered, including those for Existing Members, Population Growth Members, Transferee Members, and healthcare facilities in the County. As such, VMT estimates for Scenario B presented for Cumulative No Project and Cumulative plus Project conditions include VMT to existing healthcare facilities in the County and to the Project. (This is a modification for

[^15]
Kimley»)Horn

Scenario A, Assumption No. 2 in order to provide for the consideration of Transferee Members and Population Growth Members.)
B3. The Proposed Tenant's Membership forecasts for its in-County MOBs for 2020 through 2040 was used as the basis for determining what percentage of trips were distributed across each of the three sources of Members (i.e., Existing Members, Population Growth Members or Transferee Members). These data are provided in Appendix T. This is a modification for Scenario A, Assumption No. 9 modified for Scenario B in order to provide for the consideration of Existing Members, Population Growth Members and Transferee Members.

B4. The Proposed Tenant's Member growth under Cumulative conditions (Population Growth Members) is based on the population growth percentage between 2019 and 2040, as provided for in the SCC TDM.

B5. Transferee Members that are Healthcare Consumers of Other Healthcare Systems under the Cumulative No Project condition have 33 facilities to choose from, 15 for Dignity Health ("Healthcare System A") and 18 for Sutter Health ("Healthcare System B"). The location for all facilities of the Other Healthcare Systems are summarized in Table T-4 and Figure 5.

Kimley»)Horn
Table T-4 - Location of Competing Other Healthcare Provider Facilities

Location Letter	Name	Group	Street	City
A	Dignity Health Medical Group	Dignity Health	1066 South Green Valley Road	Watsonville
B	Dignity Health Medical Group	Dignity Health	575 Auto Center Dr	Watsonville
C	Dominican 1595 Center	Dignity Health	1595 Soquel Drive	Santa Cruz
D	Dominican Family Practice	Dignity Health	4700 Soquel Dr	Soquel
E	Dominican Family Practice - Aptos	Dignity Health	9515 Soquel Drive	Aptos
F	Dominican Family Practice - Boulder Creek	Dignity Health	13350 Big Basin Way	Boulder Creek
G	Dominican Family Practice - Capitola	Dignity Health	528 Capitola Ave	Capitola
H	Dominican Family Practice - Dominican Way	Dignity Health	1779 Dominican Way	Santa Cruz
1	Dominican Family Practice - Westside	Dignity Health	2018 Mission Street	Santa Cruz
J	Dominican Hospital	Dignity Health	1555 Soquel Drive	Santa Cruz
K	Dominican Obstretrics \& Gynecology	Dignity Health	1505 Soquel Drive	Santa Cruz
L	Dominican Pediatrics \& Urgent Care	Dignity Health	1820 41st Ave	Capitola
M	Dominican Urology	Dignity Health	1667 Dominican Way	Santa Cruz
N	Frederick St	Dignity Health	700 Frederick Street	Santa Cruz
0	Primary Care in your Neighborhood	Dignity Health	223 Mt. Hermon Road	Scotts Valley
P	Aptos Center	Sutter	7600 Old Dominion Court	Aptos
Q	Aptos Walk-In Care	Sutter	26 Rancho Del Mar	Aptos
R	Capitola Center Lab	Sutter	815 Bay Ave	Capitola
S	Commercial Crossing Center	Sutter	2850 Commercial Crossing	Santa Cruz
T	Freedom PAMF	Sutter	160 Green Valley Road	Freedom
U	Santa Cruz Allergy	Sutter	3035 North Main Street	Soquel
V	Santa Cruz Cardiothoracic Surgery	Sutter	1575 Soquel Drive	Santa Cruz
W	Santa Cruz Center	Sutter	2025 Soquel Ave	Santa Cruz
X	Santa Cruz Chanticleer Center (2907)	Sutter	2907 Chanticleer Ave	Santa Cruz
Y	Santa Cruz Chanticleer Center (2911)	Sutter	2911 Chanticleer Ave	Santa Cruz
Z	Santa Cruz Gastroenterology	Sutter	1662 Dominican Way	Santa Cruz
AA	Santa Cruz Neurology	Sutter	1661 Soquel Drive	Santa Cruz
$A B$	Santa Cruz Physical Therapy	Sutter	1529 Seabright Ave	Santa Cruz
AC	Scotts Valley Center	Sutter	4663 Scotts Valley Drive	Scotts Valley
AD	Scotts Valley El Rancho Drive Center	Sutter	2980 El Rancho Drive	Santa Cruz
AE	Soquel Center	Sutter	2950 Research Park Drive	Santa Cruz
AF	Watsonville PAMF	Sutter	550 S Green Valley Rd	Watsonville
AG	Westside Center	Sutter	1301 Mission Street	Santa Cruz

Kimley»Horn

Figure F-5 - Other Healthcare Provider Facility Locations

Scenario B Analysis

Generally, Scenario B follows the same analytical techniques outlined under the Scenario A analysis above. The primary differences between the two scenario analyses is the analysis of the prior trip patterns of Transferee Members under the Cumulative No Project condition (when they are participants in Other Healthcare Systems) versus their trip patterns under the Cumulative Plus Project condition (after they become Members that receive health care at the Project).

The number of Existing Members in 2020 and the Proposed Tenant's projected membership in 2040 for Santa Cruz County, as provided by the Proposed Tenant, was used as the basis for distributing Members across each of the three member sources: Existing Members, Population Growth Members, and Transferee Members. The 2020 Membership is estimated to be 35,071, while the 2040 Membership is projected to be 87,729 , for a 20 -year growth of 52,658 Members as shown in Appendix S. The SCC TDM was used as the basis to determine the population growth over the same period. It was determined that the population would grow by approximately 12.5 percent. As with Scenario A, the SCC TDM population distribution is the basis for the determination of Healthcare Consumer origins.

To determine Population Growth Members, the 2020 membership was multiplied by the population growth percentage for the County, resulting in a Membership growth of 4,394. The remaining growth of 48,264 is assumed to be the result of Transferee Members. As a result, the Cumulative Plus Project conditions assume that Membership is made up of 40-percent Existing Members, 5-percent Population Growth Members, and 55-percent Transferee Members as

Kimley»)Horn

shown in Appendix T. Under the Scenario B. 1 Cumulative No Project conditions, the 55-percent of Transferee Member are analyzed as participants in Other Healthcare Systems.

As with Scenario A, the Applicant-provided market data were the basis of identifying the distribution of Member visits by service type and by facility for Scenario B1 and Scenario B2. Similarly, the data shows that almost 29-percent of Existing Members and Population Growth Members would travel outside the County for specialized services under the Scenario B. 1 Cumulative No Project Condition and almost 2.4-percent of total Member trips would continue to travel outside the County under the Scenario B. 2 Cumulative Plus Project condition for the purposes of obtaining highly specialized services that are not expected to be provided by the Project.

Figure F-6 displays the locations of Existing Members and Population Growth Members by TAZs (denoted as grey-lined areas defined in the travel demand model for land use forecasting) with each dot representing 25 Members. Figure F-7 displays the locations of Transferee Members that would otherwise receive care from Other Healthcare Providers by TAZ in density groupings of 25 Members. Appendix \mathbf{R} includes information related to the basis of the assumption for continued use of the San Jose facility.

VMT for the Scenario B. 1 Cumulative No Project and the Scenario B. 2 Cumulative Plus Project condition was calculated in the same manner as Scenario A (see Appendix Z for more details). The primary difference being that the Cumulative No Project condition considers the VMT of Transferee Members as it relates to Other Healthcare Systems. Employees were also handled consistently with Scenario A.

Figure F-6 - Existing and Population Growth Member Locations for the Proposed Tenant

Kimley»)Horn

Figure F-7 - Other Healthcare System Patient Locations

Scenario B Results

The VMT results for Healthcare Consumers under Scenario B are summarized in Table T-5. For Scenario B. 2 (Cumulative Plus Project) conditions, the Project results in a net reduction of more than 20,000 VMT per day. The table includes the effect of Transferee Members leaving Other Healthcare Providers to become new Proposed Tenant Members receiving care at the Project instead. VMT was calculated for both Member trips and employee trips. The results reflect that with the addition of the Project in the Scenario B. 2 (Cumulative Plus Project) condition, there is a reduction in VMT primarily due to trips outside the County being significantly reduced as compared to the B. 1 (Cumulative No Project scenario).

Kimley»)Horn

Table T-5 - Total Vehicle Miles Traveled by Medical Facility and Service Type

Analysis B	Combined Total
Patient Vehicle Miles Traveled (VMT)	
B1: Cumulative No Project	$\mathbf{7 0 , 9 0 6}$
B2: Cumulative Plus Project	51,736
Net Reduction in VMT	
Employee Vehicle Miles Traveled (VMT)	
B1: Cumulative No Project	$\mathbf{2 5 , 2 7 9}$
B2: Cumulative Plus Project	$\mathbf{2 4 , 1 2 6}$
Net Reduction in VMT	
Patient + Employee Vehicle Miles Traveled (VMT)	
B1: Cumulative No Project	
B2: Cumulative Plus Project	$\mathbf{9 6 , 1 8 4}$
Net Reduction in VMT	

With the addition of the Project, the Healthcare Consumers allocated to Healthcare System A and Healthcare System B become Transferee Members and their trips are diverted from the Other Healthcare Systems to the Project. VMT associated with Healthcare Consumers that currently are, and that after construction of the Project will continue to be patients of the Healthcare System A or Healthcare System B are not reflected in this Table.

Conclusion

Conclusion: As shown in Table T-6 below, under all conditions for the Scenario A and Scenario B analyses, the Project results in a net VMT reduction. In Scenario A, which focuses on VMT associated with Members who receive services at the Proposed Tenant's existing facilities should the Project not be constructed, the Project results in reduction of 44,416 VMT in the Scenario A. 2 (Existing Plus Project) condition and a reduction of 35,306 VMT in the Scenario A. 4 (2040 Plus Project) condition as shown in Table T-3. In Scenario B, which provides a more conservative analysis that considers the VMT associated with Existing, Population Growth and Transferee Members, the Project results in a reduction of 20,322 VMT in the Scenario B. 2 (Cumulative Plus Project) condition as shown in Table T-5. In both Scenario A and Scenario B, this ultimate reduction in VMT with the Project is primarily due to the reduction in the number of trips traveling outside the County for specialized services since the majority of those services are provided by the Project.

Kimley»"Horn

Table T-6 - Total Vehicle Miles Traveled by Scenario

Analysis Scenario	Combined Total
Patient + Employee Vehicle Miles Traveled (VMT)	
A1: Existing No Project	$\mathbf{1 2 1 , 8 4 3}$
A2: Existing Plus Project	$\mathbf{7 7 , 4 2 6}$
Net Reduction in VMT	$-\mathbf{4 4 , 4 1 6}$
A3: 2040 No Project	$\mathbf{1 2 1 , 1 6 8}$
A4: 2040 Plus Project	$\mathbf{7 5 , 8 6 2}$
Net Reduction in VMT	$-45,306$
B1: Cumulative No Project	$\mathbf{9 6 , 1 8 4}$
B2: Cumulative Plus Project	$\mathbf{7 5 , 8 6 2}$
Net Reduction in VMT	$\mathbf{- 2 0 , 3 2 2}$

Based on the results of this TIOA analysis, the Project would not result in a net increase in VMT and, accordingly, would not have a significant transportation impact under CEQA.

Kimley»"Horn

3. TRANSPORTATION DEMAND MANAGEMENT (NON-CEQA ANALYSIS)

Transportation Demand Management ("TDM") measures are programs that can be implemented to reduce single occupancy vehicle ("SOV") travel to and from homes or places of work by offering travelers mode choice options. TDM options are intended to reduce roadway congestion and provide more choices for how to travel, both of which will assist in promoting business, providing access to opportunity, and improving the quality of life across the state. The County recognizes the value of TDM measures in its General Plan ${ }^{26}$ and Trip Reduction Ordinance. ${ }^{27}$

The Project has no significant transportation impacts under CEQA (as assessed by VMT), and therefore is not legally required to provide or incorporate TDM measures to mitigate such impacts. Nonetheless, the Project will voluntarily implement TDM measures to reduce reliance on SOVs and to assist in achieving state and local GHG reduction commitments, preserving the environment, improving health and safety and reducing congestion on local streets and highways. The trip generation assumptions used in this TIOA to analyze the Project's impacts on County roadways were not discounted to account for the implementation of TDM.

The Project proposes a targeted TDM strategy focusing on separate measures for employees and Members, as described in detail below.

Employee-Focused TDM Measures

The Project proposes to provide the following TDM benefits to employees:

- Bike Share Program
- Commute Management Platform and Rideshare Support
- Emergency Ride Home Program
- TDM Coordinator
- Safe, Well-Lit, and Accessible Pedestrian/Bicycle Facilities along Soquel Avenue

Bike Share Program: To encourage employees to utilize transportation mode alternatives to SOVs, the Project proposes to fund the implementation of a Bike Share Program when available in the County. The program might include subsidized or discounted monthly memberships or other incentives to encourage bike commuting by employees. In addition to the bike share service, employees can also ride their own bikes to work, or take their own bike as a "first-mile, last-mile" service and complete the main trip on the METRO bus, placing their bike on a bus bike rack. An employee's trip comprises the entire journey from origin to destination. Employees may use a number of modes (types) of transport to complete the journey - they may walk, drive, ride a bicycle, - in many cases - combine a number of these modes. The METRO bus service would form the core of the trip, but they would complete the first and last portion on their own. For example, they must first bike to a bus stop, then take

[^16]
Kimley»Horn

the bus, disembark at a stop closest to the Project site, then finish their trip on their bike. This is referred to as the first and last mile of the employee trip.

The Project will also install 4,200 feet of Class II bike lanes along Soquel Avenue to facilitate safe routes of travel to the Project site by bicycle. The Project will provide a designated area close to the front door for bikes to be parked. Though not specifically targeted to Members, bike share services will also be available when implemented by the County to Members wishing to travel to the Project from serviceable bike stations.

Commute Management Platform and Rideshare Support: The County has launched the Ride Amigos commute management platform for people that work in the County. Ride Amigos is a web-based service that includes ride matching and engagement through the gamification ${ }^{28}$ of SOV alternatives. This type of platform engages users and provides up-to-date commuting data to TDM administrators. Employees in the County can sign up to participate. The service will connect drivers with riders, allowing employees the opportunity to carpool together or with other commuters in the Santa Cruz area. Participants may also use the Ride Amigos platform to log SOV alternatives, such as carpool, bicycle trips and transit trips. The Proposed Tenant's TDM coordinator would work with the County to engage employees on the platform to encourage the use of alternative SOV modes through the platform's gamification functions. This measure would be implemented at no cost to employees.

To encourage ridesharing, the Project will have designated preferred parking for ride-share participants and be designed to provide adequate passenger loading/unloading and waiting areas for ride-share vehicles.

Emergency Ride Home Program: The Emergency Ride Home Program is a service that the Applicant (or Proposed Tenant) will register for and fund. Employees that commute to work using SOV alternatives will be able to take advantage of a free ride home in emergency situations should they be unable to take their alternative mode of travel home. This service would be, and is typically, capped at a predetermined maximum number of rides per period (such as month, quarter, or year) for each employee. Ecology Action is currently providing these services in the County. It is anticipated that the Proposed Tenant will subscribe to the organization, but the Proposed Tenant may also provide funding to its employees for taxi or Uber/Lyft emergency trips instead.

TDM Coordinator and Marketing Materials: The Proposed Tenant currently has TDM program Coordinators at its other facilities and provides marketing/informational materials to its employees at these locations. The TDM Coordinators encourage employees to sign up and utilize the available TDM resources and benefits provided by the Proposed Tenant. TDM Coordinators also measure and monitor program progress. Where applicable, they administer employee commute surveys. The Proposed Tenant (or other Project operator) will extend these services to the Project site to encourage and educate employees about the availability

[^17]
Kimley»Horn

of alternative modes of commute. The TDM Coordinator will also work closely with the County to engage employees through the County commute management platform.

Safe, Well-Lit, and Accessible Pedestrian/Bicycle Facilities: The Project proposes to construct off-site pedestrian and bike facility improvements along Soquel Avenue, as discussed in detail in the Pedestrian, Bicycle and Transit Mobility Chapter (Chapter 4) of this TIOA. These active transportation improvements will be funded by the Project and are anticipated to provide substantial benefits and connectivity to employees that wish to travel to/from the Project on foot, from transit facilities or by bike. These improvements will enhance the local sidewalk and bicycle network and address existing pedestrian/bicycle deficiencies in the County.

Based on the data sources identified in Table T-7, it is anticipated that the TDM measures mentioned above and shown in detail in Table T-7 would reduce Project employee trip generation by approximately 15.5 percent.

Member-Focused TDM Measures

In addition to the above TDM measures targeted at employees, the Project will also provide the following TDM measures intended to benefit Members:

- Virtual Care Strategy
- Safe, Well-Lit, and Accessible Pedestrian/Bicycle Facilities

Virtual Care Strategy: The Proposed Tenant allows Members the opportunity to conduct appointments with their medical practitioners virtually over the internet. This highly successful program is already in use and the ability to conduct appointments virtually removes the need for many Members to travel to and from physical medical offices. Particularly with the recent implications of COVID-19, virtual doctor's appointments have become the norm, and this manner of communication is anticipated to remain heavily utilized into the future, especially for more routine appointments. The Proposed Tenant anticipates extending this virtual care service to Members wishing to meet with medical practitioners based at the Project site. A target of 20 percent of all patient visits being accessed through the virtual care program is being established by the Applicant.
Safe, Well-Lit, and Accessible Pedestrian/Bicycle Facilities: The off-site pedestrian and bike facility improvements that will be funded by the Project along Soquel Avenue, and discussed as part of the employee TDM improvements above, will also provide a benefit to Members. Such active transportation improvements are anticipated to provide real benefits and connectivity to Members and visitors that wish to travel to/from the site on foot or by bike. These improvements will also improve the local sidewalk and bicycle network and address existing pedestrian/bicycle deficiencies in the County. The TDM trip reduction for Members could be as high as 0.5 percent for the off-site pedestrian and bike facility improvements, as described in Table T-7.

Fewer numbers of ill or infirm Members are expected to bike or walk to the site to receive care. As discussed further in the Pedestrian, Bicycle, and Transit Mobility Chapter (Chapter 4), Members that are senior citizens or that have temporary or permanent physical, cognitive, or psychiatric disabilities may be eligible to receive free or low cost door-to-door transportation

Kimley»)Horn

to the Project via the METRO-operated ParaCruz service or the Lift Line program operated by Community Bridges. To be as conservative as possible, the Project does not assume any reduction in SOV use associated with these programs and therefore does not account for this as a Project TDM measure.

Based on data sources identified in Table T-7, it is anticipated that the above TDM measures would reduce Member trip generation by approximately 20.5 percent.

Kimley»Horn

Table T-7 - TDM Measure Summary

Transportation Demand Management Measure	Description	TDM Type	Estimated Trip Reduction (\%)	Trip Reduction Source
Employees Only				
Bike Share Program	Bicycle share programs provide convenient rental bicycles to users. This allows urban residents and visitors to bicycle without needing to purchase, store and maintain a bike.	Incentive	4\%	Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, August 2010.
Commute Management Platform (Ride Amigos or similar service) and Rideshare Support	Increases vehicle occupancy by providing ride-share matching services, designating preferred parking for ride-share participants, designing adequate passenger loading/unloading and waiting areas for ride-share vehicles, and providing a website or message board to connect riders and coordinate rides.	Incentive	2.5\%	This service is already available to employees in the County and would only be a continuation/extension to employees at the Project.
Emergency Ride Home Program (ERH)	Provides an occasional subsidized ride to commuters who use alternative modes and eliminates a common constraint to the use of alternative modes. Guaranteed ride home for people if they need to go home in the middle of the day due to an emergency or stay late and need a ride at a time when transit service is not available. ERH programs may use taxies, company vehicles or rental cars.	Incentive	3\%	Guaranteed Ride Home Programs: A Study of Program Characteristics, Utilization, and Cost by William B. Menczer (Federal Transit Administration); Guaranteed Ride Home Program Evaluation 2013 by Alameda CTC.
On-site TDM Program Coordinator and TDM marketing materials	A TDM coordinator to monitor overall program progress, marketing and public outreach to promote awareness of TDM program.	Infrastructure	4\%	Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, August 2010.
Safe, well-lit, and accessible pedestrian/bicycle facilities	Enhance the route for employees walking or bicycling to transit (typically off-site). Implements pedestrian network improvements throughout and around the Project site that encourages people to walk.	Infrastructure	2\%	Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, August 2010.
Estimated Total Trip Reduction for Employees Only			15.5\%	
Members Only				
Virtual Care Strategy	Resources to allow Members to access healthcare services or communicate with healthcare staff through online or off-site programs.	Infrastructure	20\%	Based on the Proposed Tenant's ongoing program results See Appendix W.
Safe, well-lit, and accessible pedestrian/bicycle facilities	Enhance the route for Members walking or bicycling to transit (typically off-site). Implements pedestrian network improvements throughout and around the Project site that encourages people to walk.	Infrastructure	0.5\%	Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, August 2010.
Estimated Total Trip Reduction for Members Only			20.5\%	
Notes: 1. An Incentive is a measure that would entice a candidate employee or patient to make a mode shift choice and reduce their Single SOV trips. 2. Infrastructure type is a physical feature that makes it more enticing for an employee or patient to make a mode choice from SOV to an alternative mode. 3. TDM reduction percentages are consistent with the County's most recent VMT reduction strategies. The County TDM Policy is Attached in Appendix Y.				

Kimley»)Horn

Other TDM Considerations

Since the Project proposes to voluntarily implement and fund the TDM improvements described above, it is anticipated that trip generation estimates provided in this TIOA and used in the operational LOS analyses are very conservative because it does not incorporate the anticipated TDM measures in the overall analysis. In fact, with implementation of the TDM measures, it is anticipated that the Project will generate fewer trips than as analyzed in this TIOA, roughly on the order of 1165 Daily trips. This estimate is based on 300 employees working at the Project making trips during the AM and PM peak hours. The remainder of the daily 6,106 trips are made by Members and project support services (i.e. deliveries, pickups and drop-offs) of which 5% of the project support service trips are excluded from the TDM trip calculations shown in Table T-8.

Table T-8 - TDM Trip Calculations

TDM Trip Calculations	Daily trips	$\begin{aligned} & \mathrm{AM} \\ & \text { trips } \end{aligned}$	$\begin{aligned} & \text { PM } \\ & \text { trips } \end{aligned}$	\% TDM	Non-peak hour trips	AM trips	PM trips
					TDM Trips		
Project Trip Generation	6106	590	525				
Employee Trips	600	300	300	15.50\%	93	47	47
Member and Project Support Service Trips	5506	290	225				
Project Support Service Trip Reduction (5\%)	-275	-15	-11				
Net Member Trips	5231	275	214	20.50\%	1072	56	44
Total TDM Trips					1165	103	91

Moreover, trip generation rates used in this TIOA are based on ITE assumptions. As further described in Section 6 of this report, traffic data was collected at comparable facilities at the County's request. Those traffic counts indicate that ITE assumptions overstate actual trip generation by 23 percent to 52 percent. Based on implementation of TDM and the potential overestimation of trips utilizing ITE assumptions, it is likely that operational deficiencies to the local transportation will be substantially less than what is published in this TIOA.

Given the above, once the Project is constructed and fully operational, it is expected that the Project will monitor actual trip generation through a formalized driveway traffic count program. These counts would be collected at regular intervals, at a frequency to be mutually agreed upon with the County, and would be used to compare against the trip generation estimates published in this study, which are based on ITE data and which do not incorporate or assume TDM reductions. If future driveway counts demonstrate that the Project generates fewer trips than were assumed for the purposes of calculating TIA fees, then the Applicant / Proposed Tenant may receive a refund for the corresponding overpayment.

In addition, it is expected that an anonymous employee commute survey would be conducted annually for as long as the TDM program is implemented in order to assess the employee-focused measures and for internal planning purposes. A summary report of information collected from the annual survey could be provided to the County upon request.

Kimley»"Horn

4. TRANSIT, BICYCLE, AND TRANSIT MOBILITY (NON-CEQA ANALYSIS)

The Project was evaluated to determine if it would adversely affect adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks) or generate pedestrian, bicycle, or transit travel demand that would not be accommodated by transit, bicycle, or pedestrian facilities and plans. The County's General Plan contains several policies related to transit, bicycle and transit mobility, including the following:

Pedestrian-Oriented Policies:

Policy 3.10.3 Require adequate lighting for pedestrian and transit patron's movement where appropriate.

Policy 3.10.4 Require dedication and construction of walkways for through pedestrian traffic and internal pedestrian circulation in new developments where appropriate.

Policy 3.10.7 Provide for pedestrian movement in the design of parking areas.
Policy 3.10.8 Incorporate ADA standards in design of new projects and reconstruction where applicable. Prohibit landscaping and all other obstacles, such as telephone poles and fire hydrants, which would prevent pedestrian movement within this walkway. Require the use of materials which will provide an all-weather surface for walking.

Policy 3.10.10 All new development shall incorporate ADA standards into the design, where applicable.

Bicycle-Oriented Policies:

Policy 3.8.1 Plan a bikeway network to integrate with other modes of transportation (train or transit stations and Park and Ride lots, etc.) in order to encourage and support the use of bicycling and reduce the use of motor vehicles.

Policy 3.8.4 Encourage the provision of bicycle racks, showers, lockers and other storage facilities at destinations, where practical and economically feasible, when reviewing discretionary permits for major activity centers and employer sites.

Policy 3.9.1 Design and construction regional bikeways in accordance with County and Caltrans standards in order to maximize safety and minimize potential conflicts with pedestrians and motor vehicles.

Policy 3.9.2 Construct and mark bicycle routes in conformance with state standards. Limit the number of driveways where feasible in new developments to reduce the potential for automobilebicycle conflicts.

Policy 3.9.3 Limit on-street parking where the need for a clear bike lane exists. Strip all arterials for bike lanes and strictly enforce parking limitations.

Kimley»Horn

Project Transportation Improvements

Project Site Access and Circulation

The Project site will be accessed from Soquel Avenue. The Project will construct one main signalized driveway entrance for employees and Members, which will provide access to the patient loading and unloading area, as well as the proposed parking garage. The main driveway will include a protected westbound left-turn pocket and eastbound right-turn pocket into the Project site from Soquel Avenue, as well as northbound left- and right-turn lanes exiting the Project site. A peak hour signal warrant for the main driveway indicates that a signal is warranted per the California Manual on Uniform Traffic Control Devices ("CAMUTCD") guidelines and the peak hour warrant analysis worksheet is included in Appendix J. Note that roundabouts require more right of way than signals and a roundabout at this driveway would not be feasible due to Highway 1 right-of-way constraints.

A secondary driveway will also be constructed east of the main entrance for deliveries, pickups, and ambulances. The secondary driveway south leg will be stop controlled and Soquel Avenue traffic will be free flow. The secondary driveway will experience very low and infrequent volumes throughout the day and no signal is anticipated for this location.

As shown in the Project site plan in Figure F-2, the Project will construct a roadway through the center of the site, with the Project parking garage on the west side of the site and the MOB on the east side of the site. The parking garage will have two entrances/exits, one at the northeast end of the garage and one at the southeast end.

A patient drop-off/pick-up zone will be provided near the main building entrance and accessed via the main Project Driveway. The drop-off/pick-up zone will provide capacity for approximately seven vehicles at a time.

For motorists traveling to the site, the north entrance/exit will allow for free right-turn movements into the garage. Traffic wishing to bypass the main garage entrance will use the southbound through lane, which will be stop-controlled, rather than the free southbound right-turn to bypass the main garage entrance and continue south. Motorists bypassing the main garage driveway will then have the opportunity to access the secondary garage driveway or continue around to the drop-off/pick-up zone adjacent to the MOB. For motorists wishing to park in the garage after dropping-off Members in the loading/unloading zone adjacent to the MOB, motorists will have the opportunity to make a northbound right-turn at the north garage entrance/exit at turn into the garage to seek a parking space.

For motorists leaving the site, both garage exits will be stop controlled. The north entrance/exit will allow for the most direct route to leaving the site, by permitting motorists to make an eastbound right turn, which will bring them to the proposed Soquel Avenue \& Project Driveway signal. For travelers exiting from the south garage driveway, motorists would take an eastbound right turn, travel north past the drop-off/pick-up area, stop at the northbound through stop-controlled movement at the north garage entrance/exit, and then continue to the Soquel Avenue \& Project Driveway signal.

Kimley»)Horn

An east/west high visibility pedestrian crosswalk will be provided across the south leg of the north garage entrance/exit. Pedestrians will be able to utilize this proposed crosswalk to access the MOB after parking their vehicles and bikes. The Project will construct wayfinding signage to direct pedestrians to the crosswalk. Conflicting traffic will be stop controlled and pedestrians will have the right of way to cross at this location.

Bikes will access the site via the Soquel Avenue \& Project Driveway signalized intersection, traveling south and parking near the north parking garage entrance/exit, as shown in Figure F-2. After parking their bikes at the designated bike parking area, pedestrians will utilize the previously discussed east/west pedestrian crosswalk to access the Project site.

The Project will also construct ADA-compliant sidewalk along the north Project frontage (south side of Soquel Avenue), which will extend along the south side of Soquel Avenue and fill the existing gap in the County's sidewalk network.

Off-site Mobility Improvements - Soquel Avenue Two-Way Left-Turn Lane Striping Improvements Project

The Project will implement approximately 3,500 feet of "TWLTL striping (and restriping) along Soquel Avenue from Paul Minnie Avenue to the existing creek crossing (east of Mattison Lane). These striping improvements will include restriping of the existing bike lanes and the addition of new green bike lane striping. Conceptual layouts for these Project improvements are included in Appendix I.

Pedestrian Mobility

Existing Conditions

Pedestrian facilities are characterized as sidewalk and crosswalks. No sidewalk currently exists along the Project site frontage along Soquel Avenue. Sidewalk exists just east of the Project site along the south side of Soquel Avenue in front of the Kraft's Body Shop and west of the Project site along the south side of Soquel Avenue in front of the Live Oak Business Park, which includes the County of Santa Cruz Sheriff's Office. Other than the sidewalk gap near the Project described above and sections of Mattison Lane, all local streets within $1 / 2$-mile of the Project site have existing sidewalks. Crosswalks near the Project site include crosswalks at Soquel Avenue \& $17^{\text {th }}$ Avenue, Chanticleer Avenue \& Soquel Avenue, and Rodeo Gulch Road \& Soquel Avenue intersections.

Planned Improvements

The Project will construct ADA-compliant sidewalks and ramps along its frontage on the south side of Soquel Avenue, which will extend west and east beyond its frontage and connect to existing sidewalk facilities along Soquel Avenue. These improvements will fill a critical gap in the County's pedestrian facility network and will improve pedestrian connectivity along Soquel Avenue. Additionally, internal pedestrian connections will link the Project's entrance with the parking areas, as well as the Soquel Avenue frontage. Adequate lighting will be installed to enhance the safety and usability of new pedestrian paths of travel. Therefore, with construction

Kimley»)Horn

of the Project and sidewalk improvements, employees and Members choosing to walk to the site would not be adversely affected based on pedestrian mobility, accessibility, or safety.

These improvements will further pedestrian travel policies set forth in the General Plan, including to require adequate lighting for pedestrian movement; require dedication and construction of walkways for through pedestrian traffic and internal pedestrian circulation in new development; provide for pedestrian movement in the design of parking areas; and incorporate ADA standards in the design of new projects. (General Plan, Policies 3.10.1-3.10.10.)

Bicycle Mobility

Existing Conditions

Existing Class I, II, and III bikeway facilities (within $1 / 2$ mile of the Project site) are discussed below:
Class I facilities are paved bicycle paths that are physically separated from the vehicular travel lane. No Class I facilities exist near the Project site.

Class II facilities, which are striped bike lanes along the street, exist along Soquel Avenue in eastbound and westbound directions, adjacent to the Project site. Class II bike lanes also exist along both sides of Chanticleer Avenue (approximately $1 / 4$ miles west of the Project site) and $17^{\text {th }}$ Avenue (approximately $1 / 2$ miles west of the Project site).

Class III bicycle facilities are bike routes denoted by signs that are shared with vehicles along the roadway. Class III bicycle facilities currently exist along Paul Minnie Road, approximately $1 / 2$ miles west of the Project site.

A bike and pedestrian overcrossing project is currently in final design and is expected to extend over Highway 1 and connect to Chanticleer Avenue on the north and south sides of Highway 1. The planned pedestrian and bike bridge are included in Figure F-8.

Kimley»Horn

Figure F-8 - Planned Chanticleer Bike Bridge

Planned Improvements

The County's 2040 Regional Transportation Plan ("RTP") identifies the area of Soquel Avenue in the Project vicinity for striping/restriping as a bike connector in the future. The Project will provide approximately 4,200 feet of Class 2 bike lane along Soquel Avenue from Paul Minnie Avenue to just east of Mattison Lane, as illustrated in concept drawings included in Appendix I. These proposed improvements would improve safety and fill critical gaps in the County's bicycle network, as well as provide bicycle access to the Project site via Soquel Avenue. Striping for the bike lane will be colored green. Installation of colored and non-colored bicycle lanes at signalized intersections was evaluated in the Safety Performance Functions for Bicycle Crashes in New Zealand and Australia (2011) study ${ }^{29}$, which concluded that colored and non-colored bike lanes that were installed on facilities that previously had no bike striping and where cyclists shared the roadway with motor vehicles could realize a crash reduction factor ("CRF") of 39 and a CRF of 20 , respectively. This equates to a 39 percent reduction in collisions when colored bike lanes are installed and a 20 percent reduction in collisions when non-colored bike lanes are installed. It is therefore estimated that restriping existing bike lanes at intersections along Soquel Avenue and adding green paint would reduce collisions by approximately 19 percent. This results in a reduction of approximately two bike collisions out of every 10 bike collisions. With future construction of the Chanticleer bike bridge, bike traffic along Soquel Avenue is expected to increase substantially and the added benefit is therefore significant.

Parking will not be allowed along the bike lane within the Project's frontage, which will enhance bicyclist safety by reducing the potential for bicycle-vehicle conflicts.

[^18]
Kimley»)Horn

As discussed in the Transportation Demand Management Chapter (Chapter 3) of this TIOA, the Project would provide bicycle racks, showers, and lockers to facilitate bike travel to the Project site.

These bicycle mobility improvements advance General Plan policies addressing the bikeway system and bikeway safety by furthering the bikeway network's integration with other modes of transportation, including transit stations and other activity centers; and designing and constructing bikeways in accordance with County, Caltrans and state standards. (General Plan, Policies 3.8.13.8.4, 3.9.1-3.9.3.)

Transit Mobility

Existing Conditions

The Santa Cruz Metropolitan Transit District (METRO) provides transit services throughout the County and between the cities of Santa Cruz, Capitola, Watsonville, and Scotts Valley. The Project site is located in the general service area for METRO. However, good sidewalk connectivity does not currently exist between the existing METRO bus stops and the Project site (though they will be installed with the Project), and the closest bus stops to the Project site are located approximately one-mile walking distance away at the intersections of $7^{\text {th }}$ Avenue/Soquel Drive, $7^{\text {th }}$ Avenue/Capitola Road, and at the Transit Center at the Capitola Mall. METRO does not currently provide any routes that travel adjacent to the Project site along Soquel Avenue. Existing METRO routes and bus stops closest to the Project site are summarized below.

The Amtrak Highway 17 Express (Route 17) serves south Santa Cruz County and provides public transit that connects the County to the City of San Jose, with stops at the Santa Cruz Metro, the Cavallaro Transit Center in Scotts Valley, Diridon Station, and East Santa Clara \& South 6th intersection in San Jose. This express route primarily operates along Highway 17. The closest stop to the Project site is located approximately one mile west of the site at the Park \& Ride lot along Paul Sweet Road, northwest of Soquel Drive.

The Capitola Road/Watsonville Route (Route 69) serves south Santa Cruz County and provides public transit that connects the cities of Santa Cruz and Watsonville. It operates along Capitola Road, $41^{\text {st }}$ Avenue, Soquel Drive, and Highway 1. The closest stop to the Project site is located approximately one-mile walking distance east of the site along $41^{\text {st }}$ Avenue (south of the Gross Road intersection).

The Santa Cruz/Watsonville Route (Route 71) serves south Santa Cruz County and provides public transit to the cities of Santa Cruz, Capitola and Watsonville. It operates along Soquel Drive and Soquel Avenue and the closest stop to the Project site is located approximately 1 mile west of the site on Soquel Avenue (just east of the $7^{\text {th }}$ Street intersection) and approximately 1 mile west of the site along Soquel Drive at the Paul Sweet Road/Hwy 1 Southbound ramps intersection.

Kimley»)Horn

Planned Improvements

The Project does not propose any transit improvements. As noted, bus stops are located approximately one mile from the Project site.

METRO currently does not have plans or funding to construct a bus stop and run a transit route along Soquel Avenue near the Project site. A $1 / 4--1 / 2$-mile walk ($5-10$ minutes) to a bus stop is typically considered the maximum acceptable distance for average transit riders as documented in the USDOT Federal Highway Administration's "Course on Bicycle and Pedestrian Transportation" Coursebook ${ }^{30}$.

The closest bus stops are approximately 1 -mile walking distance, which is about a 20-minute walk, or a 7 -minute bike ride according to Google Maps. These bus stops are located at the intersections of $7^{\text {th }}$ Avenue/Soquel Drive, $7^{\text {th }}$ Avenue/Capitola Road, and at the Transit Center at the Capitola Mall. METRO buses are equipped with bike racks. As discussed in the Transportation Demand Management Chapter (Chapter 3) of this report, the Project will also support bike share services.

According to 2006-2010 U.S. Census data cited by the SCCRTC's Regional Transportation Plan, approximately 3 percent of Healthcare Consumers use transit to travel to work. The analysis typically represents the highest level of transit ridership during the day, with other periods being lower. If it is conservatively assumed (from the standpoint of transit demand) that 3 percent of the proposed Tenant's employees and Members use transit during the peak hours of the day, it would represent approximately 18 passengers ($0.03^{*} 590$ gross $A M$ peak hour trips $=18$ passengers) during the weekday AM peak period and 16 passengers ($0.03 * 525$ gross PM peak hour trips $=16$ passengers) during the weekday PM peak period, which would have a minor impact on transit mobility, accessibility, or safety at any of the study intersections.

Transit service directly to the Project site will be available for disabled persons via the METROoperated ParaCruz service. Santa Cruz METRO ParaCruz is a shared-ride service, providing door-to-door public transportation for people who have a temporary or permanent physical, cognitive, or psychiatric disability that prevents them from making some or all of their trips on METRO's fixed route bus system. It is anticipated that this transit service will be available to employees and Members qualifying for ParaCruz services according to personal communication between Applicant and with METRO ParaCruz on 8/11/2020.

Pricing is generally comparable to METRO fares. Lift Line, a program operated by Community Bridges, also provides free door-to-door rides to qualifying seniors and people with disabilities needing transportation to medical appointments throughout Santa Cruz County. To provide a conservative analysis, this report does not quantify or assume any reduction in trips or VMT associated with employees and Members that might utilize ParaCruz and Lift Line services to travel to the Project.

[^19]
Kimley»)Horn

Ongoing discussion will be conducted with METRO, the Applicant and Proposed Tenant with regards to a transit service or closer bus stop location to the Project site. If ridership on METRO increases, a new route or even a feeder shuttle service to the Capitola Mall Transit Station may be considered as a first-mile, last-mile service.

Transit Vehicle Delay

The Project would result in a net reduction in VMT and therefore will have a less than significant impact on transportation. CEQA no longer considers delay, congestion and other level of serviceoriented considerations when evaluating whether a Project will have a significant impact on the environment. (Public Resources Code, §21099(b)(2); CEQA Guidelines, §15064.3(a).) Nevertheless, for information purposes only, an analysis of the Project's potential to result in transit vehicle delays is provided below.

Transit vehicle delay was determined for each transit route within the study area based on the traffic data and the LOS analysis as indicated in Near Term Conditions section of Chapter 6. Transit vehicles for the routes in the study area are expected to use the shared right-of-way with other motorists. Since the Project is anticipated to increase vehicle delay at the study intersections (as further described in the Local Mobility Analysis Chapter (Chapter 7) of this report), transit vehicle delay may increase as well for Plus Project conditions. The change in vehicle transit delay from Near-Term Conditions to Near-Term Plus Project Conditions are described below and in Table T-9. Vehicle transit delay was not determined for Cumulative Conditions because the incremental delay due to the Project is less in future conditions and thus, the maximum transit delay is reflected in Near-Term Conditions.

Table T-9 shows the difference in delay between the Near-Term and Near-Term Plus Project Conditions for each transit route direction during the AM and PM peak hours. As shown in Table T-9, all routes experience an increase in delay with the addition of the Project, with a maximum increase in transit delay of 17.9 seconds in the AM peak hour and 12.4 seconds in the PM peak hour for Route 69A. This increase in transit delay for each route is minimal and should not significantly affect the overall schedule for the transit routes.

Based on the analysis below, Route 71 will experience a maximum increase in delay of 2.7 seconds and 6.8 seconds in the eastbound direction during the AM peak hour and PM peak hour, respectively along Soquel Avenue/Soquel Drive between Capitola Road and $41^{\text {st }}$ Avenue. Route 69A and 69W will experience a maximum increase in delay of 4.0 seconds in the westbound direction during the AM peak hour and 8.7 seconds in the eastbound direction during the PM peak hour along Capitola Road between Soquel Avenue and $41^{\text {st }}$ Avenue. Lastly, Route 69 W will experience a maximum increase in delay of 13.5 seconds and 3.4 seconds in the westbound direction during the AM and PM peak hour, respectively, along $41^{\text {st }}$ Avenue between Capitola Road and Soquel Drive. This increase in transit delay for each route is minimal and should not significantly affect the overall schedule for the transit routes.

Kimley»)Horn

Table T-9 - Summary of Near-Term Conditions Transit Delay

					Difference	Delay (se	
		Dire	ion ${ }^{1}$		Peak	PM	eak
Route	To/From	1	2	Direction 1	$\begin{gathered} \text { Direction } \\ 2 \end{gathered}$	Direction 1	Direction 2
55	Capitola Mall to Via Pacifica in City of Aptos	EB	WB	2.0	1.0	0.9	0.7
66	Capitola Mall to Santa Cruz Metro Center (via 17 ${ }^{\text {th }}$ Ave)	EB	WB	1.9	4.6	5.5	4.9
68	Capitola Mall to Santa Cruz Metro Center (via Broadway and Portola Dr)	EB	WB	1.7	1.1	2.4	0.5
69A	Santa Cruz Metro Center to Watsonville Transit Center (via Airport Blvd)	EB	WB	2.2	17.9	12.4	7.5
69W	Santa Cruz Metro Center to Watsonville Transit Center (via Main St)	EB	WB	2.8	17.5	10.1	7.3
71	Santa Cruz Metro Center to Watsonville Transit Center	EB	WB	2.7	0.2	6.8	0.6
Notes: ${ }^{1}$ NB - Northbound, SB - Southbound, EB - Eastbound, WB - Westbound							

Summary of Findings

This chapter of the TIOA evaluated pedestrian, bicycle, and transit networks in the Project vicinity and whether negative effects to these networks would be caused by the Project. As discussed in this chapter, the Project proposes to construct on-site and off-site improvements in compliance with adopted County standards that will improve pedestrian and bicycle mobility, and roadway improvements that will improve transit mobility. Therefore, the Project will not adversely affect local pedestrian, bicycle, and/or transit facilities and will implement several County General Plan goals relative to pedestrian and bicycle mobility.

Kimley»)Horn

5. PARKING SUPPLY AND DEMAND EVALUATION (NONCEQA ANALYSIS)

Although parking is not considered an environmental impact criterion under CEQA requirements, a parking analysis was completed and presented in this chapter of the TIOA for information purposes.

Proposed Parking Supply

The Project will construct a five-level parking garage, which will include a total of 730 vehicle parking stalls (including 619 standard spaces, 67 ADA spaces and 47 clean air vehicle spaces (including three ADA spaces). 38 motorcycle spaces will be provided in the parking garage as well. A total of 160 bike spaces will also be provided, consisting of 36 bike locker spaces and 124 bike rack spaces. In addition, the Project will also provide 6 surface vehicle parking spaces adjacent to the parking garage. The Project is providing a total of 736 parking spaces (garage + surface), which is 24 spaces more than the minimum Code required parking. Table T-10 summarizes the Project's proposed parking supply.

Table T-10 - Parking Spaces Provided by the Project				
Land Use Description	Type	Rate	No. of Units	Spaces Provided by the Project
Medical	Vehicle Parking	1 space per 217.4 square Office	Bike Parking	1 space per 1,000 square feet of gross floor area
	160,000			
square feet	736			
		160		

There is currently insufficient parking to satisfy parking demands for some establishments in the immediate vicinity of the Project site. As such, the Project's parking garage will be sized to satisfy all parking on-site to avoid further constraining the availability of parking in the surrounding area.

The following sections discuss County Code parking requirements, ITE Parking Generation $5^{\text {th }}$ Edition recommendations, and the Proposed Tenant's parking design standards.

Santa Cruz County Code Parking Requirements

On-site parking in this section was evaluated based on the Project description and the requirements stated in Santa Cruz County Code Section 13.1031.

[^20]
Kimley»)Horn

The County's Code requires 1 vehicle parking space per 225 square feet of gross floor area. The Code also requires 1 bike parking space per 1,000 square feet of gross floor area.

The Project will construct approximately 160,000 square feet of medical office uses. Table T-11 summarizes the parking requirements based on the County's Code.

For instance, Section 13.10.552 of the County's Code requires one vehicle parking space per 225 square feet of gross floor area. The Code also requires one bike parking space per 1,000 square feet of gross floor area. Based on the above requirements, the Project is required to provide 712 vehicle parking spaces and 160 bike parking spaces. However, the Project is providing 736 parking spaces, which is 24 spaces more than the minimum code required parking. In addition, a total of 38 motorcycle spaces will be provided in the parking garage.

Table T-11 - Santa Cruz County Code Parking Requirements (Chapter 13.10)				
Land Use Description	Type	Rate	No. of Units	Spaces Required
Medical Office	Vehicle Parking	1 space per 225 square feet of gross floor area	160,000	712
	Bquare feet	160		

In addition to the above general parking requirements, the County's Code requires that for a project proposing between 501 and 1,000 parking spaces, two percent of the total spaces be ADA accessible. However, because the Project is a medical office, the County Planning Department is requiring the Project to provide the following ADA parking requirements based on the Applicant's Development Review Group meeting conducted on November 8, 2018 (Table T-12 below):

- Approximately 3\% of the parking spaces that serve the Project's employees shall be ADA accessible per California Building Code 11B-208
- Approximately 11% of the parking spaces that serve the Project's Members and visitors shall be ADA accessible per California Building Code 11B-208.2.1

Table T-12 - County Required ADA Accessible Parking					
Project Functional Program Summary	Project Building Area (Square Feet)	\% of Building Area	Total New Parking Spaces	California Building Code ADA Space Requirement (Project ADA Space Requirement)	Accessible Parking Requirement
TOTAL Employees	48,405	30%	223	$11 \mathrm{~B}-208(3 \%)$	7
TOTAL Members/Visitors	111,595	70%	513	$11 \mathrm{~B}-208.2 .1(11 \%)$	56
Project TOTAL	160,000	100%	736		63

Kimley»)Horn

As shown in Table T-13 below, the Project is providing four more ADA parking spaces than required by the County Planning Department to accommodate for future flexibility in Potential Tenant's programming requirements.

Table T-13 - Project ADA Accessible Parking	
Project ADA Parking Space Summary	
County Required ADA Accessible Spaces	63
Project Proposed ADA Accessible Spaces	67
Additional ADA Accessible Spaces Provided Above County Requirement	+4

Proposed Tenant's Typical Parking Standards

It is the Proposed Tenant's customary standard to park all of its outpatient facilities at a ratio 1 space per 200 square feet of gross floor area (1:5), which would require a total of 800 parking spaces for the Project. However, considering the breadth of the Project's TDM programs and the fact that the planned intensity of medical services would require longer stays (and therefore less turnover in parking spaces) than other outpatient facilities, the Project is proposing 64 less spaces (approximately 12.5%) than its healthcare systemwide standard.

Other Parking Considerations

ITE Parking Generation Parking Recommendations

On-site parking in this section was evaluated based on the Project description and recommendations from the Institute of Transportation Engineers Parking Generation $5^{\text {th }}$ Edition (dated January 2019). ITE provides parking recommendations for a variety of land uses based on empirical data collected from surveyed sites that include a variety of facilities. This analysis considers two potential ITE land use codes to evaluate parking: i) Land Use code 630 for a "Clinic" use, which was utilized to evaluate trip generation and provides a conservative analysis because it assumes a higher trip generation for site, and ii) Land Use Code 720, for a "medical office building" use, which assumes a lower trip generation rate and accordingly recommends a lower parking standard.

ITE provides parking rates based on both average and $85^{\text {th }}$ percentile demand. The average demand rate is the weighted average number of parked vehicles at a development site per one unit of the independent variable. The $85^{\text {th }}$ percentile demand is the point at which 85 percent of the values fall at or below and at which 15 percent of the values are above. Therefore, the $85^{\text {th }}$ percentile represents a more conservative (i.e. higher) demand estimate than the weighted average demand and indicates the parking demand that would occur 85 percent of the time.

ITE parking data is provided for Medical Office Buildings (Land Use 720). The data indicates that weekday $85^{\text {th }}$ percentile parking demand is 4.59 spaces per 1,000 square feet of gross floor area

Kimley»)Horn

("GFA") for Medical Office Buildings. Average peak period demand is 3.23 spaces per 1,000 square feet GFA.

Given that the Project will construct approximately 160,000 square feet of medical office uses, Table T-14 summarizes ITE parking recommendations.

Table T-14 - ITE Parking Generation (Medical Office)				
Land Use Description	Type	No. of Units	Avg. Demand ${ }^{32}$	85 th Percentile Demand ${ }^{33}$
	ITE Recommendations			
Medical Office (LU 720) ${ }^{34}$	Vehicle Parking	$\begin{gathered} 160,000 \\ \text { square feet } \end{gathered}$	517	734
Total Parking Provided by the Project			736	

Based on Table T-14, the Project is recommended to provide a minimum of 517 vehicle parking spaces based on average peak period parking demand and 734 spaces based on the $85^{\text {th }}$ percentile parking demand. The Project proposes to provide a total of 736 parking spaces. Therefore, the Project would provide parking generally consistent with ITE recommendations.

Clinic (Land Use 630) ITE trip generation assumptions were used for the TIOA to provide a more conservative trip generation rate for the Project. For informational purposes, ITE parking data is provided for Clinic (Land Use 630) below. The data for Clinic uses indicates that weekday $85^{\text {th }}$ percentile parking demand is 4.77 spaces per 1,000 square feet of GFA for Medical Office Buildings. Average peak period demand is 3.89 spaces per 1,000 square feet GFA. Table T-15 summarizes ITE parking recommendations based on Clinic land uses.

Table T-15-ITE Parking Generation (Clinic)				
Land Use Description	Type	No. of Units	Avg. Demand ${ }^{32}$	85 th Percentile Demand ${ }^{33}$
	ITE Recommendations			
Clinic (LU 630) ${ }^{34}$	Vehicle Parking	$\begin{gathered} 160,000 \\ \text { square feet } \end{gathered}$	622	763
Total Parking Provided by the Project			736	

Based on Table T-15 the Project is recommended to provide a minimum of 622 vehicle parking spaces based on average peak period parking demand and 763 spaces based on the $85^{\text {th }}$ percentile parking demand. The Project proposes to provide a total of 736 parking spaces. Therefore, the Project would provide enough parking to serve average demand, however the

[^21]
Kimley»)Horn

proposed Parking would not be sufficient to serve the $85^{\text {th }}$ Percentile Demand under the ITE clinic rate (which is not governing).

Similar Bay Area Jurisdictional Parking Requirements

Parking code requirements for various jurisdictions in the Santa Cruz, Monterey Bay, and San Jose areas were evaluated to provide a comparison to County rates. The below parking requirements were selected due to the similarities between their communities and County where the Project is proposed. Table T-16 below provides a summary of the various requirements for information purposes only since parking requirements for other jurisdictions are not binding upon or relevant to parking requirements in the County's jurisdiction.

Maintaining Agency	Description	Off-Street Parking Requirement				
County of Santa Cruz	Medical Offices	1	space	per	225	SQFT
City of Santa Cruz	Medical and dental clinics and offices	1	space	per	200	SQFT
City of Capitola	Medical Offices and Clinics	1	space	per	300	SQFT
City of Monterey	Offices, Medical or Dental	1	space	per	275	SQFT
City of Santa Clara	Medical and Dental Offices	1	space	per	300	SQFT
City of Sunnyvale	Medical Clinic	1	space	per	200	SQFT
City of San Jose	Medical Clinic / Out-Patient Facility	1	space	per	250	SQFT
City of Mountain View	Clinics, offices, labs, greater than 20ksf	1	space	per	225	SQFT
County of Monterey	Medical Clinic / Office	1	space	per	200	SQFT
County of Santa Clara	Clinics	1	space	per	200	SQFT
	Average	1	space	per	238	SQFT

Parking Evaluation Summary of Findings

This section evaluated the Project's proposed parking supply and compared it to the following four requirement/recommendation thresholds:

- County Code Parking Requirement
- Proposed Tenant's Typical Parking Standard
- ITE Parking Generation Parking Recommendations
- Similar Bay Area Jurisdictional Parking Requirements

As described above, the Project will provide 736 vehicular parking spaces. This proposed parking supply will provide sufficient parking to comply with County Code and will be consistent with ITE Medical Office LU 720 recommendations, though there will be fewer parking spaces than the Proposed Tenant typically would provide in a similarly sized MOB. With the implementation of TDM and considering the healthcare services expected to be provided at the Project, the Proposed Tenant believes 736 parking spaces will nevertheless be adequate to support the MOB.

Kimley»)Horn

The 736 parking spaces provided with the Project should also be sufficient to avoid impacting offstreet parking along nearby streets and neighborhoods.

Kimley»"Horn

6. LOCAL MOBILITY ANALYSIS (LOS) (NON-CEQA ANALYSIS)

This TIOA does not just analyze transportation impacts under CEQA. It also provides a local mobility analysis to evaluate consistency with County requirements set forth in the County's General Plan. The County's General Plan Circulation Element requires development projects to analyze level of service ("LOS") impacts in order to assess roadway capacity. The information from an LOS analysis can be used to identify operating deficiencies on the roadway network, determine the effects of a project and potential improvements to offset such effects, and to more accurately update and apply the County's impact fee program. This LOS analysis is not a CEQA analysis, which provides specifically that "automobile delay, as described solely by level of service or similar measures of vehicular capacity or traffic congestion shall not be considered a significant impact on the environment." (Public Resources Code, §21099(b)(2); see also CEQA Guidelines, §15064.3(a) ["a project's effect on automobile delay shall not constitute a significant environmental impact."]) CEQA no longer focuses on LOS-based analyses because such analyses tend to result in mitigation measures calling for new or expanded roadways, which leads to more VMT and GHG emissions in contravention of the purposes of SB 743 (2013) and the State's climate change laws, including AB 32 (2006), requiring a reduction in state GHG emissions to 1990 levels by 2020, and SB 32 (2016), requiring at least a 40 percent reduction in GHG emissions from 1990 levels by 2030. Accordingly, the local mobility analysis is provided at the request of the County for informational purposes only and not for purposes of evaluating the Project's transportation impacts under CEQA.

Level of Service (LOS)

LOS is a qualitative measure used to describe operational conditions. LOS ranges from A (best), which represents minimal delay, to F (worst), which represents heavy delay and a facility that is operating at or near its functional capacity. See Table T-17 below for a more detailed description of LOS definitions. LOS analyses model whether deficient operations along the local transportation network would occur as a result of a proposed project. Thus, a detailed operational (i.e., LOS and other traffic operational measures) analysis was conducted as part of this TIOA to determine whether an acceptable LOS would be maintained with the addition of Project traffic. Potential improvements are identified where deficient/unacceptable LOS would likely occur within the County due to the Project.

Kimley»)Horn

Table T-17 - Intersection Level of Service Definitions			
Level of Service	Description	Signalized (Avg. control delay per vehicle sec/veh.)	Unsignalized (Avg. control delay per vehicle sec/veh.)
A	Free flow with no delays. Users are virtually unaffected by others in the traffic stream	less than 10	less than 10
B	Stable traffic. Traffic flows smoothly with few delays.	less than or equal to 10 to 20	less than or equal to 10 to 15
C	Stable flow but the operation of individual users becomes affected by other vehicles. Modest delays.	less than or equal to 20 to 35	less than or equal to 15 to 25
D	Approaching unstable flow. Operation of individual users becomes significantly affected by other vehicles. Delays may be more than one cycle during peak hours.	less than or equal to 35 to 55	less than or equal to 25 to 35
E	Unstable flow with operating conditions at or near the capacity level. Long delays and vehicle queuing.	less than or equal to 55 to 80	less than or equal to 35 to 50
F	Forced or breakdown flow that causes reduced capacity. Stop and go traffic conditions. Excessive long delays and vehicle queuing.	greater than or equal to 80	greater than or equal to 50

Sources: Transportation Research Board, Highway Capacity Manual $6^{\text {th }}$ Edition, National Research Council.

County Regulations

The County's General Plan Circulation Element requires an LOS analysis. Objective 3.12 "Level of Service" provides that development shall not create traffic that exceeds acceptable levels of service on surrounding roadways. As described herein, there are deficient roadways currently existing in the vicinity of the Project; the Project does not create deficiencies. The General Plan contains the following LOS policies:

3.12.1. Level of Service (LOS) Policy

In reviewing the traffic impacts of a proposed development project or proposed roadway improvements, LOS C should be considered the objective, but LOS D is the minimum acceptable (where costs, right-of-way requirements, or environmental impacts of maintaining LOS under this policy are excessive, capacity enhancement may be considered infeasible). ${ }^{35}$

[^22]
Kimley»)Horn

Proposed development projects that would cause LOS at an intersection or on an uninterrupted highway segment to fall below D during the weekday peak hour will be required to mitigate their traffic impacts. Proposed development projects that would add traffic at intersections or on highways segments already at LOS E or F shall also be required to mitigate any traffic volume resulting in a 1% increase in the v / c ratio of the sum of all critical movements.

3.12.2 Level of Service (LOS) Calculation Methods

Utilize the most current Highway Capacity Manual ("HCM") Operations Methodology for all existing levels of service analysis.

3.12.3. Transportation Improvement Area Fees as Mitigation Measures

Payment of an approved Transportation Improvement Area Fee proportional to the forecast trip generation will be required.

3.12.4. Reduced Traffic Generation

Forecast traffic generation for purposes of development project review may be reduced ("discounted") If proposed development can demonstrate lower than average traffic rates. For example, if the development site is adjacent to transit corridors, will have an effective Transportation Demand Management (TDM) program, or is in a mixed-use development, it is reasonable to expect lower-than-average auto use.

Based on the foregoing, for the purposes of this analysis, the following conditions would result in Project-related LOS deficiencies at County intersections:

- If the intersection operates at an acceptable LOS (i.e., LOS A, B, C, or D) without the Project during the weekday peak hour and degrades to an unacceptable LOS (i.e. LOS E or F) with the Project during the weekday peak hour.
- If the intersection operates at an unacceptable LOS (i.e., LOS E or F) without the Project during the weekday peak hour, and the volume/capacity (v / c) ratio of any movements at the intersection increases by 1 percent or more with the Project. ${ }^{36}$

Other Agency LOS Standards

Although not required by the County's General Plan, this TIOA considers LOS standards of other agencies having jurisdiction over roadways and intersections located outside the County that will be impacted by the Project as requested by the County for informational purposes. Applicable LOS standards for those other agencies are set forth below.

[^23]
Kimley»"Horn

(a) California Department of Transportation (Caltrans)

Pursuant to SB 743, Caltrans evaluates a land use project's impacts on the state highway system utilizing VMT, rather than congestion or capacity related metrics, such as LOS or v/c ratios. Caltrans' "Vehicle Miles Traveled-Focused Transportation Impact Study Guide states that:
"When analyzing the impact of VMT on the State Highway System resulting from local land use projects, the focus will no longer be on traffic at intersections and roadways immediately around project sites. Instead, the focus will be on how projects are likely to influence the overall amount of automobile use." ${ }^{37}$

For informational purposes only, an LOS-based analysis of Caltrans facilities is provided using the previously applied LOS standard combined with the County v/c standard for significance criteria purposes. Caltrans also requires, as published on their website, a safety analysis of their facilities. ${ }^{38}$ This study relies on the Highway 1 EIR for future improvements, which did assess safety. ${ }^{39}$

Project-related deficiencies at study intersections occur when the addition of Project traffic:

- Cause operations to deteriorate from an acceptable level (LOS C or better) to an unacceptable level (LOS D or worse); or
- Causes the existing measure of effectiveness (average delay) to deteriorate at a Stateoperated intersection operating at LOS D or worse.

In addition, v/c ratios on the freeways were also considered in this study's freeway analysis because the study freeway network is considerably oversaturated during the peak periods (with and without the Project) and roadway density measures of effectiveness do not provide accurate representations of congestion conditions for oversaturated facilities. The characteristics of density, roadway geometry, congestion, speed and flow are interrelated and is used to calculate the v / c. High speeds have lower density, and low speeds higher density. Congestion is significant at low speeds, similar to what is experienced on Highway 1 in Santa Cruz during the peak and off-peak periods. There is an optimum density that occur at about 55-60 miles per hour, per the HCM.

(b) City of Santa Cruz

The City of Santa Cruz is also required to apply a VMT-based metric for evaluating transportation impacts on the environment pursuant to CEQA. Like the County, however, the City of Santa Cruz has a General Plan goal of striving to maintain a LOS D or better at signalized intersections, but

[^24]
Kimley»)Horn

will accept a lower level of service and higher congestion at major regional intersections if necessary improvements would be prohibitively costly or result in significant, unacceptable environmental impacts. (City of Santa Cruz 2030 General Plan, Chapter 5, Mobility Element, p.55, Goal M.3.1.3, M3.1.4.) Any evaluation of the Project's LOS impact on City of Santa Cruz streets is for informational purposes only.

(c) City of Capitola

The City of Capitola is also required to apply a VMT-based metric for evaluating transportation impacts on the environment pursuant to CEQA. The City of Capitola General Plan (adopted June 26, 2014 and updated March 13, 2019) (Policy MO-3.3), however, establishes a minimum LOS C traffic operation standard at intersections throughout the City, with the exception of the Village Area, Bay Avenue, and $41^{\text {st }}$ Avenue (for which there is no LOS standard). Capitola General Plan Policy MP-3.4 permits a lower LOS and higher congestion at major regional intersections if necessary, improvements are considered infeasible, as determined by the City's Public Works Director, or result in significant, unacceptable environmental impacts. Any evaluation of the Project's LOS impact on City of Capitola streets is for informational purposes only.

Analytical Methods and Information

This LOS analysis uses methods defined in the Highway Capacity Manual (HCM) and Synchro 10 traffic analysis software. HCM methodologies include procedures for analyzing side-street stop-controlled ("SSSC"), all-way stop-controlled ("AWSC"), and signalized intersections. The SSSC procedure defines LOS as a function of average control delay for each minor street approach movement. Conversely, the AWSC and signalized intersection procedures define LOS as a function of average control delay for the overall intersection. Table T-17 relates the operational characteristics associated with each LOS category for signalized and unsignalized intersections.

Project-related deficiencies are determined by comparing conditions without the Project to those with the Project. Project-related deficiencies at study intersections are created when traffic from the Project causes the LOS to fall below the LOS standard identified for the County in the County Regulations section on page 46 LOS impacts on non-County maintained roadways and intersections are provided for informational purposes only and not for purposes of evaluating consistency with the County's LOS policy.

The LOS analysis set forth herein evaluates the following scenarios: Existing Conditions, Existing Plus Project, Near Term Conditions, Near Term Plus Project, Cumulative Conditions, and Cumulative Plus Project.

Existing Conditions

Existing Roadway Network

The Project will distribute traffic to a number of principal roadways within the study area. A description of these roadways is included below:

Kimley»Horn

Highway 1, also known as State Route 1, is a four-lane divided freeway in the Project vicinity that extends along the California coast and connects major cities including San Francisco, Santa Cruz, Monterey, San Luis Obispo, and Los Angeles to coastal communities. In the Project vicinity, Highway 1 is a major commuter and tourist route and has a posted speed limit of 65 miles per hour in the study area.

As a general note, SR 1 operates at a deficient LOS, but minor improvements to SR 1 are not recommended in this report because of the following:

SR 1 and the interchanges in the County were constructed many years ago pursuant to older standards and constraints, which have resulted in many mainline freeway sections and interchanges of SR 1 not being compliant with current Caltrans standards. These older improvements served Healthcare Consumers and visitors well for many years, but traffic growth and accidents have now resulted in severe congestion during the peak hours. No major freeway improvements have been made to increase capacity along the mainline to the south. The nonstandard features of the existing interchanges, ramps and the main line, including over- and under-crossings, have necessitated evaluation under the Highway 1 EIR as found in the Highway
1 Planned Improvements section on page 136 of this report. The Highway 1 EIR identified substantial challenges and improvements to alleviate the congestion. The Highway 1 EIR did not identify low cost or small improvements, even at the interchanges or at the ramps, because these would result in Design Exceptions per Caltrans requirements and most likely would not be approved. Caltrans and Santa Cruz RTC has over the last few years conducted the EIR studies to identify improvements to the freeway and the interchanges, and the Highway 1 EIR was certified in December 2018.40 The cost of these improvements are extensive and the final designs and construction of the auxiliary lanes are in process as a more permanent and effective fix. "Band-aid" improvements, i.e., lengthening or widening an on-ramp, will require design exceptions and must be substandard and may not result in real benefits to the Highway 1 system.

Highway 17 is a divided freeway in the Project vicinity. It extends from Highway 1 in the City of Santa Cruz to I-280 in San Jose. Highway 17 has a posted speed limit of 65 miles per hour in the study area and a cross section that varies from four to six lanes.

Soquel Avenue is an east-west arterial roadway that begins in Downtown Santa Cruz and extends eastward and continues to Highway 1 ramps, where it becomes a two-lane collector roadway extending past the Project site and terminates in the east at Gross Road.

In the Project vicinity, the roadway primarily provides access to industrial and retail land uses and is currently being utilized as a cut-through route during the PM peak periods when southbound Highway 1 is congested. Residential collector roadways including Paul Minnie Avenue, $17^{\text {th }}$ Avenue, Chanticleer Avenue, Mattison Lane, and South Rodeo Gulch Road intersect the collector segment of Soquel Avenue in the Project vicinity. Soquel Avenue is primarily a two-lane undivided roadway with a 35 mile per hour posted speed limit, except for an approximately 1,700 -foot

[^25]
Kimley»)Horn

segment near the Highway 1 southbound on- and off-ramps, where it varies between three and four lanes of undivided roadway and has a 25 mile per hour posted speed limit.

Soquel Drive is an east-west arterial roadway that begins at the existing Highway 1 overcrossing and extends eastward to Aptos, providing access to Highway 1 and connecting residential, retail and commercial land uses throughout Santa Cruz County, Soquel, and Aptos. In the Project vicinity, Soquel Drive has a 35 mile per hour posted speed limit, is a four-lane to two-lane, undivided arterial and has a two-way left-turn lane between Thurber Lane and Paul Sweet Road.
$41^{\text {st }}$ Avenue is a north-south arterial roadway that begins at Soquel Drive in the County and continues south to East Cliff Drive. $41^{\text {st }}$ Avenue also provides access to Highway 1 and connects many residential, retail, and commercial land uses. North of the Highway 1 ramps, $41^{\text {st }}$ Avenue is a four-lane divided arterial with a 25 mile per hour posted speed limit. South of the Highway 1 ramps, $41^{\text {st }}$ Avenue is a six-lane divided arterial with a 35 mile per hour posted speed limit.

Capitola Road is an approximately 2.5 -mile east-west arterial roadway that extends from Soquel Avenue in the west to Wharf Road in the east. The roadway's primary function is to provide connections to the two major arterials of Soquel Avenue / Soquel Drive and $41^{\text {st }}$ Avenue, as well as to provide access to residential land uses and Capitola Mall in the east. Capitola Road is a four-lane divided roadway from Soquel Avenue to $7^{\text {th }}$ Avenue and from $30^{\text {th }}$ Avenue to $41^{\text {st }}$ Avenue. From $7^{\text {th }}$ Avenue to $30^{\text {th }}$ Avenue, Capitola Road varies between two-lane and four-lane undivided roadway, with some segments including a two-way left-turn lane. The posted speed limit on the roadway varies between 25 miles per hour and 35 miles per hour.

Brommer Street is an approximately 1.75 -mile east-west collector roadway that extends from $7^{\text {th }}$ Avenue in the west to $41^{\text {st }}$ Avenue in the east. The roadway primarily provides access to residential land uses and some local businesses. Brommer Street is a two-lane undivided roadway with a 25 mile per hour posted speed limit along its extent.
$\mathbf{1 7}^{\text {th }}$ Avenue is a north-south collector roadway that extends from Soquel Avenue in the north to Cliff Drive / Portola Drive in the south. The roadway provides access to residential and local business land uses, as well as parks and schools. A two-way left-turn lane exists along the Capitola Road to Kinsley Street segment of this roadway. $17^{\text {th }}$ Avenue is a two-lane undivided roadway with a 30 mile per hour posted speed limit. When school children are present, the speed limit is 25 miles per hour.

Mattison Lane is a short collector roadway that intersects $17^{\text {th }}$ Avenue and Soquel Avenue, south of Highway 1. North of Highway 1, Mattison Lane extends from the Good Shepherd School to Soquel Drive. North and south roadway segments are separated by Highway 1 and do not connect. The south segment primarily serves residential land uses and some local businesses. The north segment provides access to residential land uses and the Good Shepherd School. Both segments are two-lane undivided roadways. The north segment has a 25 mile per hour posted speed limit. The south segment does not have a posted speed limit but is assumed to be 25 miles per hour as well.

Kimley»)Horn

Chanticleer Avenue is a north-south roadway that extends from Soquel Avenue in the north to Kinsley Street in the south. Residential land uses are located along the roadway, as well as Chanticleer Avenue Park, Live Oak Elementary School, and local businesses. It is a two-lane undivided roadway with a 25 mile per hour posted speed limit.

Paul Minnie Road is an approximately 1,500-foot-long north-south roadway that extends from Soquel Avenue in the north to Rodriguez Street in the south. Residential land uses are located along the roadway, as well as the Live Oak School District and Green Acres Elementary School. It is a two-lane undivided roadway with speed humps and a 25 mile per hour posted speed limit.

Rodriguez Street is an approximately 4,000-foot-long east-west collector circuitous local street that extends from the Capitola Road Extension in the west to Chanticleer Avenue in the east. The roadway provides access to the adjacent residential land uses and intersects Capitola Road Extension, $7^{\text {th }}$ Avenue, Jose Avenue, Koopmans Avenue, Paul Minnie Avenue, $17^{\text {th }}$ Avenue, and Chanticleer Avenue, as well multiple cul-de-sacs. Three of the mid-segment intersections are allway stop controlled. It is a two-lane undivided roadway with a 25 mile per hour posted speed limit.

Existing Peak-Hour Turning Movement Volumes

Weekday intersection turning movement volumes were collected for existing conditions LOS at the study intersections on the following days:

- Tuesday, October 18, 2016
- Tuesday, March 6, 2018
- Thursday, May 17, 2018
- Wednesday, October 3, 2018

Table T-18 identifies the dates that data were collected at each specific intersection.
These counts included vehicles, bicycles, and pedestrians. Volumes for study intersections were collected during the AM and PM peak periods of 7:00-9:00 AM and 4:00-6:00 PM, respectively. All traffic counts were collected when local schools were in session and the weather was fair.

Field observations were conducted when count data was collected to observe queues and existing traffic patterns. Data and field visits indicate that peak traffic flow occurs for extended periods of time (typically from 7:00-9:00 AM and 4:00-7:00 PM). The highest one-hour morning (AM) and one-hour afternoon/evening (PM) peaks were selected for analysis, consistent with County guidance.

Peak hour volumes at each intersection's respective peak were conservatively used in this analysis, therefore, some volume imbalances were observed between study intersections. Where imbalances occurred, volumes were conservatively increased above what was counted. Thus, in some instances, peak hour volumes shown in operational analysis worksheets could indicate somewhat higher traffic volumes than what is shown in traffic count summary data included in Appendix A. U-turns are analyzed (and illustrated in all figures) as left turns since HCM methodologies do not support analysis of U-turns.

Kimley»)Horn

Existing conditions lane geometry and intersection control is shown in Figure 9. Existing peak hour turning movement volumes are shown in Figure F-10. Intersection volume data sheets for all traffic counts are provided in Appendix A.

(d) Count Data Comparison (2016 vs. 2019)

The analyses conducted in this study rely on traffic count data collected in October 2016 for four study intersections. After the existing conditions analysis was completed, newer data became available at the four intersections. This newer data was collected on October 24, 2019 for purposes of comparison to the 2016 counts.

A comparison of the 2016 and 2019 datasets is summarized in Table T-18 to illustrate how traffic volumes changed between 2016 and 2019 at the four study intersections that assumed 2016 data for analysis.

Table T-18-2016 vs. 2019 Traffic Count Comparison								
\#	Intersection	AM Intersection Volume		PM Intersection Volume		Total Intersection Volume		
		2016	2019	2016	2019	2016	2019	
12	41st Ave \& Soquel Dr	2,106	2,110	2,130	2,168	4,236	4,278	0.33\%
13	41st Ave \& Hwy 1 NB Ramps	2,709	2,750	2,962	2,590	5,671	5,340	-1.98\%
14	41st Ave \& Hwy 1 SB Ramps	3,161	3,192	3,605	3,307	6,766	6,499	-1.33\%
15	41st Ave \& Gross Rd	2,896	2,930	3,444	3,183	6,340	6,113	-1.21\%

The summary data provided in the table above indicate that between 2016 and 2019, traffic volumes at $41^{\text {st }}$ Avenue \& Soquel Drive (Intersection \#12) increased during the AM and PM peak hours. The compound annual growth for the combined AM and PM peak hours was approximately 0.33% per annum. The findings of this comparison would also apply to 2018 count data since they fall in the range of the data evaluated in Table T-18 and the 2018 data are thus reliable for use in this analysis.

Data at the $41^{\text {st }}$ Avenue \& Highway 1 Ramps (Intersections \#13 \& \#14) and $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) are mixed and indicate that during the AM peak hour, volumes at each study intersection increased slightly between 2016 and 2019, however, PM peak hour volumes indicates a decrease between 2016 and 2019. Thus, PM peak hour count data at intersections \#13, \#14, and \#15 show a decrease in traffic.

The compound annual growth for the combined AM and PM peak hours for $41^{\text {st }}$ Avenue \& Hwy 1 NB Ramps was approximately -1.98% per annum, $41^{\text {st }}$ Avenue \& Hwy 1 SB Ramps was approximately -1.33% per annum, and $41^{\text {st }}$ Avenue \& Gross Road was approximately -1.21%. In conclusion, this fluctuation in traffic volumes is negligible and the volumes analyzed are representative of 2019/2020 conditions.

Kimley») Horn

Kimley») Horn
Expect More. Experience Better.

Kimley»)Horn

Existing Level of Service at Study Intersections

Traffic operations were evaluated at the study intersections based on existing lane geometry, traffic control, and peak hour traffic volumes. Oversaturated flows were observed when traffic count data was collected during weekday AM and PM Peak periods at the intersection of Soquel Avenue $/ 40^{\text {th }}$ Avenue \& Gross Road. The southbound left-turn queue during the PM peak period was observed to extend roughly 2,500 feet northwest of the intersection (over the bridge). Due to metering and demand exceeding capacity and standing queues, the existing traffic count data does not reflect the traffic demand, but rather, the traffic service volumes. The unserved queue is the true demand at the signal. PM peak hour vehicle volumes were therefore increased beyond intersection turning movement count data indicated in Appendix A to reflect this demand (rather than service volume) based on field observations and 24 -hour tube count data, which was collected along Soquel Avenue west of Mattison Lane. The model was verified by comparing existing queues observed in the field and SimTraffic microsimulation queuing, which stochastically models vehicle arrival and queuing patterns.

In addition, queues at the Highway 1 SB Ramps at Soquel Drive overflow in the PM and cars use Soquel Avenue as a potential shortcut/bypass/alternative to Highway 1. In the morning queues overflow at the Highway 1 NB Ramps with Soquel Drive. In the AM, the congestion on the freeway is in the northbound direction and in the PM, in the southbound direction. In general, congestion on Highway 1 causes failure of traffic operational conditions at the interchanges. Traffic also overflows from Highway 1 to parallel corridors like Soquel Drive, Soquel Avenue, Capitola Avenue, Brommer Street and Portola Avenue.

Due to heavy freeway congestion, southbound off-ramp volumes at $41^{\text {st }}$ Avenue are low during the PM peak for existing conditions. If traffic flow on the freeway improves, off-ramp volumes are expected to increase.

All study intersections currently operate at an acceptable LOS during existing conditions, except for the following:

- Soquel Drive \& Paul Sweet Road / Highway 1 On-Off Ramps (Intersection \#4) (AM \& PM Peaks)
- Soquel Avenue / 40 th Avenue \& Gross Road (Intersection \#9) (PM Peak)
- $41^{\text {st }}$ Avenue \& Highway 1 SB Ramps (Intersection \#14) (AM Peak)
- $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) (AM \& PM Peaks)
- Brommer Street \& $30^{\text {th }}$ Avenue (Intersection \#24) (PM Peak)

Analysis results are summarized in Table T-19 and Synchro output sheets are provided in Appendix B.

Since the first draft report was compiled in 2019, Caltrans has changed the lane assignment at the intersection of Soquel Avenue \& Highway 1 SB On- and Off-Ramp (Intersection \#5) to include an exclusive eastbound left-turn lane. The approach lanes were restriped to include a separate left-turn lane and a separate through lane. Signal timing sheets available at that time were changed to reflect the new lane configuration and phasing optimized to obtain a representative

Kimley»)Horn

LOS. This change resulted in an improvement of delay from 27.1 seconds to 20.3 seconds for the AM peak hour and from 27.7 seconds to 21.3 seconds for the PM peak hour. The LOS remains a LOS C for both peak hours. Synchro output sheets are provided in Appendix U.

Kimley»)Horn

Table T-19 - Existing Conditions Intersection Level of Service									
\#	Intersection	Maintaining Agency	Control Type	Existing Conditions					
				AM Peak Hour			PM Peak Hour		
				Movement	Delay	LOS	Movement	Delay	LOS
1	Soquel Ave \& Capitola Rd	CSC	Signal	-	31.4	C	-	29.2	C
2	Soquel Ave \& $7^{\text {th }}$ Ave	SCC	Signal	-	16.8	B	-	17.1	B
3	Soquel Dr / Soquel Ave \& Soquel Ave	Caltrans	Signal	-	29.5	C	-	30.9	C
4	Soquel Dr \& Paul Sweet Rd / Hwy 1 On-Off Ramps	Caltrans	Signal	-	51.6	D	-	36.7	D
5	Soquel Ave \& Hwy 1 SB On-Off Ramps	Caltrans	Signal	-	27.1	C	-	27.7	C
6	Soquel Ave \& $17^{\text {th }}$ Ave	SCC	Signal	-	8.7	A	-	9.5	A
7	Soquel Ave \& Chanticleer	SCC	SSSC	-	5.4	A	-	2.7	A
7	Worst Approach	SCC		NB	13.7	B	NB	16.9	C
8	Soquel Ave \& MOB Driveway		SSSC	-	0.4	A	-	0.2	A
8	Worst Approach		SSSC	NB	11.3	B	NB	14.0	B
9	Soquel Ave / 40 ${ }^{\text {th }}$ Ave \& Gross Rd	SCC	AWSC	-	10.9	B	-	36.5	E
11	$40^{\text {th }}$ Ave \& Deanes Ln	NOT STUDIED							
12	$40^{\text {th }}$ Ave \& Clares St	NOT STUDIED							
12	$41^{\text {st }}$ Ave \& Soquel Dr	SCC	Signal	-	23.7	C	-	38.0	D
13	$41^{\text {st }}$ Ave \& Hwy 1 NB Ramps	Caltrans	Signal	-	18.3	B	-	14.9	B
14	$41^{\text {st }}$ Ave \& Hwy 1 SB Ramps	Caltrans	Signal	-	36.7	D	-	7.5	A
15	$41^{\text {st }}$ Ave \& Gross Rd	Caltrans	Signal	-	36.6	D	-	46.8	D
16	$41^{\text {st }}$ Ave \& Clares St	Capitola	Signal	-	22.6	C	-	26.8	C
17	$41^{\text {st }}$ Ave \& Capitola Rd	Capitola	Signal	-	24.2	C	-	35.0	D
18	$41^{\text {st }}$ Ave \& Brommer St/Jade St	Capitola	Signal	-	18.6	B	-	27.6	C
19	Capitola Rd \& $7^{\text {th }}$ Avenue	SCC	Signal	-	18.5	B	-	21.0	C
20	Capitola Rd \& 17 ${ }^{\text {th }}$ Avenue	SCC	Signal	-	19.9	B	-	27.1	C
21	Capitola Rd \& Chanticleer Ave	SCC	Signal	-	15.8	B	-	23.0	C
22	Capitola Rd and $30{ }^{\text {th }}$ Ave	Capitola	Signal	-	20.3	C	-	25.4	C
23	Brommer St \& $17{ }^{\text {th }}$ Ave	SCC	Signal	-	21.6	C	-	26.3	C
24	Brommer St \& 30 ${ }^{\text {th }}$ Ave	SCC	AWSC	-	12.0	B	-	38.4	E
25	$17^{\text {th }}$ Ave \& Portola Dr	SCC	Signal	-	19.4	B	-	20.2	C

Notes:

1. Analysis performed using $H C M 6^{\text {th }}$ Edition methodologies.
2. Delay indicated in seconds/vehicle.
3. Signal = Signal Control; AWSC = All-Way Stop Control; SSSC = Side-Street Stop Control
4. CSC = City of Santa Cruz; Caltrans = California Department of Transportation; SCC = Santa Cruz County; Capitola = City of Capitola
5. CSC LOS standard is D; Caltrans LOS standard is C; SCC LOS standard is D; Capitola does not have a LOS standard for $41^{\text {st }}$

Avenue.
6. Intersections that operate below maintaining agency's LOS standard are highlighted and shown in bold.
7. Intersection \#14 operates at LOS A in the PM because traffic to the intersection is controlled/metered at intersections \#13 and \#15. Intersections \#14 and \#15 are operated on one signal controller, managed by Caltrans. Caltrans' main objective is to avoid off-ramp queue spillback into the Highway 1 mainline.
8. Intersection \#5 shows overall LOS as acceptable. See Analysis section on page 72 for additional detail.
9. Intersection \#10 and \#11 were not analyzed in this analysis because the Project is not expected to distribute traffic to these intersections, since a barrier exists at 40th Avenue and Deans Lane and the Project does not propose to remove it (nor are any plans to remove the barrier pending).

Kimley»Horn

Trip Generation Estimates

Trip generation estimates were developed for this Project using the Institute of Transportation Engineers (ITE) Trip Generation Manual, $10^{\text {th }}$ Edition (2017) and existing driveway counts at the Project site. A trip is defined in Trip Generation as a single or one-directional vehicle movement with either the origin or destination at the Project site. In other words, a trip can be either "to" or "from" the site. In addition, a single customer visit to a site is counted as two trips (i.e., one to and one from the site).

For the purposes of determining the worst-case effects of traffic on the surrounding street network, Project trips are typically estimated on weekdays between the hours of 7:00-9:00 AM and 4:006:00 PM, which is when peak commuter traffic causes the worst congestion and delay. While the Project itself may generate more traffic during other times of the day, the peak of "adjacent street traffic" represents the time period when to the greatest amount of congestion occurs on the network and when operational deficiencies would be triggered due to the Project.

Internal capture reductions are typically considered for mixed-use developments and developments with complementary land uses to account for trips made within the developments. Because there is only one proposed land use for this development, Medical Office, no internal capture trip reductions were assumed.

The new Project will generate some brand-new trips on the road network due to population growth. However, most of the trips will consist of diverted trips from other medical facilities either in Santa Cruz County or Santa Clara County. This is because constructing the new Project will not create additional demand for healthcare services in the County. Instead, it will redistribute trips for healthcare services that are already existing on the roadway network. Locating the MOB at the Project site improves destination proximity for many Healthcare Consumers that are currently traveling to Santa Clara County for healthcare services of the type that the Project will provide in Santa Cruz County (which will also result in shorted trips and reduced VMT).

Due to the diverted trip phenomenon described above, study intersections closest to the site will experience new Project trips fully, with minimal diverted trips. For study intersections further from the Project site, some Project trips will actually be diverted trips that travel through the intersections without the Project. This analysis conservatively assumes that all Project trips through the study intersections are new trips and does not take any reductions for the existing trips to existing medical facilities. Thus, the operating conditions reported for study intersections closest to the Project site will accurately show the anticipated delay and LOS, while study intersections further from the Project site will be somewhat conservative due to diverted trips not being accounted for and removed from existing volumes.

Gross Project Trip Generation

ITE Land Use Code 630 (Clinic) was assumed for the Project trip generation estimates which is the most conservative trip generation rate that could be used for the Project. ITE land use data is based on empirical data collected from surveyed sites that included a variety of facilities including labs, supporting pharmacies, and a wide range of services, which most closely match the Project description. Based on this data and methodologies, the Project is expected to generate 6,106

Kimley»)Horn

gross daily trips, including 590 gross AM peak hour trips (460 in / 130 out) and 525 gross PM peak hour trips (152 in / 373 out).

The trip generation estimates described above are based on the empirical ITE data and therefore include all Member trips, including those associated with patients, visitors, deliveries, pickups, staff trips, etc. It should also be noted that the Project is proposed to be an outpatient only facility and no overnight hospital services are provided. Hospitals that have overnight stay in the County include Dignity Health, Watsonville Community Hospital, and Sutter Health.

Trip Credits

Existing traffic counts were collected at the driveway to the existing site from Soquel Avenue and the volumes were subtracted from gross Project trips as a credit to estimate the trip generation for the Project. It should be noted that the existing site access from Soquel Avenue provides access to the entire parcel, of which, only a portion will be redeveloped as part of the Project.

The daily existing trips were estimated using peak hour driveway count data at the driveway to the existing light industrial uses and assuming PM peak hour trips represent approximately 10 percent of the daily trips, which is a reasonable assumption based on experience and industry best practices (when daily data is unavailable). The driveway where existing counts were collected is currently used by roughly 6.63 acres of industrial uses. The Project proposes to occupy approximately 5.22 acres; therefore, the existing trip credit was reduced by roughly 21 percent ([6.63-5.22]/6.63=0.21) to account for the existing land uses that will not be demolished to facilitate construction of the Project.

Based on the data and assumptions described above, existing trip credit estimates assumed in the analysis include 134 daily trips, including 26 AM peak hour trips (13 in / 13 out), and 13 PM peak hour trips (6 in / 7 out).

Net Project Trip Generation

The net trip generation assumes trip credits for the existing light industrial use, as discussed above. The Project is therefore expected to generate a net of 5,972 daily trips, including 564 trips (447 in / 117 out) during the AM peak hour and 512 trips (146 in / 366 out) during the PM peak hour. Table T-20 summarizes trip generation estimate for the Project.

[^26]
Kimley»)Horn

Trip Generation Comparison

As requested by the County, traffic data was collected at four medical office sites that provide similar services as the Project. Traffic data collected at the driveways of these four sites was used to estimate trip generation rates, which were then compared to the trip generation rates obtained from ITE data. A summary of the results (including driveway counts) is included in Table T-20. The trip generation rates of the four sites were observed to be considerably less (ranging from 23 percent to 52 percent less) than the ITE LUC 630 trip generation rates assumed in this study. Thus, the ITE trip generation rates used in this study present a conservative trip generation estimate and the actual Project trip generation could be substantially lower than what is analyzed and assumed in this TIOA.

Kimley»"Horn

Table T-20-Project Trip Generation													
Land Uses ${ }^{1}$	ITE Land Use Code	Project Size		Daily Trips	AM Peak Hour				PM Peak Hour				
				Total Peak Hour	IN	1	OUT	Total Peak Hour	IN	/	OUT		
Trip Generation Rates													
Clinic	630	-	$\begin{gathered} 1000 \text { Sq. } \\ \text { Ft. } \end{gathered}$		38.16	3.69	78\%	1	22\%	3.28	29\%	/	71\%
Existing Conditions													
Driveway Count	-	-	-	170	33	17	1	16	17	8	1	9	
Reduce non-Project eastern portion (21\%)	-	-	-	-36	-7	-4	1	-3	-4	-2	1	-2	
Total Existing Conditions Trip Credit	-	-	-	134	26	13	1	13	13	6	1	7	
Proposed Conditions													
Clinic	630	160	$\begin{gathered} 1000 \text { Sq. } \\ \text { Ft. } \end{gathered}$	6106	590	460	1	130	525	152	/	373	
Net Project Trips				5,972	564	447	1	117	512	146	1	366	

1. Trip generation rates published by Institute of Transportation Engineers (ITE), "Trip Generation," 10th Edition, 2017.

Kimley»)Horn

Trip Distribution and Assignment

Project trips are expected to utilize regional roadways, major arterials, and local collector roads to access the Project site. Trip distribution assumptions were developed based on consultation with County staff, SCCRTC Average Daily Traffic volumes, Caltrans Average Annual Daily Traffic volumes, the local travel demand model, and knowledge of the study area.

The following summarizes Project trip distribution assumptions which are also presented graphically in Figure F-.

- 19\% north along Highway 1
- 10% south along Highway 1
- 16% west along Soquel Avenue
- 9% west along Capitola Road
- 11% west along Brommer Avenue
- 5% east along Soquel Drive
- 9\% east along Capitola Road
- 5\% east along Jade Street
- 5% east along Cliff Drive
- 11% distributed south throughout local neighborhoods

The Project will construct two access points along Soquel Avenue and all travel to/from the site will utilize those two driveways. Approximately 67 percent of Project trips are anticipated to travel to/from the Project site via west Soquel Avenue and approximately 33 percent of Project trips are estimated to travel to/from the Project site via east Soquel Avenue.

Note that there are two different distribution markers in this figure - double arrowhead and quadruple arrowhead. The double arrowhead markers indicate the assumption that Project trips will travel to/from the Project site along these routes and does not necessarily indicate that Project trip origins and destinations are along these routes. The quadruple distribution marker indicates that Project trip origins and destinations are assumed to be in proximity to the markers. Thus, as indicated in Figure F- this analysis assumes that approximately 5 percent of Project trips are destined for and will originate from the local neighborhoods approximately southwest of the Project site. Similarly, approximately 6 percent of Project trips are destined for and will originate from the local neighborhoods approximately southeast of the Project site.

Figure F- shows the net Project trip assignment for AM and PM peak hour periods that would occur at study intersections during all Plus Project conditions based on the net new Project trip generation estimates as well as the Project trip distribution assumptions described above.

Medical Office Building
Figure F-11
Project Trip Distribution

Kimley»)Horn

Project Transportation Improvements

Project Site Access and Circulation

The Project site will be accessed from Soquel Avenue. The Project will construct one main signalized driveway entrance for employees and Members, which will provide access to the patient loading and unloading area, as well as the proposed parking garage. The main driveway will include a protected westbound left-turn pocket and eastbound right-turn pocket into the Project site from Soquel Avenue, as well as northbound left- and right-turn lanes exiting the Project site. A peak hour signal warrant for the main driveway indicates that a signal is warranted per the CAMUTCD guidelines and the peak hour warrant analysis worksheet is included in Appendix J. Note that roundabouts require more right of way than signals and a roundabout at this driveway would not be feasible due to Highway 1 right-of-way constraints.

A secondary driveway will also be constructed east of the main entrance for deliveries, pickups, and ambulances. The secondary driveway south leg will be stop controlled and Soquel Avenue traffic will be free flow. The secondary driveway will experience very low and infrequent volumes throughout the day and no signal is anticipated for this location.

As shown in the Project site plan in Figure F-2, the Project will construct a roadway through the center of the site, with the Project parking garage on the west side of the site and the MOB on the east side of the site. The parking garage will have two entrances/exits, one at the northeast end of the garage and one at the southeast end.

A patient drop-off/pick-up zone will be provided near the main building entrance and accessed via the main Project Driveway. The drop-off/pick-up zone will provide capacity for approximately seven vehicles at a time.

For motorists traveling to the site, the north entrance/exit will allow for free right-turn movements into the garage. Traffic wishing to bypass the main garage entrance will use the southbound through lane, which will be stop-controlled, rather than the free southbound right-turn to bypass the main garage entrance and continue south. Motorists bypassing the main garage driveway will then have the opportunity to access the secondary garage driveway or continue around to the drop-off/pick-up zone adjacent to the MOB. For motorists wishing to park in the garage after dropping-off Members in the loading/unloading zone adjacent to the MOB, motorists will have the opportunity to make a northbound right-turn at the north garage entrance/exit at turn into the garage to seek a parking space.

For motorists leaving the site, both garage exits will be stop controlled. The north entrance/exit will allow for the most direct route to leaving the site, by permitting motorists to make an eastbound right turn, which will bring them to the proposed Soquel Avenue \& Project Driveway signal. For travelers exiting from the south garage driveway, motorists would take an eastbound right turn, travel north past the drop-off/pick-up area, stop at the northbound through stop-controlled movement at the north garage entrance/exit, and then continue on to the Soquel Avenue \& Project Driveway signal.

Kimley»)Horn

An east/west high visibility pedestrian crosswalk will be provided across the south leg of the north garage entrance/exit. Pedestrians will be able to utilize this proposed crosswalk to access the MOB after parking their vehicles and bikes. The Project will construct wayfinding signage to direct pedestrians to the crosswalk. Conflicting traffic will be stop controlled and pedestrians will have the right of way to cross at this location.

Bikes will access the site via the Soquel Avenue \& Project Driveway signalized intersection, traveling south and parking near the north parking garage entrance/exit, as shown in Figure F-2. After parking their bikes at the designated bike parking area, pedestrians will utilize the previously discussed east/west pedestrian crosswalk to access the Project site.

The Project will also construct an ADA-compliant sidewalk along the north Project frontage (south side of Soquel Avenue), which will extend along the south side of Soquel Avenue and fill the existing gap in the County's sidewalk network.

On-site parking is evaluated in detail in CHAPTER 5 on page 42 of this report.

Project Off-Site Mobility Improvements

The following offsite improvements will be implemented by the Project:
(e) Green Bike Lanes Along Soquel Avenue

The Project will install 4,200 feet of green striped Class II bike lanes along Soquel Avenue, as described in the Pedestrian, Bicycle and Transit Mobility Chapter (Chapter 4) of this report.
(f) Soquel Avenue Two-Way Left-Turn Lane Striping Improvements

The Project will implement approximately 3,500 feet of TWLTL striping (and restriping) along Soquel Avenue from Paul Minnie Avenue to the existing creek crossing (east of Mattison Lane). These striping improvements will include restriping of the existing bike lanes and the addition of new green bike lane striping. Conceptual layouts for these Project improvements are included in Appendix I.
(g) Measure of Effectiveness - Two-Way Left-Turn Lane along Soquel Avenue

Vehicle gap availability and acceptance is typically used to determine if motorists will have sufficient gaps in opposing vehicle traffic. Critical gap acceptance is evaluated in this section and compared to the vehicular flow rate of the opposing movements for motorists entering or exiting stop-controlled side-streets along Soquel Avenue.

Critical gap is defined in 2000 Highway Capacity Manual ("HCM") as the minimum acceptable time interval (in seconds) that is necessary to allow the entry of a vehicle movement. When the observed gap is less, then motorists are forced to wait longer to find acceptable gaps to enter the traffic stream. If the required gap is greater than the available gap, then vehicles will be forced to either choose a gap that is too small or will reroute to another intersection. Both choices are considered unsafe. Table T-21 indicates the base critical gaps by movement type for two-lane streets, as published in the HCM 2000.

Kimley»)Horn

Table T-21 - Base Critical Gaps	
Vehicle Movement	Base Single Movement Critical Gap (s)
	Two-Lane Major Street
Left turn from major	4.1
Right turn from minor	6.2
Through traffic on minor	6.5
Left turn from minor	7.1

Soquel Avenue from Paul Minnie Avenue to the existing creek crossing (east of Mattison Lane) primarily consists of two undivided lanes. Traffic signal control exists at the $17^{\text {th }}$ Avenue intersection. Motorists that desire to make northbound left turns from side-streets (or driveways) onto Soquel Avenue are required to wait for gaps in both eastbound and westbound traffic along Soquel Avenue. Motorists that desire to make a southbound right turn must only wait for a gap in eastbound traffic along Soquel Avenue.

Average available gaps were estimated using existing conditions traffic volumes along Soquel Avenue and compared to existing plus Project traffic volumes and corresponding gaps. As shown in Table T-22, striping a two-way left-turn lane along Soquel Avenue would provide motorists a measurable benefit giving them the opportunity to make northbound left-turn movements from the site in two stages, which would provide higher average gap times than existing conditions and is an improvement over the existing conditions, when gaps in both directions has to be available at the same time.

Table T-22 - Average Available Gaps								
Intersection	Movement	Opposing Vehicle Movement	AM Peak Hour			PM Peak Hour		
			Opposing Vehicle		HCM Base Critical Gap	Opposing Vehicle		HCM Base Critical Gap
			Volume (vph)	Gap (sec per veh)		Volume (vph)	Gap (sec per veh)	
Existing Volumes \& Existing Striping (Single movements)								
 Paul Minnie Rd	NBL	WBT+EBT	1269	2.8	7.1	1628	2.2	7.1
	NBR	EBT	537	6.7	6.2	850	4.2	6.2
Existing Plus Project Volumes \& Two-Way Left-Turn Lane Striping (Two Stage Left-Turn Movement)								
Soquel Ave \& Paul Minnie Rd	NBL	WBT	771	4.7	N/A	617	5.8	N/A
		EBT	682	5.3		1178	3.1	
	NBR	EBT	682	5.3	6.2	1178	3.1	6.2

*Analysis represents volumes near Soquel Avenue \& Paul Minnie Avenue intersection.
As shown above, Existing volumes and striping provides motorists wishing to make left-turns and right-turns from Paul Minnie Road onto Soquel Avenue average vehicle gaps of approximately 2.8 seconds and 6.7 seconds during the AM Peak Hour, respectively. During the PM Peak Hour, northbound left and northbound rights have 2.2 second and 4.2 second average gaps, respectively. These gaps are insufficient when compared to the HCM Base Critical Gap.

As shown above, Existing Plus Project volumes and two-way left-turn lane striping provides motorists wishing to make left turns the opportunity to make the desired left turn onto Soquel

Kimley»)Horn

Avenue in two movements - where the driver crosses opposing eastbound traffic and enters the two-way left-turn lane, and then waits for a gap in westbound traffic to enter the westbound Soquel Avenue traffic stream. The addition of the signal at the Project driveway may create additional gaps in the traffic stream for vehicles to enter Soquel Avenue from the driveways and the other side streets, including this one at Paul Minnie Road.

Existing Plus Project Conditions

Analysis

Traffic operations were evaluated at the study intersections for Existing Plus Project conditions. Figure F-13 shows the Existing Plus Project lane geometry and traffic control and Figure F-14 shows the Existing Plus Project peak hour traffic volumes.

No study intersections would degrade from acceptable LOS (without the Project) to unacceptable LOS (with the Project). However, the following intersections currently operating at deficient conditions will degrade further with the addition of Project traffic, as shown in Table T-23.

- Soquel Avenue / 40 ${ }^{\text {th }}$ Avenue \& Gross Road (Intersection \#9) (PM Peak)
- $41^{\text {st }}$ Avenue \& Highway 1 SB Ramps (Intersection \#14) (AM Peak)
- $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) (AM \& PM Peaks)
- Brommer Street \& $30^{\text {th }}$ Avenue (Intersection \#24) (PM Peak)

Note that the intersection analysis of Soquel Avenue and Highway 1 Southbound On- and OffRamps (\#5) do not show a deficiency for the overall average delay and LOS. However, field observations indicate that the southbound off-ramp queue spills back onto the auxiliary lane/ existing lane on the freeway in the PM peak period. This is partly due to drivers trying to bypass the freeway congestion via Soquel Avenue or Capitola Road. The reconstruction of the interchange is expected to eliminate the queueing back onto the freeway. The increases in delay from the Project occur in the non-peak flow direction and do not result in deficiencies at the intersection.

The average delay per vehicle at the intersection of Soquel Avenue/Highway 1 is acceptable. However, due to congestion on Highway 1 in the PM in the southbound direction, the queue on the off-ramp overflows. This queue results primarily from traffic leaving the freeway and taking the local streets to go to their destination, or bypass the freeway and continue on frontage roads, i.e., Soquel Avenue and Soquel Drive to bypass the freeway congestion.

The below-described improvements would improve traffic operation at intersections 9, 14, 15 and 24, which currently operate at deficient conditions will degrade further with the addition of Project traffic. Pursuant to the County's General Plan LOS Policy 3.12.1, the Project will contribute to the deficiency at County maintained intersections already operating at an unacceptable LOS if the v/c ratio of the sum of all critical movements at the following intersections increase by 1% or more with the Project, in which case the General Plan LOS Policy requires mitigation or other improvement to address the deficiency. The v/c analysis is inapplicable to this intersection,

Kimley»)Horn

however, if improvements can eliminate operational deficiencies by causing intersections to operate at LOS D or better.

- Soquel Dr \& Paul Sweet Road / Hwy 1 On-Off Ramps (Intersection \#4) The Project would not contribute any delay to this intersection during the AM or PM peak hour. The Project does not increase the v / c by more than one percent in any of the peak hours as indicated in Table T-23.

Table T-23 - Soquel Drive \& Paul Sweet Road / Hwy 1 On-Off-Ramps (Intersection \#4) Critical Movement v/c Calculation									
AM Peak									
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT					
Existing (v/c)	2.174	0.828	1.696	1.263					
Existing + Project (v/c)	2.176	0.828	1.696	1.263					
$\boldsymbol{v / c}$ Change	$\mathbf{0 . 0 9 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$					
Condition						EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Existing (v/c)	1.372	0.944	1.772	1.420					
Existing + Project (v/c)	1.373	0.947	1.772	1.420					
$\boldsymbol{v} / \mathrm{c}$ Change	$\mathbf{0 . 0 7 \%}$	$\mathbf{0 . 3 2 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$					

Thus, the Project does not cause any new deficiency at the study intersections and no improvement is required.

- Soquel Avenue / 40 th Avenue \& Gross Road (Intersection \#9). During the PM peak hour, the Project would cause delays at this intersection to go from 36.5 seconds (LOS E) to 78.4 sections (LOS F) if no improvements were installed, but installation of the diverter proposed below would eliminate the intersection (and any associated) LOS deficiency.
- It is recommended to install a diagonal diverter extending from the northwest corner to the southeast corner at this intersection. The diverter will prevent cut through traffic on Gross Road through the residential neighborhood, and eliminate the congestion caused by the all-way stop at the intersection. Residents in the neighborhood would then exit the neighborhood at Rodeo Gulch Drive onto Soquel Avenue. This commute is slightly longer than the direct connection to $41^{\text {st }}$ Avenue via Gross Road, but the benefits of removing cut through traffic through the neighborhood, and the improvement of operations at the Gross Road/40 Avenue intersection, warrants the installation of this improvement. In addition, if this improvement is not installed, cut through traffic on Gross Road and the delay at the intersection will continue and even worsen in the future, until the freeway is improved. The Project does increase the v/c by more than one percent in both the

Kimley»)Horn

AM or PM Peak times as indicated below in Table T-24 (v/c ratio increase 10.09$23.57 \%$ at critical movements).

Table T-24 - Soquel Avenue / 40 th Road (Intersection \#9) Critical Movement v/c Calculation				
AM Peak				
Condition				
EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT	
Existing (v/c)	0.199	0.199	0.393	0.393
Existing + Project (v/c)	0.224	0.224	0.485	0.485
v/c Change	12.56%	12.56%	23.41%	23.41%
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Existing (v/c)	0.803	0.803	0.997	0.997
Existing + Project (v/c)	0.884	0.884	1.232	1.232
v / c Change	10.09%	10.09%	23.57%	23.57%

- Installation of the diverter would eliminate both the cut through traffic and the adverse delay at the intersection, improving the potential operational deficiencies and eliminating any LOS deficiency. Without the Project, it would also improve the existing condition during the PM peak hour. The traffic flow at this intersection would then be governed by the signal at Gross Road \& $41^{\text {st }}$ Avenue, where additional improvements are recommended. The long cycle length at the $41^{\text {st }}$ Avenue intersection results currently in queues spilling into the Gross Road intersection. These queues are expected to shorten from 8.15 minutes to 4.53 minutes with these recommended improvements, as shown in the graphic below. The installation of the diverter will result in additional traffic being added to the intersection of Rodeo Gulch Road and Soquel Avenue. The increase in traffic will add delay for vehicles on the northbound approach wanting to turn left or right onto Soquel Avenue. This delay is not anticipated to be substantial and during the PM peak hour, courtesy gaps will be taken to cross the queue that forms in the eastbound direction.
- The Project causes delay to increase at Intersection \#9 if no improvements are made. The recommended improvement installs a diverter, which makes all movement free. Thus, no delay would be attributed to this intersection. With installation of the diverter, the LOS deficiency would be eliminated.

Kimley»"Horn

- $41^{\text {st }}$ Avenue \& Highway 1 Southbound Ramps (Intersection \#14). During the AM peak hour, the Project would cause delays at this intersection to go from 36.7 seconds (LOS D) to 41.6 sections (LOS D). This is a Caltrans managed facility operating at LOS D and therefore evaluated (pursuant to now outdated standards applicable prior to adoption of VMT thresholds) based on additional delay caused by the Project. The Project does increase the v / c by more than one percent in both the AM or PM Peak times as indicated below in Table T-25 (v/c ratio increase 8\% at one critical movement).

Table T-25 - 41 st (Intersection \#14enue \& Highway 1 Southbound Ramps Critical Movement v/c Calculation					
Intersection 14					
AM Peak					
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT	
Existing (v/c)	1.25	1.25	0.25	0.30	
Existing + Project (v/c)	1.25	1.25	0.27	0.30	
$\boldsymbol{v / c}$ Change	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{8 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$	
PM Peak					
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT	
Existing (v/c)	0.60	0.60	0.31	0.45	
Existing + Project (v/c)	0.60	0.60	0.31	0.45	
$\boldsymbol{v / c}$ Change	$\mathbf{0 . 0 0 \%}$				

Kimley»)Horn

- Caltrans certified the environmental impact report ("EIR") for the Santa Cruz Route 1 Tier 1-Corridor Analysis of High Occupancy Vehicle Lanes and Transportation System Management Alternatives and Tier II- Build Project Analysis of $41^{\text {st }}$ Avenue to Soquel Avenue/Drive Auxiliary Lanes and Chanticleer Avenue PedestrianBicycle Overcrossing, which identifies long-term improvement projects for providing capacity at Highway 1 interchanges. The identified improvements at the $41^{\text {st }}$ Avenue interchange includes ramp widening and improvements and the overcrossing would be widened. These improvements are unconstrained and until funding becomes available, the operational deficiency would remain. Once the improvements are implemented, the facility is expected to operate at acceptable conditions.
- $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15). During the AM peak hour, the Project would cause delays at this intersection to go from 36.8 seconds (LOS D) to 43.1 sections (LOS D) and during the PM peak hour, the Project would cause delays to go from 46.8 seconds (LOS D) to 51.7 sections (LOS D). The Project does increase the v/c by more than one percent in both the AM or PM Peak times as indicated below in Table T-26 Table (v/c ratio increase 1.85-33.58\% at critical movements).

| Table T-26 - 41
 \#t
 \#15) Avenue \& Gross Road (Intersection
 Critical Movement v/c Calculation | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AM Peak | | | | |
| Condition | EBLT+WBT | WBLT+EBT | NBLT+SBT | SBLT+NBT |
| Existing (v/c) | 0.54 | 0.54 | 1.37 | 1.30 |
| Existing + Project (v/c) | 0.56 | 0.55 | 1.83 | 1.30 |
| v/c Change | 3.70% | 1.85% | 33.58% | $\mathbf{0 . 0 0 \%}$ |
| PM Peak | | | | |
| Condition | EBLT+WBT | WBLT+EBT | NBLT+SBT | SBLT+NBT |
| Existing (v/c) | 1.32 | 1.31 | 1.26 | 1.31 |
| Existing + Project (v/c) | 1.4 | 1.38 | 1.43 | 1.31 |
| v/c Change | 6.06% | 5.34% | 13.49% | 0.00% |

- During the PM peak, southbound queues form on Gross Road and Soquel Avenue due to the cut-through traffic on Soquel Avenue trying to bypass the freeway congestion. These queues sometime spill back to Rodeo Gulch Drive on Soquel Avenue. Traffic also cut through the Gross Road neighborhood.
- The City of Capitola is planning the installation of an adaptive signal system along $41^{\text {st }}$ Avenue, and this intersection is included in the design. The adaptive signal system is funded and would provide better coordination of traffic flow along the corridor because it measures real time vehicular demand and proportions/adjusts signal timing accommodating traffic.

Kimley»)Horn

- In addition, the Project would install overhead signs and roadway markings to improve lane selection and use on the eastbound approach of Gross Road. The lane selection would be for southbound Highway 1 and northbound Highway 1 movements. See Appendix M for the conceptual layout of this improvement.
- The Project will also install a physical barrier between the limit line and the diverge of the Highway 1 southbound on-ramp on $41^{\text {st }}$ Avenue. This barrier will prevent vehicles from jumping the queue for southbound on-ramp traffic. This improvement would also improve bicycle rider safety in the Class II bike lane at the Highway 1 southbound on-ramp at $41^{\text {st }}$ Avenue.
- This barrier installation would require a Caltrans construction permit and approval. It can only be installed if approved by Caltrans.
- The Project's installation of overhead signs, roadway marking, diagonal diverter, and a physical barrier, as described above, would reduce the travel time from Soquel Drive \& Rodeo Gulch Road to the southbound Highway 1 on-ramp from 8.15 minutes under existing conditions to 4.53 minutes with the proposed improvements. The Project thus reduces the existing delay for all the road users at this location. Even without the adaptive signal system, the installation of these features by the Project would improve existing and plus Project conditions, thus eliminating any deficiency caused by the Project.

Alternative Improvement for congestion at $41^{\text {st }}$ Avenue/Gross Road: Removal of the road barrier on $40^{\text {th }}$ Avenue at Deanes Lane

- The location of Gross Road at $41^{\text {st }}$ Avenue results in eastbound afternoon traffic diverting from a congested SR 1 and cutting through the local streets along Soquel Avenue to $41^{\text {st }}$ Avenue. The afternoon eastbound right turn movement at the intersections of Gross Road and $41^{\text {st }}$ Avenue is 248 vehicles in Existing Plus Project conditions and these vehicles travel southbound on $41^{\text {st }}$ Avenue. If the barrier at Deanes Lane is removed, some of this traffic could be expected to travel on $40^{\text {th }}$ Avenue towards Clares Street towards Capitola Mall. Some drivers may also choose to use Clares Street to gain access to $41^{\text {st }}$ Avenue.
- The traffic that would use $40^{\text {th }}$ Avenue instead of 41 st Avenue would slightly improve the conditions at the intersection of Gross Road and $41^{\text {st }}$ Avenue, however the heaviest movement at this intersection is the southbound left turns (639 PM peak hour vehicles) and the improvement there would not be noticeable. In addition, the traffic that would divert from Gross Road to $40^{\text {th }}$ Avenue would remain in the long eastbound queues on Soquel Avenue and most probably cut through the Gross Road neighborhood and make an eastbound right turn at Gross Road/ $40^{\text {th }}$ Avenue. Thus, traffic cut-through through the Gross Road neighborhood would increase if the barrier is removed and the diagonal diverter is not installed.
- For the non-peak periods, removing the barrier would benefit access to the Capitola Mall and reroute some traffic from $41^{\text {st }}$ Avenue. It is also anticipated that a signal may be required at the intersection of Clares Street and $40^{\text {th }}$ Avenue to

Kimley»Horn

accommodate the additional traffic demand. The intersection is already congested during peak shopping periods with the current All Way Stop configuration.

- Brommer Street \& $30^{\text {th }}$ Avenue (Intersection \#24).
- During the PM peak hour, the Project would cause delays at this intersection to go from 38.4 seconds (LOS E) to 39.1 seconds (LOS E) The Project does increase the v / c by more than one percent in both the AM or PM Peak times as indicated below in Table T-27 (v/c ratio increasing 0.24-1.81\% at critical movements).
- The LOS deficiency could be eliminated with installation of a signal control with permissive left-turn phasing. Peak Hour Signal Warrant \#3 (CAMUTCD) is satisfied with Existing Conditions traffic and in Existing Plus Project Conditions traffic. With existing geometry, signal control, eastbound/westbound split phasing, and permissive left-turn phasing, this intersection would operate at acceptable LOS with Existing Plus Project conditions traffic volumes. The Peak Hour Signal Warrant \#3 evaluation is included in Appendix J.
- The Project only contributes 5 trips during the PM peak hour to the intersection and causes less than one second of delay. The proposed improvement would cause the Brommer Street \& $30^{\text {th }}$ Avenue intersection to operate at LOS C with the Project.
- The Project would pay a fair share contribution of 14% to the intersection improvement (i.e., the installation of a signal, since it is deficient already).

Table T-27 - Brommer Street \& 30 (h) (Intersection \#24) Avenue Critical Movement v/c Calculation					
AM Peak					
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT	
Existing (v/c)	0.756	0.756	0.664	0.664	
Existing + Project (v/c)	0.760	0.760	0.676	0.676	
v/c Change	$\mathbf{0 . 5 3 \%}$	$\mathbf{0 . 5 3 \%}$	1.81%	1.81%	
PM Peak					
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT	
Existing (v/c)	1.673	1.673	0.852	0.852	
Existing + Project (v/c)	1.677	1.677	0.865	0.865	
v/c Change	$\mathbf{0 . 2 4 \%}$	$\mathbf{0 . 2 4 \%}$	$\mathbf{1 . 5 3 \%}$	$\mathbf{1 . 5 3 \%}$	

Kimley»)Horn

Microsimulation Analysis

The positive effect of the installation of some of these improvements cannot be evaluated using typical LOS analysis, but must be analyzed using microsimulation methodologies instead. LOS (HCM ${ }^{\text {th }}$) is a deterministic traffic analysis methodology, whereas microsimulation (SimTraffic) is a probabilistic/stochastic traffic analysis methodology that can provide more detailed, and statistically based measures of effectiveness. ${ }^{41}$

It is anticipated that some cut-through traffic traveling south along Highway 1 to Capitola and Aptos currently uses Mattison Lane between Soquel Avenue and Capitola Road. This traffic tries to avoid the Gross Road/40 th Avenue queuing and congestion. Analysis results from recommended improvements along Soquel Avenue would slightly improve operations (or at a minimum, operations would remain the same). Therefore, it is not anticipated that additional cutthrough traffic would divert to Mattison Lane due to the Project. In support of this, it should be noted again that there is a potential decrease in delay from 8 minutes to 4.59 minutes in the PM peak at the Gross Road/40 th Avenue and Gross Road $41^{\text {st }}$ Avenue intersections. If the diverter at Gross Road and $40^{\text {th }}$ Avenue is not installed, more existing traffic would potentially divert down Mattison Lane in the future, and a signal may eventually be required at Capitola Road and traffic through the neighborhood may be impacted. A signal may, in turn, create more capacity and then more traffic may divert through the Mattison Road neighborhood.

Existing Plus Project analysis results are presented in Table T-28. Synchro output sheets are provided in Appendix C. A summary of the improvements for intersections operating at a deficient level of service is indicated in Table T-29.

Since the first draft report was compiled in 2019, Caltrans has changed the lane assignment at the intersection of Soquel Avenue \& Highway 1 SB On- and Off-Ramp (Intersection \#5) to include an exclusive eastbound left-turn lane. The approach lanes were restriped to include a separate left-turn lane and a separate through lane. Signal timing sheets available at that time were changed to reflect the new lane configuration and phasing optimized to obtain a representative LOS. This change resulted in a decrease of delay from 28.2 seconds to 20.7 seconds during the AM peak hour and from 29.4 seconds to 21.8 seconds during the PM peak hour. The LOS remains a LOS C for both peak hours. Synchro output sheets are provided in Appendix U.

[^27]

Kimley») Horn
Expect More. Experience Better.

	$20{ }^{20}$		22 ${ }^{\text {cien }}$

Kimley»Horn

Kimley»Horn

Table T-28 - Existing Plus Project Conditions Intersection Level of Service

\#	Intersection	Maintaining Agency	Control Type	Existing Conditions						Existing Plus Project Conditions					
				AM Peak Hour			PM Peak Hour			AM Peak Hour			PM Peak Hour		
				Movement	Delay	LOS									
1	Soquel Ave \& Capitola Rd	CsC	Signal	-	31.4	C	-	29.2	c	-	31.9	C	-	30.5	c
2	Soquel Ave \& $7^{\text {l }}$ Ave	SCC	Signal	-	16.8	B	-	17.1	B	-	17.7	B	-	17.1	B
3	Soquel Dr / Soquel Ave \& Soquel Ave	Caltrans	Signal	-	29.5	C	-	30.9	C	-	30.3	C	-	33.3	C
4	Soquel Dr \& Paul Sweet Rd / Hwy 1 On-Off Ramps	Caltrans	Signal	-	51.6	D	-	36.7	D	-	51.6	D	-	36.6	D
5	Soquel Ave \& Hwy 1 SB On-Off Ramps	Caltrans	Signal	-	27.1	C	-	27.7	C	-	28.2	C	-	29.4	C
6	Soquel Ave \& $17^{\text {th }}$ Ave	SCC	Signal	-	8.7	A	-	9.5	A	-	10.2	B	-	10.8	B
7	Soquel Ave \& Chanticleer	SCC	sssc	-	5.4	A	-	2.7	A	-	7.1	A	-	4.3	A
	Worst Approach			NB	13.7	B	NB	16.9	c	NB	21.3	C	NB	29.7	D
8	Soquel Ave \& MOB Driveway	scc	$\begin{aligned} & \hline \text { SSSC / } \\ & \text { Signal } \end{aligned}$	-	0.4	A	-	0.2	A	.	5.9	A	.	8.4	A
	Worst Approach			NB	11.3	B	NB	14.0	B						
9	Soquel Ave / $40^{\text {th }}$ Ave \& Gross Rd	SCC	AWSC	.	10.9	B	-	36.5	E	-	14.8	B	-	78.4	F
10	40th Ave \& Deanes Ln	NOT STUDIED													
11	$40^{\text {th }}$ Ave \& Clares St	NOT STUDIED													
12	$44^{\text {st }} \mathrm{Ave}$ \& Soquel Dr	SCC	Signal	-	23.7	C	-	38.0	D	-	24.4	C	-	39.1	D
13	$44^{\text {st }}$ Ave \& Hwy 1 NB Ramps	Caltrans	Signal	-	18.3	B	-	14.9	B	-	18.4	B	-	15.0	B
14	$44^{\text {st }}$ Ave \& Hwy 1 SB Ramps	Caltrans	Signal	-	36.7	D	-	7.5	A	-	41.6	D	-	8.1	A
15	$44^{\text {st }} \mathrm{Ave}$ \& Gross Rd	Caltrans	Signal	-	36.6	D	-	46.8	D	-	43.1	D	-	51.7	D
16	$4{ }^{\text {t }}$ Ave \& Clares St	Capitola	Signal	-	22.6	c	-	26.8	c	-	22.9	c	-	27.0	C
17	$41^{\text {st }}$ Ave \& Capitola Rd	Capitola	Signal	-	24.2	c	-	35.0	D	-	25.0	C	-	36.0	D
18	$4{ }^{\text {t }}$ Ave \& Brommer StJJade St	Capitola	Signal	-	18.6	B	-	27.6	c	-	19.3	B	-	28.6	C
19	Capitola Rd\& $7^{\text {th }}$ Avenue	SCC	Signal	-	18.5	B	-	21.0	c	-	20.9	c	-	24.1	c
20	Capitola Rd \& 17 ${ }^{\text {th }}$ Avenue	SCC	Signal	-	19.9	B	-	27.1	c	-	20.5	C	-	28.4	c
21	Capitola Rd \& Chanticleer Ave	ScC	Signal	-	15.8	B	-	23.0	c	-	16.3	B	-	24.1	c
22	Capitola Rd and $30^{\text {ath }} \mathrm{Ave}$	Capitola	Signal	-	20.3	c	-	25.4	c	-	21.2	c	-	25.9	c
23	Brommer St \& $17^{\text {th }}$ Ave	SCC	Signal	-	21.6	c	-	26.3	c	-	22.0	c	-	26.9	C
24	Brommer St \& $30^{\text {th }}$ Ave	SCC	AWSC	-	12.0	B	-	38.4	E	-	12.1	B	-	39.1	E
25	$17^{\text {m }}$ Ave \& Portola Dr	SCC	Signal	-	19.4	B	-	20.2	C	-	19.5	B	-	20.4	C

Notes:

1. Analysis performed using HCM 6 th Edition methodologies.
2. Delay indicated in seconds/vehicle
3. Signal $=$ Signal Control; AWSC $=$ All-Way Stop Control; SSSC $=$ Side-Street Stop Control
4. CSC = City of Santa Cruz; Caltrans = California Department of Transportation; SCC = Santa Cruz County; Capitola = City of Capitola
5. CSC LOS standard is D; Caltrans LOS standard is C; SCC LOS standard is D; Capitola does not have a LOS standard for 41st Avenue.
6. Intersections that operate below maintaining agency's LOS standard are highlighted and shown in bold.
7. For intersection \#4, The Project does not increase intersection delay or increase critical v / c by 1% or more. Thus, no Project deficiency is caused at this location.
8. Intersection \#5 shows overall LOS as acceptable. See Analysis section on page 72 for additional detail.
9. Intersection \#10 and \#11 were not analyzed in this analysis because the Project is not expected to distribute traffic to these intersections, since a barrier exists at 40th Avenue and Deans Lane and
managed by Caltrans. Caltrans' main objective is to avoid off-ramp queue spillback into the Highway 1 mainline

Kimley»Horn

Table T-29 - Improved Existing Plus Project Conditions Intersection Level of Service

Int\#	Location	Condition	Deficiency caused by the Addition of Project Traffic	Improvement
\#9	Soquel Avenue / $40^{\text {th }}$ Avenue \& Gross Road	Existing and Existing Plus Project Conditions	The addition of Project traffic worsens the LOS from E to F in the PM. The critical v/c increases by more than 1% on all the critical approach movements.	Install a diagonal diverter extending from the northwest corner to the southeast corner at this intersection. Residents in the neighborhood would exit the neighborhood at Rodeo Gulch Drive onto Soquel Avenue. If this improvement is not installed, cut through traffic along Gross Road and the delay at the $41^{\text {st }}$ Avenue intersection will continue and degrade further in the future until the freeway is improved. The diverter will prevent cut through traffic on Gross Road through the residential neighborhood and eliminate the congestion caused by the all-way stop at the intersection. Queues at this intersection are expected to shorten with these recommended improvements. This commute is slightly longer than the direct connection to $41^{\text {st }}$ Avenue via Gross Road, but the benefits of removing cut through traffic through the neighborhood and the improvement of operations at the Gross Road $/ 40^{\text {th }}$ Avenue intersection, warrants the installation of this improvement. With this improvement, traffic flow at this intersection would then be governed by the signal at Gross Road \& $41^{\text {st }}$ Avenue where additional improvements are recommended. With the improvement, all movements would be uncontrolled; therefore, no delay would be attributed to this intersection (i.e., the only delay would be incurred at the $41^{\text {st }}$ Avenue \& Gross Road signalized intersection). This improvement would cause travel time from Soquel Dr \& Rodeo Gulch Rd to SB Hwy 1 on-ramp to decrease by approximately 44\% when comparing Existing (No Project) to Existing Plus Project conditions. See Appendix M for the proposed layout. In addition, the current cut-through traffic along Gross Road through the neighborhood would also be eliminated. With this improvement the deficiency caused by the Project will be eliminated. Existing conditions will also be improved since the queues will be shortened.

Kimley»"Horn

Table T-29 - Improved Existing Plus Project Conditions Intersection Level of Service

In\#	Location	Condition	Deficiency caused by the Addition of Project Traffic	Improvement
\#14	 Highway 1 Southbound Ramps	Existing and Existing Plus Project Conditions	The LOS remains at D during the AM with the addition of the Project. The average delay increases from 36.7 t0 41.6 seconds per vehicle in the AM. The critical v/c increases by more than 1% on southbound approach movements.	Caltrans certified the EIR in December 2018 for the Santa Cruz Route 1 Tier 1Corridor Analysis of High Occupancy Vehicle Lanes and Transportation System Management Alternatives and Tier II- Build Project Analysis of $41^{\text {st }}$ Avenue to Soquel Avenue/Rive Auxiliary Lanes and Chanticleer Avenue Pedestrian-Bicycle Overcrossing. The EIR identifies long term improvement projects for providing capacity at the interchanges and along the rail line. The TSM improvements at the $41^{\text {st }}$ Avenue interchange include ramp widening and improvements and the overcrossing would be widened. The TSM improvements are unconstrained (not fully funded) and until funding becomes available, the operational deficiency would remain. Installation of this improvement is expected to eliminate the deficiency caused by the Project. The State Route 1 HOV Lane Widening Project Supplemental Report (May 2010) analyzed these improvements for the Santa Cruz Route 1 Tier I and Tier II FEIR and the results are included in Appendix P for reference. https://sccrtc.org/projects/streets-highways/hwy1corridor/environmentaldocuments.

Kimley»"Horn

Table T-29 - Improved Existing Plus Project Conditions Intersection Level of Service

Int\#	Location	Condition	Deficiency caused by the Addition of Project Traffic	Improvement
\#15	$41^{\text {st }}$ Avenue \& Gross Road (City of Capitola jurisdiction and Caltrans control)		The LOS remains at D during the AM and PM with the addition of the Project. The average delay increases from 36.5 to 43.1 seconds per vehicle in the AM and from 46.8 to 51.7 seconds per vehicle in the PM. The critical v/c increases by more than 1% on all the critical approach movements.	The City of Capitola received a grant to install an adaptive signal system along $41^{\text {st }}$ Avenue and this intersection is included in its implementation plan. In addition, the Project would install overhead signs and roadway markings to improve lane selection and use on the eastbound approach of Gross Road. The lane selection would be for southbound Highway 1 and northbound Highway 1 movements. See Appendix \mathbf{N} for the conceptual layout for improvement details. A barrier would be installed between Gross Road and Highway 1 Southbound Ramps. The barrier would be installed between the eastbound through lane over the freeway and the eastbound right-turn lane onto the freeway southbound on-ramp. This barrier installation would require a Caltrans encroachment permit/approval. It can only be installed if approved by Caltrans. The adaptive signal system would provide better coordination of traffic flow along the corridor because it measures real time vehicular demand and proportions/adjusts signal timing. Furthermore, a physical barrier will be installed between the limit line and the diverge of the Highway 1 southbound on-ramp on $41^{\text {st }}$ Avenue. This barrier will prevent vehicles from jumping the queue for southbound on-ramp traffic. This improvement would also improve bicycle rider safety in the Class II bike lane at the Highway 1 southbound on-ramp at $41^{\text {st }}$ Avenue. A conceptual layout of these improvements are indicated in Appendix M. The State Route 1 HOV Lane Widening Project Supplemental Report (May 2010) analyzed these improvements for the Santa Cruz Route 1 Tier I and Tier II FEIR and the results are included in Appendix P for reference. https://sccrtc.org/projects/streets-highways/hwy1corridor/environmentaldocuments.

Kimley»"Horn

Table T-29 - Improved Existing Plus Project Conditions Intersection Level of Service

Int\#	Location	Condition	Deficiency caused by the Addition of Project Traffic	Improvement
\#24	$\begin{aligned} & \text { Brommer Street \& } \\ & 30^{\text {th }} \end{aligned}$	Existing and Existing Plus Project Conditions	The intersection operates at LOS F in PM Peak without Project and continues to operate at LOS F with Project. The average delay increases from 38.4 seconds per vehicle to 39.1 seconds per vehicle with the addition of Project traffic. The critical v/c increases by more than 1% on the northbound and southbound critical movements.	Install signal control with permissive left-turn phasing. Peak Hour Signal Warrant \#3 (CAMUTCD) is satisfied with Existing Conditions traffic and in Existing Plus Project Conditions traffic. With existing geometry, signal control, eastbound/westbound split phasing, and permissive left-turn phasing, this intersection would operate at acceptable LOS with Cumulative Plus Project conditions traffic volumes. The Peak Hour Signal Warrant \#3 evaluation is included in Appendix J. For Existing Conditions, the intersection will improve the PM delay by 17.1 seconds per vehicle with installation of the signal. Installation of a signal control with permissive left-turn phasing would cause the intersection to operate at an acceptable LOS. The Project will pay a fair share of 14% towards the improvement and the Project will eliminate its incremental addition to the LOS deficiency (Project Trips through intersection / All Future trips through intersection).

Kimley»)Horn

Conclusions - Existing Plus Project Conditions

The implementation of the improvements described above will remove the deficiencies caused by the Project or will improve the conditions to better than existing conditions.

Near Term Conditions

Near Term Conditions were determined in consultation with County staff and evaluate traffic volumes, transportation network improvements, and operations that would occur by the year 2021. The following development conditions are evaluated in this chapter:

- Near Term Conditions
- Near Term Plus Project Conditions

Near Term Transportation Improvements

Per discussions with the County, as documented in the County's 2040 Regional Transportation Plan ("RTP"), and the 2018/2019 Capital Improvement Program ("CIP"), it is not assumed that any network capacity improvements will be implemented (including new intersections) in the study area by Near Term Conditions. Therefore, Existing Conditions geometries and intersection control are assumed for baseline Near Term conditions. In addition, no Near-Term signalization improvements, such as cycle lengths, offsets, or splits, are assumed for any of the study intersections.

Figure F-15 illustrates the intersection geometry and traffic control assumed in the Near-Term analysis, which are the same as Existing Conditions.

Near Term Traffic Volume Development

Typically, Near Term Conditions can be calculated by either identifying the approved, but not yet constructed projects that would add traffic to a study transportation network in the Near Term or by estimating traffic growth, based on historical or future projections.

Kimley-Horn coordinated with County staff to determine if there were any development projects in the study area that are in various stages of planning or approval. The County provided a list of projects that are in various stages of the planning and approval process. The pending project information provided by the County was used to develop Near Term traffic volume forecasts along with travel demand model growth estimates. The list of pending/approved projects provided by the County is included in Appendix I.

Cumulative model plots were reviewed and determined to incorporate reasonable growth assumptions compared to the County's pending and approved projects list in the study area. In addition, increases to the Near-Term volume estimates were also made to account for three relatively large pending projects that are anticipated to be developed within the study area by 2021. Pending development projects manually added to volume growth estimates include the following*:

- Midpen Housing at Capitola Road \& $17^{\text {th }}$ Avenue

Kimley»)Horn

- Development Assumption: 57 residential units, 30,178 square foot dental and medical clinic, 1,000 square foot retail facility.
- East Cliff Village Center Redevelopment at East Cliff Drive \& $15^{\text {th }}$ Avenue
- Development Assumption: 12,370 square feet of retail, 2,800 square foot restaurant, 164 units of assisted living/memory care, 60 room hotel, and 180 residential dwelling units.
- Swenson Mixed-Use Development at $7^{\text {th }}$ Avenue \& Brommer Street
- Development Assumption: 40 residential units, up to 100 room visitor accommodations, and 8,500 square feet of commercial space.

In aggregate, traffic volume growth at the study intersections as a result of the combined model estimates and the addition of the three developments described above results in a compound annual growth rate ("CAGR") of approximately 1 percent per annum between Existing and NearTerm analysis conditions. Near Term peak hour volumes are presented in Figure F-15.
*Pending development assumptions provided by County Planning Department.

Near Term Intersection Level of Service

Near Term conditions were evaluated at the study intersections based on lane geometry and traffic control illustrated in Figure F-15 and peak hour volumes in Figure F-16.

The following intersections operate at an unacceptable LOS under Near Term conditions:

- Soquel Drive \& Paul Sweet Road / Highway 1 On-Off Ramps (Intersection \#4) (AM \& PM Peaks)
- Soquel Avenue / 40 ${ }^{\text {th }}$ Avenue \& Gross Road (Intersection \#9) (PM Peak)
- $41^{\text {st }}$ Avenue \& Highway 1 SB Ramps (Intersection \#14) (AM Peak)
- $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) (AM \& PM Peaks)
- Brommer Street \& 30 th Avenue (Intersection \#24) (PM Peak)

Results of the analysis are presented in Table T-30. Synchro output sheets are provided in Appendix D.

Since the first draft report was compiled in 2019, Caltrans has changed the lane assignment at the intersection of Soquel Avenue \& Highway 1 SB On- and Off-Ramp (Intersection \#5) to include an exclusive eastbound left-turn lane. The approach lanes were restriped to include a separate left-turn lane and a separate through lane. Signal timing sheets available at that time were changed to reflect the new lane configuration and phasing optimized to obtain a representative LOS. This change resulted in a decrease of delay from 26.9 seconds to 20.4 seconds during the AM peak hour and from 27.5 seconds to 21.1 seconds during the PM peak hour. The LOS remains a LOS C for both peak hours. Synchro output sheets are provided in Appendix U.

Kimley») Horn

8	$\leftarrow_{\ulcorner 9(2)}^{31588)}$		
	$\underbrace{\text { a }}$		

25	

Kimley»Horn

Kimley»Horn

Table T-30 - Near Term Conditions Intersection Level of Service									
\#	Intersection	Maintaining Agency	Control Type	Near Term Conditions					
				AM Peak Hour			PM Peak Hour		
				Movement	Delay	LOS	Movement	Delay	LOS
1	Soquel Ave \& Capitola Rd	CSC	Signal	-	50.7	D	-	37.6	D
2	Soquel Ave \& $7^{\text {th }}$ Ave	SCC	Signal	-	21.7	C	-	21.6	C
3	Soquel Dr / Soquel Ave \& Soquel Ave	Caltrans	Signal	-	29.5	C	-	31.3	C
4	Soquel Dr \& Paul Sweet Rd / Hwy 1 On-Off Ramps	Caltrans	Signal	-	57.5	E	-	38.7	D
5	Soquel Ave \& Hwy 1 SB On-Off Ramps	Caltrans	Signal	-	26.9	C	-	27.5	C
6	Soquel Ave \& 17 ${ }^{\text {th }}$ Ave	SCC	Signal	-	8.9	A	-	10.0	B
7	Soquel Ave \& Chanticleer	C	SSSC	-	5.4	A	-	2.7	A
7	Worst Approach	C	SSSC	NB	13.7	B	NB	16.9	C
8	Soquel Ave \& MOB Driveway	CC	SSSC	-	0.4	A	-	0.2	A
8	Worst Approach	C	SSS	NB	11.3	B	NB	14.0	B
9	Soquel Ave / 40 ${ }^{\text {th }}$ Ave \& Gross Rd	SCC	AWSC	-	10.9	B	-	37.1	E
10	40th Ave \& Deanes Ln	NOT STUDIED							
11	40th Ave \& Clares St	NOT STUDIED							
12	$41^{\text {st }}$ Ave \& Soquel Dr	SCC	Signal	-	24.1	C	-	42.0	D
13	$41^{\text {st }}$ Ave \& Hwy 1 NB Ramps	Caltrans	Signal	-	18.2	B	-	15.4	B
14	$41^{\text {st }}$ Ave \& Hwy 1 SB Ramps	Caltrans	Signal	-	54.4	D	-	8.8	A
15	$41^{\text {st }}$ Ave \& Gross Rd	Caltrans	Signal	-	37.5	D	-	51.0	D
16	$41^{\text {st }}$ Ave \& Clares St	Capitola	Signal	-	23.2	C	-	27.4	C
17	$41^{\text {st }}$ Ave \& Capitola Rd	Capitola	Signal	-	24.9	C	-	36.4	D
18	$41^{\text {st }}$ Ave \& Brommer St/Jade St	Capitola	Signal	-	19.0	B	-	28.2	C
19	Capitola Rd \& $7^{\text {th }}$ Avenue	SCC	Signal	-	20.2	C	-	22.7	C
20	Capitola Rd \& 17 ${ }^{\text {th }}$ Avenue	SCC	Signal	-	22.5	C	-	33.2	C
21	Capitola Rd \& Chanticleer Ave	SCC	Signal	-	16.0	B	-	23.7	C
22	Capitola Rd and 30 ${ }^{\text {th }}$ Ave	Capitola	Signal	-	21.2	C	-	26.5	C
23	Brommer St \& $17^{\text {th }}$ Ave	SCC	Signal	-	26.2	C	-	33.6	C
24	Brommer St \& 30 ${ }^{\text {th }}$ Ave	SCC	AWSC	-	14.3	B	-	55.7	F
25	$17^{\text {th }}$ Ave \& Portola Dr	SCC	Signal	-	20.5	C	-	21.2	C

Notes:

1. Analysis performed using HCM 6th Edition methodologies.
2. Delay indicated in seconds/vehicle.
3. Signal = Signal Control; AWSC = All-Way Stop Control; SSSC = Side-Street Stop Control
4. CSC = City of Santa Cruz; Caltrans = California Department of Transportation; SCC = Santa Cruz County; Capitola = City of Capitola 5. CSC LOS standard is D; Caltrans LOS standard is C; SCC LOS standard is D; Capitola does not have a LOS standard for 41st Avenue.
5. Intersections that operate below maintaining agency's LOS standard are highlighted and shown in bold.
6. For intersection \#4, The Project does not increase intersection delay or increase critical v/c by 1% or more. Thus, no Project deficiency is caused at this location.
7. Intersection \#5 shows overall LOS as acceptable. See Analysis section on page 72 for additional detail.
8. Intersection \#10 and \#11 were not analyzed in this analysis because the Project is not expected to distribute traffic to these intersections, since a barrier exists at 40th Avenue and Deans Lane and the Project does not propose to remove it (nor are any plans to remove the barrier pending).
9. Intersection \#14 operates at LOS A in the PM because traffic to the intersection is controlled/metered at intersections \#13 and \#15. Intersections \#14 and \#15 are operated on one signal controller, managed by Caltrans. Caltrans' main objective is to avoid off-ramp queue spillback into the Highway 1 mainline.

Kimley»)Horn

Near Term Plus Project Intersection Level of Service

Traffic operations were evaluated at the study intersections based on Near Term Plus Project conditions. Near Term Plus Project lane geometry and traffic control are shown in Figure F-17 and Near Term Plus Project peak hour traffic volumes are shown in Figure F-18.

No study intersections would degrade from acceptable LOS (without the Project) to unacceptable LOS (with the Project). However, some intersections currently operating at deficient conditions will degrade further with addition of Project traffic.

- Soquel Drive \& Paul Sweet Road / Highway 1 On-Off Ramps (Intersection \#4) (AM \& PM Peaks).
- Soquel Avenue / 40 ${ }^{\text {th }}$ Avenue \& Gross Road (Intersection \#9) (PM Peak)
- $41^{\text {st }}$ Avenue \& Highway 1 SB Ramps (Intersection \#14) (AM Peak)
- $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) (AM \& PM Peaks)
- Brommer Street \& 30 th Avenue (Intersection \#24) (PM Peak)

Note that the intersection analysis of Soquel Avenue and Highway 1 Southbound On- and OffRamps (\# 5) does not show a deficiency for the overall average delay and LOS. However, field observations indicate that the southbound off-ramp queue spills back onto the auxiliary lane/ existing lane on the freeway in the PM peak period. This is partly due to drivers trying to bypass the freeway congestion via Soquel Avenue or Capitola Road. The reconstruction of the interchange is expected to eliminate the queueing back onto the freeway. The increases in delay from the Project occur in the non-peak flow direction and do not result in deficiencies at the intersection.

With respect to intersections that operate at an unacceptable LOS that will degrade further under Near Term Plus Project Conditions, the below-described improvements would improve the potential operational deficiencies. Pursuant to the County's General Plan LOS Policy 3.12.1, the Project will contribute to the deficiency at County maintained intersections if the v/c ratio at any critical movements at the following intersections increase by 1% or more with the Project, in which case the County's General Plan LOS Policy requires mitigation or other improvement to address the deficiency. The v/c analysis is inapplicable, however, if improvements can eliminate operational deficiencies by causing intersections to operate at LOS D or better. Also, the County's General Plan LOS Policy is not applicable to Caltrans-managed Intersection Nos. 4, 14 and 15; the analysis provided below for those intersections is therefore for informational purposes only.

- Soquel Drive \& Paul Sweet Road / Hwy 1 On-Off Ramps (Intersection \#4). Both with and without the Project, during the Cumulative (2040) Condition, this intersection will experience 57.5 seconds of delay in the AM peak hour (LOS E) and 38.6 seconds of delay during the PM peak hour (LOS D). The Project does not contribute to any deficiency at this intersection in terms of delay or increasing the v / c ratio by more than 1% at any critical movement. The planned Caltrans improvements described below are anticipated to eliminate the non-Project related deficiency at this intersection.
- Caltrans plans to widen Highway 1/Soquel Drive interchange per the Highway 1 EIR certified in December 2018 and referenced throughout this document. The

Kimley»Horn

westbound left-turn lane will be converted to a through lane. One westbound rightturn lane, northbound left-turn lane, and an eastbound right-turn bay will be installed at this intersection. It is anticipated that the improvement will eliminate the deficiency. A detailed layout is shown in Appendix M. However, these improvements are currently unfunded, are not included in the County's CIP and may be constructed after 2040. The Cumulative operations will remain deficient until the improvements are constructed.

- It should also be noted that, consistent with SB 743, Caltrans evaluates a land use project's impacts on the state highway system utilizing VMT, rather than congestion or capacity related metrics, such as LOS or v/c. (Caltrans, "Vehicle Miles Traveled-Focused Transportation Impact Study Guide, (May 20, 2020), see pp. 4-5.)
- The Project would not contribute any delay to this intersection during the AM or PM peak hour because it does not increase the volume to capacity ("v/c") by more than one percent in either the AM or PM Peak times as indicated below in Table T-31 (at the most it increases the v / c by 0.21 percent).

Table T-31- Soquel Drive \& Paul Sweet Road / Hwy 1 On-Off- Ramps (Intersection \#4) Critical Movement v/c Calculation AM Peak Condition EBLT+WBT WBLT+EBT									
NBLT+SBT	SBLT+NBT								
Near Term (v/c)	2.305	0.845	1.707	1.284					
Near Term + Project (v/c)	2.307	0.845	1.707	1.284					
$\boldsymbol{v / c}$ Change	$\mathbf{0 . 0 9 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$					
Condition						EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Near Term (v/c)	1.412	0.959	1.786	1.424					
Near Term + Project (v/c)	1.412	0.961	1.786	1.424					
$\boldsymbol{v / c}$ Change	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 2 1 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$					

- Soquel Avenue / $40^{\text {th }}$ Avenue \& Gross Road (Intersection \#9). During the PM peak hour, the Project would cause delays at this intersection to go from 37.1 seconds (LOS E) to 78.3 sections (LOS F) if no improvements were installed, but installation of the diverter proposed below would eliminate the intersection and therefore any associated delay. The Project does increase the v/c by more than one percent in both the AM or PM Peak times as indicated below in Table T-32 (v/c ratio increasing from 10.09-23.57\% at critical movements).

Kimley»)Horn

| Table T-32 - Soquel Avenue / 40
 (In
 (Intersection \#9)
 Critical Movement v/C Calculation | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Intersection 9 | | | | |
| AM Peak | | | | |
| Condition | EBLT+WBT | WBLT+EBT | NBLT+SBT | SBLT+NBT |
| Near Term (v/c) | 0.199 | 0.199 | 0.393 | 0.393 |
| Near Term + Project (v/c) | 0.224 | 0.224 | 0.485 | 0.485 |
| v/c Change | 12.56% | $\mathbf{1 2 . 5 6 \%}$ | $\mathbf{2 3 . 4 1 \%}$ | $\mathbf{2 3 . 4 1 \%}$ |
| PM Peak | | | | |
| Condition | EBLT+WBT | WBLT+EBT | NBLT+SBT | SBLT+NBT |
| Near Term (v/c) | 0.803 | 0.803 | 0.997 | 0.997 |
| Near Term + Project (v/c) | 0.884 | 0.884 | 1.232 | 1.232 |
| v/c Change | 10.09% | 10.09% | $\mathbf{2 3 . 5 7 \%}$ | $\mathbf{2 3 . 5 7 \%}$ |

- Same improvements as described in Existing Plus Project Conditions for this intersection.
- $41^{\text {st }}$ Avenue \& Highway 1 Southbound Ramps (Intersection \#14). During the AM peak hour, the Project would cause delays at this intersection to go from 54.4 seconds (LOS D) to 60.1 sections (LOS E). The Project does increase the v/c by more than one percent in both the AM or PM Peak times as indicated below in Table T-33 v/c ratio increasing from $0-3.85 \%$ increase at critical movements).

Table T-33 - 41 st Ramps (Intersection \#14) Critical Movement v/c Calculation					
AM Peak					
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT	
Near Term (v/c)	1.41	1.41	0.26	0.32	
Near Term + Project (v/c)	1.41	1.41	0.27	0.32	
v/c Change	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$	3.85%	$\mathbf{0 . 0 0 \%}$	
PM Peak					
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT	
Near Term (v/c)	0.69	0.69	0.32	0.47	
Near Term + Project (v/c)	0.69	0.69	0.33	0.48	
v/c Change	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$	3.13%	$\mathbf{2 . 1 3 \%}$	

- Same improvements as described in Existing Plus Project Conditions for this intersection.

Kimley»)Horn

- $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15). During the AM peak hour, the Project would cause delays at this intersection to go from 37.5 seconds (LOS D) to 45.2 sections (LOS D) and during the PM peak hour, the Project would cause delays to go from 51.0 seconds (LOS D) to 55.6 sections (LOS E).
- The Project does increase the volume to capacity ("v/c") by more than one percent in both the AM or PM Peak times as indicated below in Table T-34.

Table T-34-41 ${ }^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) Critical Movement v/c Calculation				
Intersection 15				
AM Peak				
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Near Term (v/c)	0.54	0.54	1.40	1.35
Near Term + Project (v/c)	0.56	0.56	1.87	1.35
v/c Change	3.70\%	3.70\%	33.57\%	0.00\%
PM Peak				
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Near Term (v/c)	1.32	1.31	1.32	1.34
Near Term + Project (v/c)	1.40	1.38	1.48	1.34
$v /$ Change	6.06\%	5.34\%	12.12\%	0.00\%

- Same improvements as described in Existing Plus Project Conditions for this intersection, which will eliminate the all way stop and any associated delay at this intersection.
- Brommer Street \& $30^{\text {th }}$ Avenue (Intersection \#24). During the PM peak hour, the Project would cause delays at this intersection to go from 55.7 seconds (LOS F) to 56.5 seconds (LOS F). The Project does increase the v/c by more than one percent in both the AM or PM Peak times as indicated below in Table T-35 (v/c ratio increasing from 0.31-1.65\% at critical movements).

Kimley»)Horn

| Table T-35 - Brommer Street \& 30
 (th
 \#24) Avenue (Intersection
 Critical Movement v/c Calculation | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AM Peak | | | | |
| Condition | EBLT+WBT | WBLT+EBT | NBLT+SBT | SBLT+NBT |
| Near Term (v/c) | 1.010 | 1.010 | 0.738 | 0.738 |
| Near Term + Project (v/c) | 1.014 | 1.014 | 0.750 | 0.750 |
| v/c Change | $\mathbf{0 . 4 0 \%}$ | $\mathbf{0 . 4 0 \%}$ | $\mathbf{1 . 6 3 \%}$ | $\mathbf{1 . 6 3 \%}$ |
| PM Peak | | | | |
| Condition | EBLT+WBT | WBLT+EBT | NBLT+SBT | SBLT+NBT |
| Near Term (v/c) | 1.912 | 1.912 | 0.908 | 0.908 |
| Near Term + Project (v/c) | 1.918 | 1.918 | 0.923 | 0.923 |
| v/c Change | $\mathbf{0 . 3 1 \%}$ | $\mathbf{0 . 3 1 \%}$ | $\mathbf{1 . 6 5 \%}$ | $\mathbf{1 . 6 5 \%}$ |

- Same improvements as described in Existing Plus Project Conditions for this intersection, which would improve the intersection to LOS C.

Microsimulation Analysis

The positive effect of the installation of some of these improvements cannot be evaluated using typical LOS analysis, but must be analyzed using microsimulation methodologies instead. LOS (HCM ${ }^{\text {th }}$) is a deterministic traffic analysis methodology, whereas microsimulation (SimTraffic) is a probabilistic/stochastic traffic analysis methodology that can provide more detailed and statistically based measures of effectiveness. ${ }^{42}$

Near Term Plus Project analysis results are presented in Table T-36. Synchro output sheets are provided in Appendix E. A summary of the improvements for intersections operating at a deficient level of service is indicated in Table T-37.

Since the first draft report was compiled in 2019, Caltrans has changed the lane assignment at the intersection of Soquel Avenue \& Highway 1 SB On- and Off-Ramp (Intersection \#5) to include an exclusive eastbound left-turn lane. The approach lanes were restriped to include a separate left-turn lane and a separate through lane. Signal timing sheets available at that time were changed to reflect the new lane configuration and phasing optimized to obtain a representative LOS. This change resulted in a decrease of delay from 28.0 seconds to 20.8 seconds during the AM peak hour and from 29.2 seconds to 21.5 seconds during the PM peak hour. The LOS remains a LOS C for both peak hours. Synchro output sheets are provided in Appendix U.

[^28]

Kimley»)Horn

Kimley»Horn
Expect More. Experience Beter.

Kimley»Horn

\#	Intersection	Table T-36-Near Term Plus Project Conditions Intersection Level of Service													
		Maintaining Agency	Control Type	Near Term Conditions						Near Term Plus Project Conditions					
				AM Peak Hour			PM Peak Hour			AM Peak Hour			PM Peak Hour		
				Movement	Delay	LOS									
1	Soquel Ave \& Capitola Rd	CsC	Signal	-	50.7	D	-	37.6	D	-	51.0	D	-	40.9	D
2	Soquel Ave \& $7^{\text {h }}$ Ave	SCC	Signal	-	21.7	C	-	21.6	C	-	22.9	c	-	21.7	C
3	Soquel Dr / Soquel Ave \& Soquel Ave	Caltrans	Signal	-	29.5	c	-	31.3	c	-	30.3	c	-	33.7	c
4	Soquel Dr \& Paul Sweet Rd/ Hwy 1 On-Off Ramps	Caltrans	Signal	-	57.5	E	-	38.7	D	-	57.5	E	-	38.6	D
5	Soquel Ave \& Hwy 1 SB OnOff Ramps	Caltrans	Signal	-	26.9	C	-	27.5	C	-	28.0	C	-	29.2	C
6	Soquel Ave \& $17^{\text {th }}$ Ave	SCC	Signal	-	8.9	A	-	10.0	B	-	10.4	B	-	11.6	B
7	Soquel Ave \& Chanticleer	SCC	sssc	-	5.4	A	-	2.7	A	-	7.1	A	-	4.3	A
	Worst Approach			NB	13.7	B	NB	16.9	C	NB	21.3	C	-	29.7	D
	Soquel Ave \& MOB Driveway	SCC	$\begin{aligned} & \text { SSSC / } \\ & \text { Signal } \end{aligned}$	-	0.4	A	-	0.2	A	.	5.9	A	-	8.4	A
8	Worst Approach			NB	11.3	B	NB	14.0	B						
9	Soquel Ave / $40^{\text {th }}$ Ave \& Gross Rd	SCC	AWSC	-	10.9	B	-	37.1	E	-	14.8	B	-	78.3	F
10	40th \& Deanes Ln	NOT STUDIED													
11	$40^{\text {th }}$ \& Clares St	NOT STUDIED													
12	$4{ }^{15^{\text {t }} \text { Ave \& Soquel } \mathrm{Dr}}$	SCC	Signal	-	24.1	C	-	42.0	D	-	24.8	C	-	44.3	D
13	$44^{\text {tr }}$ Ave \& Hwy 1 NB Ramps	Caltrans	Signal	-	18.2	B	-	15.4	B	-	18.3	B	-	15.7	B
14	$41^{\text {ts }}$ Ave \& Hwy 1 SB Ramps	Caltrans	Signal	-	54.4	D	-	8.8	A	-	60.1	E	-	9.5	A
15	$4{ }^{\text {st }}$ Ave \& Gross Rd	Caltrans	Signal	-	37.5	D	-	51.0	D	-	45.2	D	-	55.6	E
16	$41^{\text {ts }} \mathrm{Ave}$ \& Clares St	Capitola	Signal	-	23.2	c	-	27.4	C	-	23.5	c	-	27.6	C
17	$41^{\text {st }}$ Ave \& Capitola Rd	Capitola	Signal	-	24.9	C	-	36.4	D	-	25.8	C	-	37.4	D
18	$41^{\text {st }}$ Ave \& Brommer St/Jade St	Capitola	Signal	-	19.0	B	-	28.2	C	-	19.9	B	-	29.2	C
19	Capitola Rd \& $7^{\text {th }}$ Avenue	SCC	Signal	-	20.2	C	-	22.7	C	-	23.0	C	-	26.3	C
20	Capitola Rd \& 17 ${ }^{\text {th }}$ Avenue	SCC	Signal	-	22.5	c	-	33.2	c	-	23.2	c	-	35.6	D
21	Capitola Rd \& Chanticleer Ave	SCC	Signal	-	16.0	B	-	23.7	C	-	16.5	B	-	24.8	C
22	Capitola Rd and $30^{\text {th }} \mathrm{Ave}$	Capitola	Signal	-	21.2	C	-	26.5	c	-	22.3	c	-	27.0	C
23	Brommer St \& $17^{\text {th }}$ Ave	SCC	Signal	-	26.2	C	-	33.6	C	-	26.7	C	-	34.7	C
24	Brommer St \& 30 $0^{\text {th }}$ Ave	SCC	AWSC	-	14.3	B	-	55.7	F	-	14.4	B	-	56.5	F
25	$17^{\text {h }}$ Ave \& Portola Dr	SCC	Signal	-	20.5	C	-	21.2	C	-	20.7	C	-	21.3	C

Notes:

1. Analysis performed using HCM $6^{\text {th }}$ Edition methodologies.
2. Delay indicated in seconds/vehicle
3. Signal $=$ Signal Control; AWSC $=$ All-Way Stop Control; SSSC $=$ Side-Street Stop Control
4. CSC = City of Santa Cruz; Caltrans = California Department of Transportation; SCC = Santa Cruz County; Capitola = City of Capitola
5. CSC LOS standard is D: Caltrans LOS standard is C: SCC LOS standard is D: Capitola does not have a LOS standard for $41^{\text {st }}$ Avenue
6. Intersections that operate below maintaining agency's LOS standard are highlighted and shown in bold.
7. For intersection \#4, The Project does not increase intersection delay or increase critical v/c by 1% or more. Thus, no Project deficiency is caused at this location.
8. Intersection \#5 shows overall LOS as acceptable. See Analysis section on page 72 for additional detail.
9. Intersection \#10 and \#11 were not analyzed in this analysis because the Project is not expected to distribute traffic to these intersections, since a barrier exists at 40th Avenue and Deans Lane and the Project does not propose to remove it (nor are any plans to remove the barrier pending).
etered at intersections \#13 and \#15. Intersections \#14 and \#15 are operated on one signal controller
managed by Caltrans. Caltrans' main objective is to avoid off-ramp queue spillback into the Highway 1 mainline.

Kimley»"Horn

Table T-37 - Improved Near Term Plus Project Conditions Conclusions

Int\#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement
\#9	Soquel Avenue / 40 $0^{\text {th }}$ Avenue \& Gross Road	Near Term and Near Term Plus Project Conditions	The addition of the Project traffic worsens the LOS from E to F in the PM. The critical v / c increases by more than 1% on all the critical approach movements.	Install a diagonal diverter extending from the northwest corner to the southeast corner at this intersection. Residents in the neighborhood would exit the neighborhood at Rodeo Gulch Drive onto Soquel Avenue. If this improvement is not installed, cut through traffic along Gross Road and the delay at the $41^{\text {st }}$ Avenue intersection will continue and degrade further in the future until the freeway is improved. The diverter will prevent cut through traffic on Gross Road through the residential neighborhood and eliminate the congestion caused by the all-way stop at the intersection. Queues at this intersection are expected to shorten with these recommended improvements. This commute is slightly longer than the direct connection to $41^{\text {st }}$ Avenue via Gross Road, but the benefits of removing cut through traffic through the neighborhood and the improvement of operations at the Gross Road/40 th Avenue intersection, warrants the installation of this improvement. With this improvement, traffic flow at this intersection would then be governed by the signal at Gross Road \& $41^{\text {st }}$ Avenue where additional improvements are recommended. The improvement will remove the deficiency caused by the Project. With this improvement, all movements would be uncontrolled; therefore, no delay would be attributed to this intersection (i.e., the only delay would be incurred at the $41^{\text {st }}$ Avenue \& Gross Road signalized intersection). This improvement would cause travel time from Soquel Dr \& Rodeo Gulch Rd to SB Hwy 1 on-ramp to decrease by approximately 44\% when comparing Existing (No Project) to Existing Plus Project conditions. See Appendix M for the proposed layout. In addition, the current cut-through traffic along Gross Road through the neighborhood would also be eliminated.

Kimley»"Horn

Table T-37 - Improved Near Term Plus Project Conditions Conclusions

Int\#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement
\#14	 Highway 1 Southbound Ramps	Near Term and Near Term Plus Project Conditions	The addition of the Project traffic worsens the LOS from D to E in the AM. The critical v / c increases by more than 1%.	Caltrans certified the EIR for the Santa Cruz Route 1 Tier 1- Corridor Analysis of High Occupancy Vehicle Lanes and Transportation System Management Alternatives and Tier II- Build Project Analysis of $41^{\text {st }}$ Avenue to Soquel Avenue/Rive Auxiliary Lanes and Chanticleer Avenue Pedestrian-Bicycle Overcrossing. The EIR identifies long term improvement projects for providing capacity at the interchanges and along the rail line. The TSM improvements at the $41^{\text {st }}$ Avenue interchange include ramps widening and improvements and the overcrossing would be widened. The TSM improvements are unconstrained (not fully funded) and until funding becomes available, the operational deficiency would remain. The improvement is expected to remove the deficiency caused by the Project. The State Route 1 HOV Lane Widening Project Supplemental Report (May 2010) analyzed these improvements for the Santa Cruz Route 1 Tier I and Tier II FEIR and the results are included in for Appendix P reference. https://sccrtc.org/projects/streets-highways/hwy1corridor/environmental-documents.

Kimley»"Horn

Table T-37 - Improved Near Term Plus Project Conditions Conclusions

Int\#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement

Kimley»"Horn

Table T-37 - Improved Near Term Plus Project Conditions Conclusions

Int\#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement
\#24	Brommer Street \& $30^{\text {th }}$	Near Term and Near Term Plus Project Conditions	The intersection operates at LOS F in PM Peak without Project and continues to operate at LOS F with the Project. The average delay increases from 55.7 seconds per vehicle to 56.5 seconds per vehicle with the addition of the Project traffic. The critical v/c increases by more than 1% on the northbound and southbound critical movements.	Install signal control with permissive left-turn phasing. Peak Hour Signal Warrant \#3 (CAMUTCD) is satisfied with Existing Conditions traffic and in Existing plus Project Conditions traffic. With existing geometry, signal control, eastbound/westbound split phasing, and permissive left-turn phasing, this intersection would operate at acceptable LOS with Cumulative Plus Project conditions traffic volumes. The Peak Hour Signal Warrant \#3 evaluation is included in Appendix J . For Near Term Conditions the intersection will improve the PM delay by 30.9 seconds per vehicle with installation of the signal. The Project would pay a fair share towards the installation of the signal. The deficiency caused by the Project will be eliminated with the installation of the signal.

Kimley»)Horn

Conclusions - Near Term Plus Project

The implementation of the improvements described above will eliminate the deficiencies caused by the Project or will improve the conditions to better than existing conditions.

Cumulative Conditions

Traffic operations were evaluated under the following cumulative conditions:

- Cumulative (2040) Conditions
- Cumulative (2040) Plus Project Conditions

The Cumulative (2040) Conditions (also referred to as "Cumulative") and Cumulative (2040) Plus Project Conditions (also referred to as "Cumulative Plus Project") analyses assume that signal timing changes (such as signal cycle lengths, offsets, and splits) will be implemented prior to 2040 to service traffic pattern changes and growth. Local intersection geometric operational improvements could be implemented as part of future development projects and as part of the County's ongoing signal retiming program. Santa Cruz County Regional Transportation Commission ("SCCRTC") and Caltrans are also planning several Highway 1 main line and interchanges. Auxiliary lanes and High Occupancy Vehicle (HOV) lanes are planned for construction along Highway 1 in the study area. Status of the planning, design and improvements is continuously updated on the SCC RTC website ${ }^{43}$. These planned improvements are described in detail in Chapter 7 of this report.

No physical capacity lane improvements (geometric), new signal installation, or signal phasing changes that would require signal modifications, including those mentioned in the County's RTP, are included in the Cumulative or Cumulative Plus Project analyses as opposed to the Cumulative Plus Project improved conditions. Thus, all the freeway and the intersection geometries analyzed in the Cumulative and Cumulative Plus Project scenarios are assumed to be identical to the Existing and Near-Term Conditions intersection geometries.

The County's RTP identifies multiple funded, partially funded, and unfunded multimodal improvements in the Project study area (See Figure F-1) and bulleted below). These improvements are for informational purposes, and not included in the Cumulative or Cumulative Plus Project Analysis.

- $37^{\text {th }} / 38^{\text {th }}$ Avenue (Brommer Street to Eastcliff Drive) Multimodal Circulation Improvements and Greenway
- $41^{\text {st }}$ Ave Improvements Phase 2 (Hwy 1 Interchange to Soquel Drive)
- Chanticleer Avenue Improvements (Hwy 1 to Soquel Drive)
- Countywide ADA Access Ramps
- Countywide Bike Projects
- Countywide Sidewalks
- Mattison Lane Improvements (Chanticleer Avenue to Soquel Avenue)

[^29]
Kimley»)Horn

- Paul Minnie Avenue Improvements (Rodriguez Street to Soquel Avenue)
- Paul Sweet Road Improvements (Soquel Drive to end)
- Soquel Avenue Improvements (City of SC to Gross Road)
- Soquel Drive Traffic Signal and Left-Turn Lane (Robertson Street)

The full RTP list of improvements is included in Appendix K and if implemented, will alleviate congestion on the network.

Figure F-19 illustrates the intersection geometry and traffic control used in the Cumulative analysis.

Cumulative Volumes

Cumulative volumes in the study area were determined based on the SCCRTC Travel Demand Model, which was updated for 2019 "base year" conditions and 2040 "future year" condition. Land uses for the 2040 future year condition include reasonable growth consistent with the growth nodes in the Sustainable Santa Cruz County Plan (2014) and some major projects such as the proposed redevelopment of the Capitola Mall, the redevelopment of the Farmers Market site, and the expansion of the Dignity Healthcare Campus. Land use assumptions for future growth was provided by County Staff. These are all in the vicinity of the Project and also includes redevelopment growth and other natural growth anticipated in the County, also from AMBAG.

2040 future year condition roadway segment volumes from the SCCRTC Travel Demand Model were obtained for Cumulative traffic volume growth estimates. The same Model was used to plot bi-directional AM and PM peak-hour traffic volumes on each segment along roadways within the Project study area. The 2019 base year (2019) and future year (2040) forecast volumes were compared to determine the annual incremental growth in traffic volumes at study intersection approach and departure links. 2040 future year turning movement volumes were calculated by adding the growth increment to the base year traffic count volumes to calculate the final adjusted roadway link forecast volume. Final adjusted forecast volumes were then converted to Cumulative intersection turning movement volumes using a process commonly referred to as the Furness Method. The Furness Method uses an iterative process to derive future turning movement volumes based on future year roadway link volumes and an initial estimate of turning percentages (obtained from the existing intersection turning movement counts).

This TIOA report assumes that the SCCRTC Travel Demand Model, updated in July 2020, includes a reasonable estimate of growth in the Project study area and that future development projects approved or anticipated at the time that this TIOA was prepared (as provided by the County) were incorporated into the Travel Demand Model and, therefore, the Cumulative analyses. No additional manual assignments or adjustments were made to the Travel Demand Model or volume forecasts.

Changes in land use and improvements to the regional and local road network including Highway 1 in 2040 Conditions results in some local street cut through traffic diverting back to the freeway. Because of relatively low growth in some areas of the County, this may result in a slight reduction in Cumulative model volumes compared to Background Conditions. To be conservative, volumes

Kimley»)Horn

entering the intersection for Cumulative Conditions were not reduced between Near Term Condition and Cumulative Conditions.

Cumulative peak hour traffic volumes are shown in Figure F-20.

Cumulative (2040) Conditions Intersection Level of Service

Traffic operations were evaluated at the study intersections based on Cumulative lane geometry and intersection control as shown in Figure F-19 and Cumulative peak hour turning movement volumes as shown in Figure F-20.

The following intersections operate at an unacceptable LOS under Cumulative conditions:

- Soquel Drive \& Paul Sweet Road (Intersection \#4) (PM Peaks)
- Soquel Avenue / 40 th Avenue \& Gross Road (Intersection \#9) (PM Peak)
- $41^{\text {st }}$ Avenue \& Highway 1 SB Ramps (Intersection \#14) (AM Peak)
- $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) (AM \& PM Peaks)
- Brommer Street \& $30^{\text {th }}$ Avenue (Intersection \#24) (PM Peak)

Results of the analysis are presented in Table T-38 and Synchro output sheets are provided in Appendix F.

Since the first draft report was compiled in 2019, Caltrans has changed the lane assignment at the intersection of Soquel Avenue \& Highway 1 SB On- and Off-Ramp (Intersection \#5) to include an exclusive eastbound left-turn lane. The approach lanes were restriped to include a separate left-turn lane and a separate through lane. Signal timing sheets available at that time were changed to reflect the new lane configuration and phasing optimized to obtain a representative LOS. This change resulted in a decrease of delay from 27.4 seconds to 22.0 seconds during the AM peak hour and from 30.4 seconds to 19.1 seconds during the PM peak hour. The LOS remains a LOS C during the AM peak hour and will improve to a LOS B in the PM peak hour. Synchro output sheets are provided in Appendix \mathbf{U}.

Kimley») Horn
Expect More. Experience Beter.

19	20	21	22
	Rd	Cappoloa Rd $^{(1)}$ Capatia Rd	Capiola Rd

$\begin{aligned} 80(566) \\ \substack{175(577) \\ 109(244)} \\ \longrightarrow \end{aligned}$	

Kimley»Horn

Kimley»"Horn

Table T-38-Cumulative (2040) Conditions Intersection Level of Service									
\#	Intersection	Maintaining Agency	Control Type	Cumulative Conditions					
				AM Peak Hour			PM Peak Hour		
				Movement	Delay	LOS	Movement	Delay	LOS
1	Soquel Ave \& Capitola Rd	CSC	Signal	-	25.3	C	-	42.6	D
2	Soquel Ave \& $7^{\text {th }}$ Ave	SCC	Signal	-	22.5	C	-	26.5	C
3	Soquel Dr / Soquel Ave \& Soquel Ave	Caltrans	Signal	-	29.7	C	-	32.9	C
4	Soquel Dr \& Paul Sweet Rd/ Hwy 1 OnOff Ramps	Caltrans	Signal	-	53.9	D	-	40.7	D
5	Soquel Ave \& Hwy 1 SB On-Off Ramps	Caltrans	Signal	-	27.4	C	-	30.4	C
6	Soquel Ave \& $17^{\text {th }}$ Ave	SCC	Signal	-	8.9	A	-	9.7	A
7	Soquel Ave \& Chanticleer	SCC	SSS	-	5.3	A	-	3.0	A
7	Worst Approach	SCC	SSS	NB	15.3	C	NB	23.2	C
8	Soquel Ave \& MOB Driveway	SCC	SSSC	-	0.4	A	-	0.2	A
8	Worst Approach	SCC	SSS	NB	11.6	B	NB	15.7	C
9	Soquel Ave / 40 ${ }^{\text {th }}$ Ave \& Gross Rd	SCC	AWSC	-	12.3	B	-	54.8	F
10	$40^{\text {TH }}$ Ave \& Deanes Ln	NOT STUDIED							
11	$40^{\text {th }}$ Ave \& Clares St	NOT STUDIED							
12	$41^{\text {st }}$ Ave \& Soquel Dr	SCC	Signal	-	25.3	C	-	26.1	C
13	$41^{\text {st }}$ Ave \& Hwy 1 NB Ramps	Caltrans	Signal	-	18.0	B	-	15.6	B
14	$41^{\text {st }}$ Ave \& Hwy 1 SB Ramps	Caltrans	Signal	-	46.9	D	-	8.6	A
15	$41^{\text {st }}$ Ave \& Gross Rd	Caltrans	Signal	-	44.9	D	-	47.2	D
16	$41^{\text {st }}$ Ave \& Clares St	Capitola	Signal	-	24.8	C	-	27.2	C
17	$41^{\text {st }}$ Ave \& Capitola Rd	Capitola	Signal	-	27.7	C	-	43.0	D
18	$41^{\text {st }}$ Ave \& Brommer St/Jade St	Capitola	Signal	-	19.3	B	-	28.5	C
19	Capitola Rd \& $7^{\text {th }}$ Avenue	SCC	Signal	-	20.3	C	-	24.1	C
20	Capitola Rd \& 17 ${ }^{\text {th }}$ Avenue	SCC	Signal	-	21.3	C	-	33.6	C
21	Capitola Rd \& Chanticleer Ave	SCC	Signal	-	16.4	B	-	24.9	C
22	Capitola Rd and $30{ }^{\text {th }}$ Ave	Capitola	Signal	-	23.0	C	-	29.1	C
23	Brommer St \& $17^{\text {th }}$ Ave	SCC	Signal	-	22.2	C	-	27.2	C
24	Brommer St \& $30^{\text {th }}$ Ave	SCC	AWSC	-	12.2	B	-	41.2	E
25	$17^{\text {th }}$ Ave \& Portola Dr	SCC	Signal	-	19.5	B	-	20.9	C

Notes:

1. Analysis performed using $\mathrm{HCM}^{6}{ }^{\text {th }}$ Edition methodologies.
2. Delay indicated in seconds per vehicle.
3. Signal = Signal Control; AWSC = All-Way Stop Control; SSSC = Side-Street Stop Control
4. CSC = City of Santa Cruz; Caltrans = California Department of Transportation; SCC = Santa Cruz County; Capitola = City of Capitola
5. CSC LOS standard is D; Caltrans LOS standard is C; SCC LOS standard is D; Capitola does not have a LOS standard for $41^{\text {st }}$ Avenue.
6. Intersections that operate below maintaining agency's LOS standard are highlighted and shown in bold.
7. For intersection \#4, The Project does not increase intersection delay or increase critical v/c by 1% or more. Thus, no Project deficiency is caused at this location.
8. Intersection \#5 shows overall LOS as acceptable. See Analysis section on page 72 for additional detail.
9. Intersection \#10 and \#11 were not analyzed in this analysis because the Project is not expected to distribute traffic to these intersections, since a barrier exists at $40^{\text {th }}$ Avenue and Deans Lane and the Project does not propose to remove it (nor are any plans to remove the barrier pending).

Kimley»"Horn

10. Intersection \#14 operates at LOS A in the PM because traffic to the intersection is controlled/metered at intersections \#13 and \#15. Intersections \#14 and \#15 are operated on one signal controller, managed by Caltrans. Caltrans' main objective is to avoid off-ramp queue spillback into the Highway 1 mainline.

Kimley») Horn

Cumulative (2040) Plus Project Conditions Intersection Level of Service

Traffic operations were evaluated at the study intersections based on Cumulative (2040) Plus Project Conditions. Cumulative Plus Project lane geometry and intersection control is shown in Figure F-21 and Cumulative Plus Project peak hour turning movement volumes are shown in Figure F-22.

No study intersections will degrade from an acceptable LOS (without the Project) to an unacceptable LOS (with the Project). However, the following intersections already operating at deficient LOS in the Cumulative scenario will degrade further with addition of Project traffic.

- Soquel Drive / Soquel Avenue \& Soquel Avenue (Intersection \#3) (PM Peaks)
- Soquel Drive \& Paul Sweet Road / Highway 1 On-Off Ramps (Intersection \#4) (AM \& PM Peaks).
- Soquel Avenue / Chanticleer Avenue (Intersection \#7) (PM Peak)
- Soquel Avenue / 40 ${ }^{\text {th }}$ Avenue \& Gross Road (Intersection \#9) (PM Peak)
- $41^{\text {st }}$ Avenue \& Highway 1 SB Ramps (Intersection \#14) (AM Peak)
- $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) (AM \& PM Peaks)
- Brommer Street \& $30^{\text {th }}$ Avenue (Intersection \#24) (PM Peak)

Kimley») Horn

	$20{ }^{20}$		

Kimley»Horn

Kimley»)Horn

The following intersections will continue to operate at an unacceptable LOS under Cumulative Plus Project Conditions and the below-described improvements would improve the potential operational deficiencies. Pursuant to the County's General Plan LOS Policy 3.12.1, the Project will contribute to the deficiency at County maintained intersections if the v/c ratio of any critical movements at the following intersections increase by 1% or more with the Project. The v/c analysis is inapplicable, however, if improvements can eliminate operational deficiencies by causing intersections to operate at LOS D or better. Also, the County's General Plan LOS Policy is not applicable to Caltrans managed Intersection Nos. 3, 4, 14 and 15; the analysis provided below for those intersections is therefore for informational purposes only.

- Soquel Drive / Soquel Avenue \& Soquel Avenue (Intersection \#3) (PM Peaks). During the PM peak hour, the Project would cause delays at this intersection to go from 32.9 seconds (LOS C) to 39.6 sections (LOS D). The planned Caltrans improvements described below are anticipated to eliminate any deficiency at this intersection.
- Caltrans plans to widen Highway 1/Soquel Drive interchange. One westbound leftturn lane, one westbound right-turn lane, and a new southbound Highway 1 offramp will be constructed at this intersection. A conceptual layout is shown in Appendix \mathbf{N}^{44}. Implementation of these improvements would reduce the Projectrelated operational deficiency under Cumulative Plus Project conditions. However, these improvements are currently unfunded, are not included in the County Capital Improvement Project (CIP), and may be constructed after 2040. The Cumulative operations will be deficient until the improvement is constructed.
- It should be noted that any other incremental roadway geometric improvements (band-aid/small improvements to the freeway system - see Existing Conditions for more detail - at the intersection will not meet Caltrans standards and will ultimately require the above improvement to meet those standards. In addition, Intersection \#3 is geometrically constrained and any interim improvements, such as an additional northbound left-turn movement from Soquel Avenue to Soquel Avenue, would result in truck and vehicle turning maneuver conflicts and encroachment on the opposing and/or adjacent lane of travel.
- It should also be noted that, consistent with SB 743, Caltrans evaluates a land use project's impacts on the state highway system utilizing VMT, rather than congestion or capacity related metrics, such as LOS or v/c. (Caltrans, "Vehicle Miles Traveled-Focused Transportation Impact Study Guide, (May 20, 2020), see pp. 4-5.) It is unclear whether Caltrans will proceed with travel inducing projects, such as the capacity enhancing improvement described above. With this improvement the intersection is expected to operate at acceptable conditions. Caltrans has assumed growth in their forecasting of traffic on the freeway system through 2040.

[^30]
Kimley»)Horn

- Soquel Drive \& Paul Sweet Road / Hwy 1 On- Off-Ramps (Intersection \#4). Both with and without the Project, during the Cumulative (2040) Condition, this intersection will experience 53.9 seconds of delay in the AM peak hour (LOS D) and 40.7 seconds of delay during the PM peak hour (LOS D). The Project does not contribute to any deficiency at this intersection in terms of delay or increasing the v / c ratio by more than 1% at any critical movement. The planned Caltrans improvements described below are anticipated to eliminate the non-Project related deficiency at this intersection.
- Caltrans plans to widen Highway 1/Soquel Drive interchange per the Highway 1 EIR certified in December 2018 and referenced throughout this TIOA document. The westbound left-turn lane will be converted to a through lane. One westbound right-turn lane, northbound left-turn lane, and an eastbound right-turn bay will be installed at this intersection. It is anticipated that the improvement will eliminate the deficiency. A detailed layout is shown in Appendix M. However, these improvements are currently unfunded, are not included in the County's CIP and may be constructed after 2040. The Cumulative operations will remain deficient until the improvements are constructed.
- It should also be noted that, consistent with SB 743, Caltrans evaluates a land use project's impacts on the state highway system utilizing VMT, rather than congestion or capacity related metrics, such as LOS or v/c. (Caltrans, "Vehicle Miles Traveled-Focused Transportation Impact Study Guide, (May 20, 2020), see pp. 4-5.)
- The Project would not contribute any delay to this intersection during the AM or PM peak hour because it does not increase the volume to capacity ("v/c") by more than one percent in either the AM or PM Peak times as indicated below Table T-39 (at the most it increases the v/c by 0.18 percent).

Table T-39- Soquel Drive \& Paul Sweet Road / Hwy 1 On-Off Ramps (Intersection \#4) Critical Movement v/c Calculation Antersection 4 Peak Condition EBLT+WBT WBLT+EBT				
Cumulative (v/c)	2.225	0.933	1.642	1.369
Cumulative + Project (v/c)	2.227	0.934	1.642	1.369
v/c Change	$\mathbf{0 . 0 9 \%}$	$\mathbf{0 . 1 1 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$
PM Peak				
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Cumulative (v/c)	1.549	1.101	1.799	0.389
Cumulative + Project (v/c)	1.549	1.103	1.799	0.389
v/c Change	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 1 8 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 0 0 \%}$

Kimley»)Horn

- Soquel Avenue / Chanticleer Avenue (Intersection \#7). During the PM peak hour, the Project would cause delays the northbound movement of this intersection to go from 23.2 seconds (LOS D) to 53.1 seconds (LOS F) if no improvements were installed, but if the TWLTL (described below) is installed, the intersection would operate at LOS C with 20.9 seconds of delay in the Cumulative Plus Project condition.
- The Project will implement approximately 3,500 feet of TWLTL striping (and restriping) along Soquel Avenue from Paul Minnie Avenue to the existing creek crossing (east of Mattison Lane). These striping improvements will include restriping of the existing bike lanes and the addition of new green bike lane striping. Conceptual layouts for these Project improvements are included in Appendix I. This will improve the gap acceptance (the ability of a driver to observe a gap in the traffic stream and merge into the travel lane) for vehicles wishing to enter the traffic stream from Chanticleer onto Soquel Avenue. In addition, the installation of the signal at the Project driveway will generate gaps in the traffic stream during the yellow and red phase, which would them provide an opportunity for side street vehicles to enter the traffic stream on northbound Soquel Avenue.
- As noted above, the TWLTL eliminates the deficiency for the northbound movement of this intersection in the Cumulative Plus Project condition and the LOS will improve from F to D .
- Soquel Avenue / $40^{\text {th }}$ Avenue \& Gross Road (Intersection \#9). During the PM peak hour, the Project would cause delays at this intersection to go from 54.8 seconds (LOS E) to 105.9 sections (LOS F) if no improvements were installed, but installation of the diverter proposed below would eliminate the intersection and therefore any associated delay.
- Same improvements as described in Existing Plus Project Conditions for this intersection, which would eliminate the all way stop and any associated delay at this intersection.
- If the diverter were not installed at this intersection, as indicated below in Table T40, the Project would increase the v / c by more than one percent during the AM peak and PM peak hours (v/c increase is $10.28 \%-22.96 \%$ at critical movements). Installation of the diverter, however, eliminates all delay at this intersection for both the existing vehicles and the added Project vehicles.

Kimley»)Horn

Table T-40 - Soquel Avenue / 40 th (Intersection \#venue \& Gross Road (Critical Movement v/c Calculation				
Intersection 9				
AM Peak				
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Cumulative (v/c)	0.214	0.214	0.448	0.448
Cumulative + Project (v/c)	0.243	0.243	0.548	0.548
v/c Change	13.55%	$\mathbf{1 3 . 5 5 \%}$	$\mathbf{2 2 . 3 2 \%}$	$\mathbf{2 2 . 3 2 \%}$
PM Peak				
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Cumulative (v/c)	0.895	0.895	1.189	1.189
Cumulative + Project (v/c)	0.987	0.987	1.462	1.462
v/c Change	$\mathbf{1 0 . 2 8 \%}$	$\mathbf{1 0 . 2 8 \%}$	$\mathbf{2 2 . 9 6 \%}$	$\mathbf{2 2 . 9 6 \%}$

- $41^{\text {st }}$ Avenue \& Highway 1 Southbound Ramps (Intersection \#14). During the AM peak hour, the Project would cause delays at Intersection \#14 to go from 46.9 seconds (LOS D) to 51.7 seconds (LOS D). The Project increases the v/c by more than one percent in the AM Peak hour as indicated below in Table T-41 (v/c increase is 7.41% at one critical movement).
- Caltrans certified an EIR for the Santa Cruz Route 1 Tier 1-Corridor Analysis of High Occupancy Vehicle Lanes and Transportation System Management Alternatives and Tier II- Build Project Analysis of $41^{\text {st }}$ Avenue to Soquel Avenue/ Rive Auxiliary Lanes and Chanticleer Avenue Pedestrian-Bicycle Overcrossing in December 2018, which identifies long term improvement projects for providing capacity at this interchange. The identified improvements at the $41^{\text {st }}$ Avenue interchange include ramps widening and improvements and the overcrossing would be widened. These improvements are unconstrained and until funding becomes available, the deficiency would remain.
- Consistent with SB 743, Caltrans evaluates a land use project's impacts on the state highway system utilizing VMT, rather than congestion or capacity related metrics, such as LOS or v/c (Caltrans, "Vehicle Miles Traveled-Focused Transportation Impact Study Guide, (May 20, 2020), see pp. 4-5.). It is unclear whether Caltrans will proceed with travel inducing projects, such as the capacity enhancing improvement described above.

Kimley»"Horn

Table T-41 - 41 ${ }^{\text {st }}$ Avenue \& Highway 1 Southbound Ramps (Intersection \#14) Critical Movement v/c Calculation				
Intersection 14				
AM Peak				
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Cumulative (v/c)	1.29	1.29	0.27	0.39
Cumulative + Project (v/c)	1.29	1.29	0.29	0.39
v/c Change	0.00\%	0.00\%	7.41\%	0.00\%
PM Peak				
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Cumulative (v/c)	0.60	0.60	0.33	0.45
Cumulative + Project (v/c)	0.60	0.60	0.33	0.45
v/c Change	0.00\%	0.00\%	0.00\%	0.00\%

- $41^{\text {st }}$ Avenue \& Gross Road (Intersection \#15). During the AM peak hour, the Project would cause delays at this intersection to go from 44.9 seconds (LOS D) to 55.6 sections (LOS E). During the PM peak hour, the Project would cause delays to go from 47.2 seconds (LOS D) to 52.2 seconds (LOS D). The Project increases the v/c by more than one percent in the AM peak and PM peak hours as indicated below in Table T-42 (v/c ratio increasing from 3.57-29.68\%).
- Same improvements as described in Existing Plus Project Conditions for this intersection, but the intersection would continue to operate at LOS F.
- The Project increases the v / c by more than one percent in the AM peak and PM peak hours as indicated below in Table T-42 (v/c increase ranging from 3.57% to 29.68\%).

Table T-42 - 41 ${ }^{\text {st }}$ Avenue \& Gross Road (Intersection \#15) Critical Movement v/c Calculation				
Intersection 15				
AM Peak				
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Cumulative (v/c)	0.56	0.56	1.55	1.54
Cumulative + Project (v/c)	0.59	0.58	2.01	1.54
v/c Change	5.36\%	3.57\%	29.68\%	0.00\%
PM Peak				
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT
Cumulative (v/c)	1.36	1.35	1.42	1.31
Cumulative + Project (v/c)	1.44	1.42	1.58	1.31
v / c Change	5.88\%	5.19\%	11.27\%	0.00\%

Kimley»Horn

- Brommer Street \& $30^{\text {th }}$ Avenue (Intersection \#24). During the PM peak hour, the Project would cause delays at this intersection to go from 41.2 seconds (LOS E) to 41.9 seconds (LOS E). The Project increases the v/c by more than one percent in the AM peak and PM peak hours as indicated below in Table T-43 (v/c ratio increasing from 0.51-1.92\%)
- Same improvements as described in Existing Plus Project Conditions for this intersection, which would result in the intersection operating at LOS C.

Table T-43 - Brommer Street \& 30 ${ }^{\text {th }}$ Avenue (Intersection \#24) Critical Movement v/c Calculation

Intersection 24					
AM Peak					
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT	
Cumulative (v/c)	0.785	0.785	0.695	0.695	
Cumulative + Project (v/c)	0.789	0.789	0.703	0.703	
\boldsymbol{v} / c Change	$\mathbf{0 . 5 1 \%}$	$\mathbf{0 . 5 1 \%}$	$\mathbf{1 . 1 5 \%}$	$\mathbf{1 . 1 5 \%}$	
PM Peak					
Condition	EBLT+WBT	WBLT+EBT	NBLT+SBT	SBLT+NBT	
Cumulative (v/c)	1.728	1.728	0.886	0.886	
Cumulative + Project (v/c)	1.744	1.744	0.903	0.903	
$\boldsymbol{v / c}$ Change	$\mathbf{0 . 9 3 \%}$	$\mathbf{0 . 9 3 \%}$	$\mathbf{1 . 9 2 \%}$	$\mathbf{1 . 9 2 \%}$	

Microsimulation Analysis

The positive effect of the installation of some of these improvements cannot be evaluated using typical LOS analysis, but must be analyzed using microsimulation methodologies instead. LOS (HCM ${ }^{\text {th }}$) is a deterministic traffic analysis methodology, whereas microsimulation (SimTraffic) is a probabilistic/stochastic traffic analysis methodology that can provide more detailed and statistically based measures of effectiveness. ${ }^{45}$

Cumulative Plus Project analysis results are presented in Table T-44. Synchro output sheets are provided in Appendix G. A summary of the improvements for intersections operating at a deficient level of service is indicated in Table T-45.

Since the first draft report was compiled in 2019, Caltrans has changed the lane assignment at the intersection of Soquel Avenue \& Highway 1 SB On- and Off-Ramp (Intersection \#5) to include an exclusive eastbound left-turn lane. The approach lanes were restriped to include a separate left-turn lane and a separate through lane. Signal timing sheets available at that time were changed to reflect the new lane configuration and phasing optimized to obtain a representative LOS. This change resulted in a decrease of delay from 28.6 seconds to 21.7 seconds during the AM peak hour and from 32.8 seconds to 19.4 seconds during the PM peak hour. The LOS remains

[^31]
Kimley»)Horn

a LOS C during the AM peak hour and will improve to a LOS B in the PM peak hour. Synchro output sheets are provided in Appendix U.

Kimley»Horn

Table T-44 - Cumulative Plus Project Conditions Intersection Level of Service

\#	Intersection	Maintaining Agency	Control Type	Cumulative Conditions						Cumulative Plus Project Conditions					
				AM Peak Hour			PM Peak Hour			AM Peak Hour			PM Peak Hour		
				Movement	Delay	LOS									
1	Soquel Ave \& Capitola Rd	CSC	Signal	-	25.3	C	-	42.6	D	-	25.2	C	-	47.1	D
2	Soquel Ave \& $7^{\text {th }}$ Ave	SCC	Signal	-	22.5	C	-	26.5	C	-	23.7	C	-	26.9	C
3	Soquel Dr / Soquel Ave \& Soquel Ave	Caltrans	Signal	-	29.7	C	-	32.9	C	-	31.0	C	-	39.6	D
4	Soquel Dr \& Paul Sweet Rd / Hwy 1 On- OffRamps	Caltrans	Signal	-	53.9	D	-	40.7	D	-	53.9	D	-	40.7	D
5	Soquel Ave \& Hwy 1 SB On-Off Ramps	Caltrans	Signal	-	27.4	C	-	30.4	C	-	28.6	C	-	32.8	C
6	Soquel Ave \& 17 ${ }^{\text {th }}$ Ave	SCC	Signal	-	8.9	A	-	9.7	A	-	10.5	B	-	11.8	B
7	Soquel Ave \& Chanticleer	SCC	SSSC	${ }^{-}$	5.3	A	${ }^{-}$	3.0	A	${ }^{-}$	7.8	A	${ }^{-}$	6.1	A
	Worst Approach			NB	15.3	C	NB	23.2	C	NB	25.6	D	NB	53.1	F
8	Soquel Ave \& MOB Driveway Worst Approach	SCC	SSSC / Signal	${ }^{-}$	0.4 11.6	A B	NB	0.2 15.7	A C	-	5.8	A	-	9.1	A
9	Soquel Ave / 40 ${ }^{\text {th }}$ Ave \& Gross Rd	SCC	AWSC	,	12.3	B	,	54.8	F	-	18.6	C	-	105.9	F
10	$40^{\text {th }}$ Ave \& Deanes Ln	NOT STUDIED													
11	$40^{\text {th }}$ Ave \& Clares St	NOT STUDIED													
12	$41^{\text {st }}$ Ave \& Soquel Dr	SCC	Signal	-	25.3	C	-	26.1	C	-	26.1	C	-	26.7	C
13	$41^{\text {st }}$ Ave \& Hwy 1 NB Ramps	Caltrans	Signal	-	18.0	B	-	15.6	B	-	18.2	B	-	15.9	B
14	41 ${ }^{\text {st }}$ Ave \& Hwy 1 SB Ramps	Caltrans	Signal	-	46.9	D	-	8.6	A	-	51.7	D	-	9.4	A
15	$41^{\text {st }}$ Ave \& Gross Rd	Caltrans	Signal	-	44.9	D	-	47.2	D	-	55.6	E	-	52.2	D
16	41 ${ }^{\text {st }}$ Ave \& Clares St	Capitola	Signal	-	24.8	C	-	27.2	C	-	25.5	C	-	27.4	C
17	41 ${ }^{\text {st }}$ Ave \& Capitola Rd	Capitola	Signal	-	27.7	C	-	43.0	D	-	28.8	C	-	44.1	D

Kimley»Horn

Table T-44 - Cumulative Plus Project Conditions Intersection Level of Service

18	$41^{\text {st }}$ Ave \& Brommer St/Jade St	Capitola	Signal	-	19.3	B	-	28.5	C	-	20.1	C	-	29.5	C
19	Capitola Rd \& $7^{\text {th }}$ Avenue	SCC	Signal	-	20.3	C	-	24.1	C	-	23.3	C	-	28.2	C
20	Capitola Rd \& 17 ${ }^{\text {th }}$ Avenue	SCC	Signal	-	21.3	C	-	33.6	D	-	22.0	C	-	35.5	D
21	Capitola Rd \& Chanticleer Ave	SCC	Signal	-	16.4	B	-	24.9	C	-	16.8	B	-	26.2	C
22	Capitola Rd and $30^{\text {th }}$ Ave	Capitola	Signal	-	23.0	C	-	29.1	C	-	24.6	C	-	29.8	C
23	Brommer St \& $17^{\text {th }}$ Ave	SCC	Signal	-	22.2	C	-	27.2	C	-	23.0	C	-	27.9	C
24	Brommer St \& 30 ${ }^{\text {th }}$ Ave	SCC	AWSC	-	12.2	B	-	41.2	E	-	12.3	B	-	41.9	E
25	$17^{\text {th }}$ Ave \& Portola Dr	SCC	Signal	-	19.5	B	-	20.9	C	-	19.6	B	-	21.1	C

Notes:

1. Analysis performed using $H C M 6^{\text {th }}$ Edition methodologies.
2. Delay indicated in seconds/vehicle.
3. Signal $=$ Signal Control; AWSC = All-Way Stop Control; SSSC $=$ Side-Street Stop Control
4. CSC = City of Santa Cruz; Caltrans = California Department of Transportation; SCC = Santa Cruz County; Capitola = City of Capitola
5. CSC LOS standard is D; Caltrans LOS standard is C; SCC LOS standard is D; Capitola does not have a LOS standard for 41st Avenue.
6. Intersections that operate below maintaining agency's LOS standard are highlighted and shown in bold.
7. For intersection \#4, The Project does not increase intersection delay or increase critical v/c by 1% or more. Thus, no Project deficiency is caused at this location.
8. Intersection \#5 shows overall LOS as acceptable. See Analysis section on page 72 for additional detail.
 any plans to remove the barrier pending).
 to avoid off-ramp queue spillback into the Highway 1 mainline.

Kimley»Horn

Table T-45 - Improved Cumulative Plus Project Conditions Conclusions

Int\#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement
\#3	Soquel Drive / Soquel Avenue \& Soquel Avenue	Cumulative and Cumulative Plus Project	The addition of the Project traffic worsens the LOS from C to D in the PM and cause a deficiency.	Caltrans plans to widen Highway $1 /$ Soquel Drive interchange. One westbound left-turn lane, one westbound right-turn lane, and a new southbound Highway 1 off-ramp will be constructed at this intersection. A conceptual layout is shown in Appendix O. These improvements are currently not funded, are not included in the County Capital Improvement Project (CIP), and may be constructed after 2040. The Cumulative deficiency will remain until the improvement is constructed. The State Route 1 HOV Lane Widening Project Supplemental Report (May 2010) analyzed these improvements for the Santa Cruz Route 1 Tier I and Tier II FEIR and the results are included in Appendix P for reference. More detail on the EIR https://scortc.org/projects/streets-highways/hwy1corridor/environmental-documents. The deficiency is anticipated to be eliminated with implementation of the Caltrans improvements.
\#7	Soquel Avenue / Chanticleer Avenue	Cumulative and Cumulative Plus Project Conditions	The addition of the Project traffic worsens the side street LOS from Chanticleer Avenue from LOS from LOS D to LOS F in the PM.	The Project will restripe Soquel Avenue to include a continuous TWLTL from the Highway 1 SB Ramps past Chanticleer Avenue. The installation of this measure will provide sufficient space for waiting and or weaving for vehicles heading northbound on Soquel Avenue. In addition, the installation of the signal will also improve gaps in the traffic flow in the northbound direction. This is an improvement over the current very short 50 feet merge lane that is inadequate to accommodate these movements in the future. The improvement will remove the deficiency caused by the Project.
\#9	Soquel Avenue / 40th Avenue \& Gross Road	Cumulative and Cumulative Plus Project Conditions	In the PM, the addition of the Project traffic would increase the average delay from 54.3 seconds per vehicle to 105.9 seconds per vehicle and the LOS remains at F. The critical v / c increases by more than 1% on all the approach critical movements.	Install a diagonal diverter extending from the northwest corner to the southeast corner at this intersection. Residents in the neighborhood would exit the neighborhood at Rodeo Gulch Drive onto Soquel Avenue. If this improvement is not installed, cut through traffic along Gross Road and the delay at the $41^{\text {st }}$ Avenue intersection will continue and degrade further in the future until the freeway is improved. The diverter will prevent cut through traffic on Gross Road through the residential neighborhood and eliminate the congestion caused by the allway stop at the intersection. Queues at this intersection are expected to shorten with these recommended improvements. This commute is slightly longer than the direct connection to $41^{\text {st }}$ Avenue via Gross Road, but the benefits of removing cut through traffic through the neighborhood and the improvement of operations at the Gross Road/40 Avenue intersection, warrants the installation of this improvement. With this improvement, traffic flow at this intersection would then be governed by the signal at Gross Road \& 41st Avenue where additional improvements are recommended. All movements would be uncontrolled; therefore, no delay would be attributed to this intersection (i.e. the only delay would be incurred at the $41^{\text {st }}$ Avenue \& Gross Road signalized intersection). This improvement would cause travel time from Soquel Dr and Rodeo Gulch Rd to SB Hwy 1 on-ramp to decrease by approximately 44\% when comparing Existing (no Project) to Existing Plus Project conditions. See Appendix M for the proposed layout. In addition, the current cut-through traffic along Gross Road through the neighborhood would also be eliminated. The deficiency will be eliminated with implementation of the improvement measure.

Kimley»Horn

Table T-45 - Improved Cumulative Plus Project Conditions Conclusions

Int\#	Location	Condition	Deficiency caused by the Addition of the Project Traffic	Improvement
\#14	41st Avenue \& Highway 1 Southbound Ramps	Cumulative and Cumulative Plus Project Conditions	The addition of the Project traffic worsens the delay from 46,9 seconds to 51.7 seconds and the LOS remains D. The critical movement v / c increases by more than 1%.	Caltrans certified the EIR for the Santa Cruz Route 1 Tier 1-Corridor Analysis of High Occupancy Vehicle Lanes and Transportation System Management Alternatives and Tier II- Build Project Analysis of $41^{\text {st }}$ Avenue to Soquel Avenue/Rive Auxiliary Lanes and Chanticleer Avenue Pedestrian-Bicycle Overcrossing in December 2018. The EIR identifies long term improvement projects for providing capacity at the interchanges and along the rail line. The TSM improvements at the $41^{\text {st }}$ Avenue interchange include ramps widening and improvements and the overcrossing would be widened. The TSM improvements are unconstrained (not fully funded) and until funding becomes available, the operational deficiency would remain. The deficiency is anticipated to be eliminated when the improvements are installed. The State Route 1 HOV Lane Widening Project Supplemental Report (May 2010) analyzed these improvements for the Santa Cruz Route 1 Tier I and Tier II FEIR and the results are included in Appendix P for reference. https://sccrtc.org/projects/streets-highways/hwy1corridor/environmental-documents.
\#15	41st Avenue \& Gross Road (City of Capitola jurisdiction and Caltrans control)	Cumulative and Cumulative Plus Project Conditions	The addition of the Project traffic worsens the LOS from E to F in the AM. The critical v / c increases by more than 1% on all the critical approach movements.	The City of Capitola received a grant to install an adaptive signal system along $41{ }^{\text {st }}$ Avenue and this intersection is included in its implementation plan. In addition, the Project would install overhead signs and roadway markings to improve lane selection and use on the eastbound approach of Gross Road. The lane selection would be for southbound Highway 1 and northbound Highway 1 movements. See Appendix M for the conceptual layout for improvement details. A barrier would be installed between Gross Road and Highway 1 Southbound Ramps. The barrier would be installed between the eastbound through lane over the freeway and the eastbound right-turn lane onto the freeway southbound on-ramp. This barrier installation would require a Caltrans encroachment permit/approval. It can only be installed if approved by Caltrans. The adaptive signal system would provide better coordination of traffic flow along the corridor because it measures real time vehicular demand and proportions/adjusts signal timing. Furthermore, a physical barrier will be installed between the limit line and the diverge of the Highway 1 southbound on-ramp on $41^{\text {st }}$ Avenue. This barrier will prevent vehicles from jumping the queue for southbound on-ramp traffic. This improvement would also improve bicycle rider safety in the Class II bike lane at the Highway 1 southbound on-ramp at $41^{\text {st }}$ Avenue. A conceptual layout of these improvements are indicated in Appendix M. The State Route 1 HOV Lane Widening Project Supplemental Report (May 2010) analyzed these improvements for the Santa Cruz Route 1 Tier I and Tier II FEIR and the results are included in Appendix P for reference. https://sccrtc.org/projects/streets-highways/hwy1corridor/environmental-documents.
\#24	Brommer Street \& 30th	Cumulative and Cumulative Plus Project Conditions	The intersection operates at LOS F in PM Peak without Project and continues to operate at LOS F with the Project. The average delay increases from 41.2 seconds per vehicle to 41.9 seconds per vehicle with the addition of the Project traffic. The critical v / c increases by more than 1% on the northbound and southbound critical movements.	Install signal control with permissive left-turn phasing. Peak Hour Signal Warrant \#3 (CAMUTCD) is satisfied with Existing Conditions traffic and in Existing Plus Project Conditions traffic. With existing geometry, signal control, eastbound/westbound split phasing, and permissive left-turn phasing, this intersection would operate at acceptable LOS with Cumulative Plus Project conditions traffic volumes. The Peak Hour Signal Warrant \#3 evaluation is included in Appendix J. For Cumulative Conditions the intersection will improve the PM delay by 19.3 seconds per vehicle with installation of the signal. Installation of a signal control with permissive left-turn phasing would cause the intersection to operate at an acceptable LOS. The Project will pay a fair share of 14% towards the improvement and the Project will eliminate its incremental addition to the LOS deficiency (Project Trips through intersection / All Future trips through intersection).

Kimley»)Horn

Conclusions - Cumulative Plus Project Conditions

In the Cumulative Plus Project Conditions, the improvements identified will remove the deficiencies caused by the Project.

Highway 1 Overcrossing and $41^{\text {st }}$ Avenue Corridor Improvements

At the request of the County, this TIOA evaluates whether the Project would benefit from construction of a potential Highway 1 overcrossing at 17 Avenue (" $17^{\text {th }}$ Avenue Overcrossing"), as envisioned in the Sustainable Santa Cruz County Plan (2014). The $17^{\text {th }}$ Avenue Overcrossing is not an approved or proposed project at this time. However, the Sustainable Santa Cruz County Plan envisions the potential redevelopment of land parcels to the north and south of Highway 1 between the Soquel Avenue and $41^{\text {st }}$ Avenue interchanges. This redevelopment would result in potential growth in traffic on Soquel Drive and Soquel Avenue. Subsequently, the Sustainable Plan also indicates the potential for a new vehicular overcrossing from the east side to the west side of Highway 1 (i.e., the $17^{\text {th }}$ Avenue Overcrossing). No new access will be provided to Highway 1 by the $17^{\text {th }}$ Avenue Overcrossing. The most feasible location for such an overcrossing is at $17^{\text {th }}$ Avenue, since it already connects strategically to Capitola Avenue and further south, to Soquel Drive. Several existing parcels of land will be impacted by the overcrossing and the need for significant right-of-way acquisition is anticipated. The $17^{\text {th }}$ Avenue Overcrossing will not have pedestrian and bicycle access, which would be provided at the Chanticleer bicycle and pedestrian overcrossing, located immediately east of the proposed new vehicular overcrossing.

It is estimated that the $17^{\text {th }}$ Avenue Overcrossing would potentially improve traffic conditions at both the Soquel Avenue interchange and the $41^{\text {st }}$ Avenue interchange with Highway 1. The model links origins and destination through the new road network that includes the overcrossing, which results in the diversion of trips from the two adjacent interchange overcrossings to the new bridge. The SCC Travel Demand Model forecast for the year 2040 indicates that approximately 4,640 daily vehicles will use this overcrossing when built and that the Project will contribute 54 daily trips (1.2\% of the total traffic) on the new $17^{\text {th }}$ Avenue Overcrossing. The Project would not add any AM peak hour trips onto the bridge and would add 1 vehicle in the PM peak hour. The construction of the new overcrossing would result in extensive construction and right-of-way acquisition at exorbitant cost (\$75-125 million). In addition, traffic volumes would increase on residential streets on the south side of Highway 1. The shift in volumes from the existing Soquel Drive /Highway 1 overcrossing and the existing $41^{\text {st }}$ Avenue/Highway 1 overcrossing would only slightly improve operating conditions on these corridors. Subsequently it is concluded that the construction of a new overcrossing is not feasible and not recommended for implementation

The County, along with the City of Capitola, is planning for long-term future improvements along $41^{\text {st }}$ Avenues between Clares Street and Cory Street to facilitate north-south vehicular, pedestrian and bicycle circulation. Proposed future improvements along the $41^{\text {st }}$ Avenue roadway would be supported by additional improvements along Gross Road, $40^{\text {th }}$ Avenue, and Clares Street; as well as at the intersections of Soquel Avenue and Gross Road, Gross Road and 41 st, Auto Plaza Drive and $41^{\text {st }}$, Clares Street and $40^{\text {th }}$ Avenue, and Clares Street and $41^{\text {st }}$ Avenue. These improvements include signal modifications, intersection control changes, restriping, sidewalk and bicycle lane improvements, and installation of a cycle track on $41^{\text {st }}$ Avenue between Gross Road and Cory

Kimley»)Horn

Street on the Highway 1 overpass. The project will contribute toward the cost of these longterm improvements along the $\mathbf{4 1}^{\text {st }}$ Avenue corridor.

Medical Office Building
Figure F-23
Change in 2040 Daily Volumes Due to Potential 17th Avenue Overcrossing

Kimley»)Horn

7. HIGHWAY 1 AND HIGHWAY 17 OPERATIONAL EVALUATION (NON-CEQA ANALYSIS)

This chapter evaluates the Project's impacts on Highway 1 and Highway 17. Caltrans has jurisdiction over these facilities and, pursuant to SB 743, evaluates a land use project's impacts on the state highway system utilizing VMT, rather than congestion or capacity related metrics, such as LOS or volume to capacity ratios. (Caltrans, "Vehicle Miles Traveled-Focused Transportation Impact Study Guide, (May 20, 2020), see pp. 4-5 ["When analyzing the impact of VMT on the State Highway System resulting from local land use projects, the focus will no longer be on traffic at intersections and roadways immediately around project sites. Instead, the focus will be on how projects are likely to influence the overall amount of automobile use."]). ${ }^{46}$ As noted in CHAPTER 2. VEHICLE MILES TRAVELED on page 8 of this TIOA, the Project will result in a reduction in existing VMT and therefore will not have a significant transportation impact on the environment. Moreover, it is expected that the Project will reduce the volume of vehicles (487 daily trips) traveling along Highway 17 between the County and San Jose by approximately 0.65 percent, which is presumed to have a commensurate or greater reduction in collisions on that segment of Highway 17 as explained on page 139 in header P of this section. For informational purposes only, the balance of this chapter discloses potential congestion and capacity related impacts the Project could have on Highway 1 and Highway 17. A select zone plot for the Project identifies the Project traffic on Highway 17 south of Pasatiempo Drive. This number was calculated as a percentage of the total Project traffic on the freeway at this location.

It is anticipated that the Project would add 107 new AM peak hour Project trips and 98 new PM peak hour Project trips to Highway 1, which, if evaluated using outdated LOS metrics, is already operating at unacceptable levels of service during both the AM and PM peak hour conditions. However, healthcare trips are nondiscretionary (in the sense that people generally must seek medical care when needed) and it is anticipated that local residents will stay within their immediate geographical locale and elect to travel to the Project site in Santa Cruz rather than to other existing Kaiser facilities in other facilities in Santa Cruz, Scotts Valley, San Jose, and Watsonville, for example. Therefore, many of the Project trips traveling along Highway 1 are actually redistributed existing and future medical care trips as discussed in CHAPTER 2. VEHICLE MILES TRAVELED of this report. In addition, it is anticipated that the Project would reduce trips along Highway 17, as discussed in the VMT Chapter of this report.

Per County recommendations, this chapter was prepared to provide and document an evaluation of Highway 1 and Highway 17 operational conditions, while determining what effects (if any) the Project would have on these roadway facilities. These roadway facilities were selected for evaluation based on discussions with County staff and based on the anticipated Project trip distribution.

[^32]
Kimley»)Horn

Highway 1

This section describes the operational conditions along Highway 1, planned future improvements along Highway 1, and the potential effects that the Project would have along Highway 1 within the study area.

Highway 1 Existing Operational Conditions

Highway 1 baseline data and measures of effectiveness (MOEs) included in the Caltrans Traffic Operations Report (2012), were updated by CDM Smith and published in 2017 in a memorandum titled Santa Cruz Highway 1 Widening/HOV Lane Project - Final 2016-2017 Traffic Analysis Update. The updated baseline data is summarized in Table T-46.

Table T-46 - Highway 1 Baseline Measures of Effectiveness (Peak Hour)				
Peak Hour Performance Measures	Northbound		Southbound	
	Morning	Evening	Morning	Evening
Average Speeds (mph)	23	62	61	22
Average Travel Time (minutes/vehicle)	31	10	10	31
Travel Distance (VMT)	41,418	30,539	30,842	39,104
Average Travel Delay (minutes/vehicle)	20	0	0	20
Average Level of Service (LOS)	F	C	C	F

Source: Santa Cruz Highway 1 Widening/HOV Lane Project - Final 2016-2017 Traffic Analysis Update (July 2017).
This data indicates that Highway 1 traffic volumes in the Project vicinity are directional, with high traffic volumes/delay in the northbound direction during morning (AM) hours and high traffic volumes/delay in the southbound direction during evening (PM) hours.

Highway 1 Volume to Capacity Ratios

As indicated in the Caltrans baseline conditions findings described above, Highway 1 currently operates at LOS F during weekday AM (northbound is LOS F) and PM (southbound is LOS F) peak hour conditions within the study area. While it anticipated that the estimated addition (or subtraction) of Project trips would provide an imperceptible change in operating conditions or LOS (LOS F represents the worst, most overcapacity roadway conditions possible) along these oversaturated facilities, this section is provided to quantify the estimated change in v/c along the study segments that would result from construction of the Project. V/C represents a measure of congestion of the freeway by dividing the traffic volume by the capacity of the roadway. If the v / c is above 0.8 (LOS E or F), the freeway starts to be congested. The v / c is not a linear function and

Kimley»)Horn

is also dependent on speed, vehicle throughput, density per time period, type of road, number of lanes, etc.

Analysis

(h) Existing and Existing Plus Project (Highway 1)

Based on Caltrans PeMS (Performance Measurement System) data, major weekday peak hour congestion along Highway 1 (SR 1) occurs during the PM peak commuting hours. The data indicates that traffic flow volumes and speeds in the southbound direction through the study area decrease between 2:00 PM to 6:00 PM. A review of historical traffic trends was conducted using Google Maps, which shows that southbound SR 1 typically experiences sustained low speeds and traffic flows from Rio Del Mar to Highway 17 during the PM peak travel periods, which is shown in Figure F-24.

Kimley»)Horn

Figure F-24 - Typical Peak-Hour Congestion along SR 1 (Source: Google Maps)

Based on this data and the relatively low addition of new Project trips to the study segments, freeway operations under Existing Plus Project conditions are expected to remain very similar to the Existing Conditions. Analysis results included in Table T-47 provides a summary of Existing and Existing Plus Project volumes and v/c ratios. As shown in Table T-47 v/c ratios are expected to increase by 0.02 at all of the study segments.

Highway Capacity Software ("HCS"), which is based on HCM 6 methodologies, the industry standard, were used to evaluate traffic operations on the study freeway segments and information regarding HCS inputs and analysis results can be found in Appendix \mathbf{O}.

Kimley»)Horn

(i) Near Term and Near Term Plus Project (Highway 1)

Freeway operations under Near Term Plus Project conditions are expected to remain very similar to the Near-Term Conditions. No freeway segment is anticipated to experience a change in LOS as a result of the Project and, as shown in the table below, v / c ratios are expected to increase by 0.02 or less on any of the study segments. Analysis results are shown in Table T-48.

HCS was used to evaluate traffic operations on the study freeway segments and information regarding HCS inputs and analysis results can be found in Appendix \mathbf{O}.
(j) Cumulative and Cumulative Plus Project (Highway 1)

Freeway operations under Cumulative Plus Project conditions are expected to remain very similar to the Cumulative Conditions. No freeway segment is anticipated to experience a change in LOS as a result of the Project and, as shown in the table below, v/c ratios are expected to increase by 0.02 or less on any of the study segments. Analysis results are shown in Table T-4.

HCS was used to evaluate traffic operations on the study freeway segments and information regarding HCS inputs and analysis results can be found in Appendix 0.

(k) Project Effects on Highway 1 Operations

As indicated in the segment analysis results in Table T-47, Table T-48, and Table T-4, the addition of Project traffic on the study segments would have a negligible effect on v/c and thus, Project related operational effects on the segments would also be indiscernible compared to Existing, Near Term, and Cumulative development conditions.

Kimley»)Horn

Table T-47 - Existing Plus Project Conditions Segment Analysis (Highway 1)

$\#$	Study Segment	Direction	Lanes	Existing Volume	Existing V/C	Existing + Project Volume (Vph)	Existing + Project V / C	Project Volume	Change in V/C

AM Peak Hour

1	SR 1 between Morrisey Blvd and Soquel Dr	NB	2+1	3,563	0.60	3,585	0.62	22	0.02
		SB	$2+1^{*}$	1,832	0.49	1,917	0.51	85	0.02
2	SR 1 between Soquel Dr and 41st Ave	NB	2	2,429	0.56	2,429	0.56	0	0.00
		SB	2	1,739	0.45	1,739	0.45	0	0.00
3	SR 1 between 41st Ave and Porter St/Bay Ave	NB	2+1	3,667	0.91	3,712	0.92	45	0.01
		SB	2+1	2,754	0.76	2,766	0.77	12	0.01

PM Peak Hour

1	SR 1 between Morrisey Blvd and Soquel Dr	NB	2+1	4,720	0.76	4,790	0.77	70	0.01
		SB	$2+1$ *	4,399	1.06	4,427	1.06	28	0.00
2	SR 1 between Soquel Dr and 41st Ave	NB	2	2,326	0.55	2,326	0.55	0	0.00
		SB	2	4,234	1.03	4,234	1.03	0	0.00
3	SR 1 between 41st Ave and Porter St/Bay Ave	NB	2+1	2,553	0.64	2,568	0.64	15	0.00
		SB	2+1	4,982	1.24	5,019	1.25	37	0.01

Note: +1 indicates an added auxiliary lane however no added capacity from this lane was assumed.
HCS analyzes traffic flows that take heavy vehicle percentage and peak hour factors into account, so similar volumes may result in different v/c ratios
*Right lane must exit at Soquel Dr intersection

Kimley»"Horn

Table T-48 - Near Term Plus Project Conditions Segment Analysis (Highway 1)

$\#$	Study Segment	Direction	Lanes	Near Term Volume	Near Near	Near Term V/C Project Volume $(v p h)$	Term + Project V/C	Project Volume	Change in V/C

AM Peak Hour

1	SR 1 between Morrisey Blvd and Soquel Dr	NB	2+1	3,563	0.61	3,585	0.62	22	0.01
		SB	2+1*	1,832	0.49	1,917	0.52	85	0.03
2	SR 1 between Soquel Dr and 41st Ave	NB	2	2,429	0.56	2,429	0.57	0	0.01
		SB	2	1,739	0.43	1,739	0.44	0	0.01
3	SR 1 between 41st Ave and Porter St/Bav Ave	NB	2+1	3,694	0.92	3,739	0.93	45	0.01
		SB	2+1	2,754	0.70	2,766	0.71	12	0.01

PM Peak Hour

1	SR 1 between Morrisey Blvd and Soquel Dr	NB	2+1	4,763	0.77	4,833	0.78	70	0.01
		SB	$2+1^{*}$	4,430	1.06	4,458	1.07	28	0.01
2	SR 1 between Soquel Dr and 41st Ave	NB	2	2,326	0.55	2,326	0.55	0	0.00
		SB	2	4,240	1.03	4,240	1.03	0	0.00
3	SR 1 between 41st Ave and Porter St/Bay Ave	NB	2+1	2,553	0.64	2,568	0.64	15	0.00
		SB	2+1	4,991	1.24	5,028	1.25	37	0.01

Note: +1 indicates an added auxiliary lane however no added capacity from this lane was assumed.
HCS analyzes traffic flows that take heavy vehicle percentage and peak hour factors into account, so similar volumes may result in different v/c ratios
*Right lane must exit at Soquel Dr intersection

Kimley»"Horn

Table T-49 - Cumulative Plus Project Conditions Segment Analysis (Highway 1)

\#	Study Segment	Direction	Lanes	Cumulativ e Volume	Cumulativ e V/C	Cumulativ e + Project Volume (vph)	Cumulativ e + Project V/C	Project Volume	Change in V/C
AM Peak Hour									
1	SR 1 between Morrisey Blvd and Soquel Dr	NB	2+1	3,862	0.66	3,884	0.67	22	0.01
		SB	$2+1^{*}$	2,038	0.54	2,123	0.56	85	0.02
2	SR 1 between Soquel Dr and 41st Ave	NB	2	2,669	0.61	2,669	0.61	0	0.00
		SB	2	1,881	0.47	1,881	0.47	0	0.00
3	SR 1 between 41st Ave and Porter St/Bav Ave	NB	2+1	3,863	0.96	3,908	0.97	45	0.01
		SB	2+1	3,098	0.78	3,110	0.79	12	0.01
PM Peak Hour									
1	SR 1 between Morrisey Blvd and Soauel Dr	NB	2+1	5,034	0.81	5,104	0.82	70	0.01
		SB	$2+1^{*}$	4,627	1.11	4,655	1.12	28	0.01
2	SR 1 between Soquel Dr and 41st Ave	NB	2	2,377	0.56	2,377	0.56	0	0.00
		SB	2	4,275	1.04	4,275	1.04	0	0.00
3	SR 1 between 41st Ave and Porter St/Bav Ave	NB	2+1	2,643	0.66	2,658	0.66	15	0.00
		SB	2+1	5,047	1.26	5,084	1.27	37	0.01

Note: +1 indicates an added auxiliary lane however no added capacity from this lane was assumed.
HCS analyzes traffic flows that take heavy vehicle percentage and peak hour factors into account, so similar volumes may result in different v/c ratios
*Right lane must exit at Soquel Dr intersection

Kimley»)Horn

Highway 1 Planned Improvements

Currently, Caltrans has no impact fee program in place to help mitigate traffic impacts. However, Santa Cruz County RTC, in cooperation with Caltrans and the Federal Highway Administration ("FHWA"), is managing the Highway 1 Corridor Investment Program. The purpose of that project is to analyze alternative investments to relieve congestion on Highway 1 between San Andreas/Larkin Valley Road and Morrissey Boulevard. The goal of the Highway 1 Corridor Investment Program is to address several different needs in the existing transportation system:

- Bottlenecks along Highway 1 in both the southbound and northbound direction that cause congestion on a regular basis during peak travel periods.
- Travel time delays that are experienced by commuters, commerce, visitors, and emergency vehicles at various times of the day.
- "Cut-through" traffic, or traffic on local streets, that occurs and is increasing because drivers seek to avoid congestion on the highway in search of "short-cuts".
- Limited opportunities for pedestrians and bicyclists to cross Highway 1 within the project corridor.
- Recognize the limited funding available from state and federal sources and to be prepared to compete for discretionary funding opportunities when it periodically occurs at the state or federal level.

Environmental review has been completed for the Corridor Investment Program pursuant to the Highway 1 Tier I/Tier II Draft Environmental Impact Report/Environmental Assessment (DEIR/EA) which meets both state and federal environmental requirements. The study was certified in December 2018 and is currently in litigation. ${ }^{47}$ For purposes of environmental analysis, the Corridor Investment Program is divided into two components:

- Tier I - A long-term, program level analysis for the future of the Highway 1 corridor between Santa Cruz and Aptos. The Tier I concept for the corridor would be built over time through a series of smaller incremental projects (referred to as Tier II projects).
- Tier II - Project level analysis of a smaller incremental project within the Tier I corridor which would move forward based on available funding. Each of the Tier II projects would have independent utility and benefit to the public and Highway 1 operations.

Improvements studied by the DEIR/EA may be implemented incrementally as funding and priorities allow.

The current Tier II project includes northbound and southbound auxiliary lanes between $41^{\text {st }}$ Avenue and Soquel Drive and a bike/pedestrian overcrossing of Highway 1 at Chanticleer Avenue. Preliminary design and environmental analysis began on a second-Tier II project in Fall

[^33]
Kimley»)Horn

2016 for the construction of a pedestrian/bicycle overcrossing of Highway 1 at Mar Vista Drive in Aptos.

Future Tier II projects will be subject to separate project level environmental analysis as part of the project development process and will be consistent with the long term (Tier I) vision chosen for the Highway 1 Corridor, which includes additional auxiliary lanes, the new interchanges, and the construction of the HOV lanes. More detail can be found at https://sccrtc.org/projects/streetshighways/hwy 1 corridor/environmental-documents.

In addition, the Santa Cruz County RTC is pursuing the use of future widened shoulders of SR 1 for bus-on-shoulder operations.

Funding for Highway 1 Improvements

Measure D was a proposed $1 / 2$-cent local sales tax increase included on the November 2016 ballot in Santa Cruz County. The Measure, which will focus on transportation safety upgrades, roadway repairs, traffic relief, and transit augmentation, was approved by voters via a super majority (over 67% voting "yes").

Measure D will provide steady and direct funding to the County and all cities within the County to improve the transportation network, including Highway 1. Transportation improvements will include improvements of local streets, road maintenance, bicycle and pedestrian projects, transit and paratransit service upgrades, as well as implementation of many other projects and programs. Measure D funding will be supplemented by State and potentially Federal financial grants - https://sccrtc.org/funding-planning/measured/

Measure D funding will provide funding for the following improvements in the Project vicinity:

- $\$ 97$ million for auxiliary lanes between:
- Soquel Drive and $41^{\text {st }}$ Avenue
- Bay Avenue/Porter Street and Park Avenue
- Park Avenue and State Park Drive
- $\$ 7$ million for 2 new bicycle and pedestrian bridges over Highway 1
- In Live Oak at Chanticleer Avenue
- In Seacliff/Aptos at Mar Vista Drive
- $\$ 21$ million for ongoing safety and operational service

As noted above, the Project results in a net decrease in VMT and therefore does not require improvements to Highway 1 to avoid or reduce transportation impacts to a less than significant level. Accordingly, the information set forth above regarding Highway 1 conditions and potential improvements is provided for information purposes only at the request of County staff.

Kimley»)Horn

Highway 17

This section describes the operational conditions along Highway 17 and the potential effects that the Project would have along Highway 17 within the study area, if the Project's transportation impacts were evaluated using outdated LOS metrics rather than VMT. This information is provided for informational purposes only at the request of County staff.

Highway 17 Volume to Capacity Ratios

Highway 17 operates at LOS F during weekday AM and PM peak hour conditions within the study area and the addition (or subtraction) of Project trips would provide an imperceptible change in operating conditions along these oversaturated facilities. However, this section is provided to quantify the estimated change in volume to capacity ratios (v / c) along the study segments that would result from construction of the Project.

Analysis

(I) Existing and Existing Plus Project (Highway 17)

Freeway operations under Existing Plus Project conditions are expected to remain very similar to the Existing Conditions. No freeway segment is anticipated to experience a change in LOS as a result of the Project and, as shown in the table below, v/c ratios are expected to increase by 0.02 or less on any of the study segments. Analysis results are shown in Table T-50.

HCS was used to evaluate traffic operations on the study freeway segments and information regarding HCS inputs and analysis results can be found in Appendix 0.
(m) Near Term and Near Term Plus Project (Highway 17)

Freeway operations under Near Term Plus Project conditions are expected to remain very similar to the Near-Term Conditions. No freeway segment is anticipated to experience a change in LOS as a result of the Project and, as shown in the table below, v / c ratios are expected to increase by 0.02 or less on any of the study segments. Analysis results are shown in Table T-51.

HCS was used to evaluate traffic operations on the study freeway segments and information regarding HCS inputs and analysis results can be found in Appendix 0.

(n) Cumulative and Cumulative Plus Project (Highway 17)

Freeway operations under Cumulative Plus Project conditions are expected to remain very similar to the Cumulative Conditions. No freeway segment is anticipated to experience a change in LOS as a result of the Project and, as shown in the table below, v/c ratios are expected to increase by 0.02 or less on any of the study segments. Analysis results are shown in Table T-52.

HCS was used to evaluate traffic operations on the study freeway segments and information regarding HCS inputs and analysis results can be found in Appendix 0.

Kimley»)Horn

(o) Project Effects on Highway 17 Operations

As indicated in the segment analysis results in Table T-50, Table T-51, and Table T-52, the Project is expected to reduce traffic on the study segments due to medical care trips rerouting to the Project site in Santa Cruz (rather than traveling to San Jose to receive medical services which the Proposed Tenant currently does not provide in Santa Cruz County). This reduction in trips would have a negligible effect on v/c and thus, Project related operational effects/ improvements on the segments would also be indiscernible compared to Existing, Near Term, and Cumulative development conditions.

(p) Project Effects on Highway 17 Safety

Highway 17 operates at an unacceptable LOS F (with and without the Project) during both AM and PM peak hour conditions. The Project would remove some County resident trips from Highway 17 segments. It would also divert County resident trips along other Highway 17 segments and Highway 1. The removal and rerouting of existing trips will occur because it is anticipated that local residents will stay within their immediate geographical locale and elect to travel to the Project site in Santa Cruz rather than to other existing Kaiser facilities in Scotts Valley, San Jose or Watsonville This reduction in trips would have a negligible effect on v/c (less than 1% reduction) and thus, Project-related operational effects/improvements on the segments would also be indiscernible compared to Existing, Near Term, and Cumulative development conditions

Traffic collisions, and thus roadway safety, is quantified by calculating collision rates in units of collisions per 100 million vehicle miles driven. One way to reduce the overall number of traffic collisions along roadways that experience a high number of collisions is to reduce traffic volumes along those roadways. As such, a reduction in collisions would be proportional to a reduction in vehicles. Thus, the Project would provide a potential safety benefit along Highway 17 by reducing travel along the roadway. Based on travel demand modeling and VMT results included in the VMT chapter (Chapter 2) of this report, daily volume reduction due to the Project and Santa Cruz residents staying local for healthcare is expected to be approximately 1.3 percent during the AM and PM peak hours (50% of daily volumes). Therefore, assuming the proportional relationship described above between traffic volumes and vehicle collisions, the number of accidents could also decrease proportionally by approximately 0.65 percent. ${ }^{48}$

Note that the above assumes a constant collision rate; typically, however, as traffic volumes go up, so do the crash rates. Therefore, this proportional evaluation is considered conservative.

[^34]
Kimley»Horn

Table T-50 - Existing Plus Project Conditions Segment Analysis (Highway 17)

\#	Study Segment	Direction	Lanes	Existing Volume	$\begin{aligned} & \text { Existing } \\ & \text { V/C } \end{aligned}$	Existing + Project Volume (vph)	Existing + Project V/C	Project Volume	Change in V/C
AM Peak Hour									
4	Hwy 17 between Pasatiempo Overpass and Hwy 1	NB	3**	3,018	0.90	2,998	0.75	-20	-0.15
		SB	2+1	1,706	0.49	1,662	0.50	-44	0.01
PM Peak Hour									
4	Hwy 17 between Pasatiempo Overpass and Hwy 1	NB	$3^{* *}$	2,996	0.72	2,958	0.73	-38	0.01
		SB	$2+1$	1,950	0.55	1,922	0.56	-28	0.01

Note: +1 indicates an added auxiliary lane however no added capacity from this lane was assumed.
HCS analyzes traffic flows that take heavy vehicle percentage and peak hour factors into account, so similar volumes may result in different v/c ratios
** Right Lane ends past Pasatiempo Overcrossing
Table T-51 - Near Term Plus Project Conditions Segment Analysis (Highway 17)

\#	Study Segment	Direction	Lanes	Near Term Volume	Near Term V/C	Near Term + Project Volume (vph)	Near Term + Project V/C	Project Volume	Change in V/C
AM Peak Hour									
4	Hwy 17 between Pasatiempo Overpass and Hwy 1	NB	$3^{* *}$	3,018	0.75	2,998	0.77	-20	0.02
		SB	2+1	1,706	0.48	1,662	0.50	-44	0.02
PM Peak Hour									
4	Hwy 17 between Pasatiempo Overpass and Hwy 1	NB	3**	2,996	0.72	2,958	0.74	-38	0.02
		SB	2+1	1,950	0.55	1,922	0.57	-28	0.02

Note: +1 indicates an added auxiliary lane however no added capacity from this lane was assumed.
HCS analyzes traffic flows that take heavy vehicle percentage and peak hour factors into account, so similar volumes may result in different v/c ratios
** Right Lane ends past Pasatiempo Overcrossing

Kimley»"Horn

Table T-52 - Cumulative Plus Project Conditions Segment Analysis (Highway 17)

\#	Study Segment	Direction	Lanes	Cumulativ e Volume	$\left\|\begin{array}{c} \text { Cumulativ } \\ \text { e V/C } \end{array}\right\|$	Cumulativ e + Project Volume (vph)	Cumulativ e + Project V/C	Project Volume	Change in V/C
AM Peak Hour									
4	Hwy 17 between Pasatiempo Overpass and Hwy 1	NB	3**	3,494	0.87	3,474	0.87	-20	0.00
		SB	2+1	1,861	0.52	1,817	0.53	-44	0.01
PM Peak Hour									
4	Hwy 17 between Pasatiempo Overpass and Hwy 1	NB	3**	3,184	0.77	3,146	0.78	-38	0.01
		SB	2+1	2,169	0.61	2,141	0.62	-28	0.01

Note: +1 indicates an added auxiliary lane however no added capacity from this lane was assumed.
HCS analyzes traffic flows that take heavy vehicle percentage and peak hour factors into account, so similar volumes may result in different v/c ratios
** Right Lane ends past Pasatiempo Overcrossing

Kimley»)Horn

8. TRANSPORTATION IMPROVEMENT AREA FEES (NONCEQA ANALYSIS)

Since 1989, Santa Cruz County has assessed Transportation Improvement Area fees ("TIA Fees") in four geographic subareas of Santa Cruz County - Aptos, Live Oak, Pajaro Valley and Soquel. For non-residential projects, the TIA Fees are based on daily net new trips generated by a development project. The TIA Fee includes a transportation improvement fee to fund major transportation infrastructure and a roadside improvement fee to fund roadside-related improvements. The revenue generated from TIA Fees is used to fund improvements identified in the Santa Cruz Capital Improvement Program, which is updated each year.

The Project is required to pay a TIA Fee based on daily net new trips. The Project is located within the Live Oak TIA fee area and fees collected in this area are currently assessed (August 2020) at $\$ 300$ per net new daily trip to fund roadside improvements and $\$ 300$ per net new daily trip to fund transportation improvements.

Based on the most current Santa Cruz County Fee Schedule (County of Santa Cruz Department of Public Works - Service \& Capital Improvement Fees schedule, revised December 12, 2017) ("Fee Schedule"), trip generation rates disclosed in a traffic study prepared for a project are used to calculate TIA Fees. The Fee Schedule (Page 11) states that "where a traffic study is required and accepted by the County during the environmental review of a project, a trip generation rate based on the report shall be used".

As described in the Local Mobility Analysis Chapter of this TIOA (Chapter 7, Trip Generation Estimates section on page 62), applying the Institute of Transportation Engineers (ITE) Trip Generation Manual, $10^{\text {th }}$ Edition (2017), the Project is expected to generate 6,106 gross daily trips. As further described in the Transportation Demand Management chapter of this report, the Project will implement a voluntary TDM program that is expected to reduce trips by approximately 15.5 percent for employees and 20.5 percent for Members. For purposes of calculating TIA Fees, however, no reduction will be taken for the effect of TDM measures upon the issuance of building permits. If TDM measures are proven to be effective, as evidenced by driveway counts to be performed after construction of the Project, a partial refund of TIA fees (to account for the overpayment) may be given to the Applicant to the extent it is shown that the actual trips to the Project site are less than 6,106 per day.

Table T-53, below, provides a summary of existing trip credits, Project trips, and TDM reductions based on the ITE rates and applicable TIA fee amounts:

- A total fee credit of $\$ 80,400$ is estimated for the existing 134 trips per day generated from the light industrial land uses on the Project site that will be relocated/demolished prior to construction of the Project. This includes transportation improvement fees $(\$ 40,200)$ roadside improvement fees $(\$ 40,200)$. See the discussion of "Trip Credits" in the Local Mobility Analysis Chapter (Chapter 7) for more information about the trip ends generated by the existing uses on the Project site.

Kimley»)Horn

- A gross TIA fee of $\$ \mathbf{3 , 6 6 3 , 6 0 0}$ is estimated for the Project based on the assumption that it will generate 6,106 gross daily trips. This includes Live Oak Transportation Improvement fees $(6,106$ trips $x \$ 300=\$ 1,831,800)$ and Live Oak Roadside Improvement fees $(6,106$ trips $\times \$ 300=\$ 1,831,800$).
- However, taking into account the above fee credit, it is estimated that the Project will be responsible for paying a total of $\$ 3,583,200$ (i.e., $\$ 3,663,600$ gross impact fee minus $\$ 80,400$ fee credit $=\$ 3,583,200$) in County TIA Fees.
- The Project will voluntarily implement a TDM measures that are anticipated to reduce the daily trips generated by the Project. However, the Applicant will not seek a reduction in fee for this anticipated reduction in daily trips upfront. Rather, as detailed in Transportation Demand Management Chapter (Chapter 3) of this report, the Applicant or Proposed Tenant will monitor the Project's actual trip generation through implementation of a formalized driveway traffic count program. Should the data evidence that the Project does in fact meet or exceed its TDM reduction goals, it is anticipated that the Project would receive TIA Fee refunds, commensurate with the proven reduction of trips.

Table T-53, below, provides a summary of existing trip credits and Project trips:

ITE classification for Existing and Project Uses		Roads provem	Fee	Trans Impro	ortation ment Fee	Total
Project	Daily Trips	Fee per Trip (\$)	Total (\$)	Fee per Trip (\$)	Total (\$)	Total Fee (\$)
Clinic (Project use)	6,106	\$300	\$1,831,800	\$300	\$1,831,800	\$3,663,600
Credit	Daily Trips	Credit per Trip (\$)	Total (\$)	Credit per Trip (\$)	Total (\$)	Total Credit (\$)
Light Industrial (Existing Use)	134	\$300	\$40,200	\$300	\$40,200	\$80,400
Net Project TIA Fees		\$1,791,600		\$1,791,600		\$3,583,200

These TIA fees are estimates only and reflect the information available at the time that this report was prepared (August 2020). The estimates above must be confirmed by the County, are subject to change, and will be payable at the time the first building permit is issued.

Kimley»"Horn

The County has earmarked traffic mitigating improvements in its Capital Improvement Plan (CIP) and Regional Transportation Plan (RTP) that the Project could potentially help fund through payment of the TIA Fees. The following improvements are included in the County's fee programs:

- $37^{\text {th }} / 38^{\text {th }}$ Avenue (Brommer Street to East Cliff Drive) Multimodal Circulation Improvements and Greenway
- $41^{\text {st }}$ Ave Improvements Phase 2 (Hwy 1 Interchange to Soquel Drive)
- Chanticleer Avenue Improvements (Hwy 1 to Soquel Drive)
- Countywide ADA Access Ramps
- Countywide Bike Projects
- Countywide Sidewalks
- Mattison Lane Improvements (Chanticleer Avenue to Soquel Avenue)
- Paul Minnie Avenue Improvements (Rodriguez Street to Soquel Avenue)
- Paul Sweet Road Improvements (Soquel Drive to end)
- Soquel Avenue Improvements (City of SC to Gross Road)
- Soquel Drive Traffic Signal and Left-Turn Lane (Robertson Street)

Kimley»"Horn

9. OTHER TRANSPORTATION ANALYSIS

When considering transportation impacts, Appendix G, of the CEQA Guidelines recommends consideration of the following:
(a) Would the project conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?
(b) Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?
(c) Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?
(d) Would the project result in inadequate emergency access?

Question (a) is evaluated in the Local Mobility Analysis (LOS) Chapter (Chapter 7) of this report which considers the Project's consistency with General Plan and related programs, plans, ordinances and policies addressing the circulation system, and the Pedestrian, Bicycle and Transit Mobility Chapter 7 of this report. Question (b) is evaluated in the VMT Chapter 2 of this report. Questions (c) and (d) are evaluated in this chapter.

Transportation Hazards

All geometric improvements identified in this study as Project improvements will be designed and constructed per industry, local agency, and Caltrans standards and are not anticipated to substantially increase hazards or result in incompatible uses. The installation of the barrier between the through lane and the right-turn lane along the section between Gross Road and the Southbound On-Ramp on $41^{\text {st }}$ Avenue in the northbound direction, will reduce conflicts between vehicles that jump the queue, and reduce conflicts between vehicles and bicycles.

Emergency Access

The Project has two driveways off Soquel Avenue. These driveways both provide Emergency Vehicle access. Moreover, the Project will install a number of traffic improvements that will improve circulation in the Project vicinity. As such, the Project will not result in inadequate emergency access.

Kimley»)Horn

APPENDICES

Kimley»Horn

APPENDIX A. EXISTING CONDITIONS TRAFFIC COUNTS

Capitola Rd \& Soquel Ave

Peak Hour Turning Movement Count

7th Ave
Soquel Ave

Date: 10-04-2018
Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:45 AM to 8:45 AM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				7th Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00	AM	0	0	40	4	0	40	76	0	0	7	0	77	0	0	0	0	244	0
7:15	AM	0	0	68	8	0	48	104	0	0	11	0	77	0	0	0	0	316	0
7:30	AM	0	0	99	8	0	33	112	0	0	11	0	115	0	0	0	0	378	0
7:45	AM	0	0	139	18	0	51	126	0	0	29	0	128	0	0	0	0	491	1,429
8:00	AM	0	0	110	16	0	55	147	0	0	51	0	117	0	0	0	0	496	1,681
8:15	AM	0	0	137	24	0	59	163	0	0	30	0	91	0	0	0	0	504	1,869
8:30	AM	0	0	106	13	0	64	132	0	0	21	0	95	0	0	0	0	431	1,922
8:45	AM	0	0	117	5	1	54	124	0	0	21	0	103	0	0	0	0	425	1,856
Count	Total	0	0	816	96	1	404	984	0	0	181	0	803	0	0	0	0	3,285	0
	AII	0	0	492	71	0	229	568	0	0	131	0	431	0	0	0	0	1,922	0
Peak	HV	0	0	21	2	0	11	22	0	0	3	0	7	0	0	0	0	66	0
	HV\%	-	-	4\%	3\%	-	5\%	4\%	-	-	2\%	-	2\%	-	-	-	-	3\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	1	3	0	5	0	3	0	0	3	0	2	6	0	8
7:15 AM	4	4	2	0	10	5	5	4	0	14	0	8	10	0	18
7:30 AM	2	2	1	0	5	0	4	1	0	5	0	5	6	4	15
7:45 AM	8	4	0	0	12	5	4	2	0	11	0	3	4	3	10
8:00 AM	4	9	8	0	21	4	10	5	0	19	0	20	19	5	44
8:15 AM	7	5	1	0	13	2	4	2	0	8	0	13	15	2	30
8:30 AM	4	15	1	0	20	2	4	0	0	6	0	2	1	2	5
8:45 AM	6	3	3	0	12	1	4	1	0	6	0	1	0	1	2
Count Total	36	43	19	0	98	19	38	15	0	72	0	54	61	17	132
Peak Hr	23	33	10	0	66	13	22	9	0	44	0	38	39	12	89

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				7th Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	1	0	0	0	1	0	0	0	0	3	0	0	0	0	5	0
7:15 AM	0	0	4	0	0	3	1	0	0	0	0	2	0	0	0	0	10	0
7:30 AM	0	0	2	0	0	1	1	0	0	0	0	1	0	0	0	0	5	0
7:45 AM	0	0	8	0	0	0	4	0	0	0	0	0	0	0	0	0	12	32
8:00 AM	0	0	4	0	0	4	5	0	0	1	0	7	0	0	0	0	21	48
8:15 AM	0	0	7	0	0	1	4	0	0	1	0	0	0	0	0	0	13	51
8:30 AM	0	0	2	2	0	6	9	0	0	1	0	0	0	0	0	0	20	66
8:45 AM	0	0	6	0	0	1	2	0	0	1	0	2	0	0	0	0	12	66
Count Total	0	0	34	2	0	16	27	0	0	4	0	15	0	0	0	0	98	0
Peak Hour	0	0	21	2	0	11	22	0	0	3	0	7	0	0	0	0	66	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			7th Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	0	0	0	3	0	0	0	0	0	0	0	3	0
7:15 AM	0	5	0	1	4	0	1	0	3	0	0	0	14	0
7:30 AM	0	0	0	0	4	0	1	0	0	0	0	0	5	0
7:45 AM	0	5	0	0	4	0	0	0	2	0	0	0	11	33
8:00 AM	0	4	0	0	10	0	0	0	5	0	0	0	19	49
8:15 AM	0	1	1	0	4	0	0	0	2	0	0	0	8	43
8:30 AM	0	2	0	0	4	0	0	0	0	0	0	0	6	44
8:45 AM	0	1	0	0	4	0	0	0	1	0	0	0	6	39
Count Total	0	18	1	1	37	0	2	0	13	0	0	0	72	0
Peak Hour	0	12	1	0	22	0	0	0	9	0	0	0	44	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

7th Ave
Soquel Ave іみx

Date: 10-04-2018
Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:30 PM to 5:30 PM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				7th Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00	PM	0	0	203	26	0	63	110	0	0	12	0	70	0	0	0	0	484	0
4:15	PM	0	0	196	22	0	69	113	0	0	21	0	46	0	0	0	0	467	0
4:30	PM	0	0	241	13	0	72	122	0	0	23	0	53	0	0	0	0	524	0
4:45	PM	0	0	211	17	0	69	138	0	0	17	0	65	0	0	0	0	517	1,992
5:00	PM	0	0	231	24	1	72	127	0	0	25	0	58	0	0	0	0	538	2,046
5:15	PM	0	0	201	17	0	83	138	0	0	29	0	67	0	0	0	0	535	2,114
5:30	PM	0	0	232	22	0	78	91	0	0	18	0	62	0	0	0	0	503	2,093
5:45	PM	0	0	196	13	0	72	96	0	0	22	0	56	0	0	0	0	455	2,031
Count	Total	0	0	1,711	154	1	578	935	0	0	167	0	477	0	0	0	0	4,023	0
	AII	0	0	884	71	1	296	525	0	0	94	0	243	0	0	0	0	2,114	0
Peak	HV	0	0	10	1	0	5	5	0	0	1	0	1	0	0	0	0	23	0
	HV\%	-	-	1\%	1\%	0\%	2\%	1\%	-	-	1\%	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	7	2	3	0	12	1	2	0	0	3	0	6	5	1	12
4:15 PM	4	6	1	0	11	2	2	0	0	4	0	10	8	2	20
4:30 PM	5	1	1	0	7	2	4	1	0	7	0	5	4	1	10
4:45 PM	2	2	1	0	5	6	3	3	0	12	0	9	7	1	17
5:00 PM	2	3	0	0	5	7	2	0	0	9	0	3	2	1	6
5:15 PM	2	4	0	0	6	6	5	0	0	11	0	8	7	1	16
5:30 PM	1	1	1	0	3	4	3	1	0	8	0	7	10	2	19
5:45 PM	1	3	1	0	5	1	5	3	0	9	0	6	3	0	9
Count Total	24	22	8	0	54	29	26	8	0	63	0	54	46	9	109
Peak Hr	11	10	2	0	23	21	14	4	0	39	0	25	20	4	49

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				7th Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	0	7	0	0	0	2	0	0	0	0	3	0	0	0	0	12	0
4:15 PM	0	0	4	0	0	2	4	0	0	0	0	1	0	0	0	0	11	0
4:30 PM	0	0	5	0	0	1	0	0	0	1	0	0	0	0	0	0	7	0
4:45 PM	0	0	2	0	0	0	2	0	0	0	0	1	0	0	0	0	5	35
5:00 PM	0	0	2	0	0	2	1	0	0	0	0	0	0	0	0	0	5	28
5:15 PM	0	0	1	1	0	2	2	0	0	0	0	0	0	0	0	0	6	23
5:30 PM	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	3	19
5:45 PM	0	0	1	0	0	2	1	0	0	1	0	0	0	0	0	0	5	19
Count Total	0	0	23	1	0	9	13	0	0	2	0	6	0	0	0	0	54	0
Peak Hour	0	0	10	1	0	5	5	0	0	1	0	1	0	0	0	0	23	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			7th Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	1	0	2	0	0	0	0	0	0	0	3	0
4:15 PM	0	2	0	0	2	0	0	0	0	0	0	0	4	0
4:30 PM	0	2	0	0	4	0	0	0	1	0	0	0	7	0
4:45 PM	0	6	0	1	2	0	1	0	2	0	0	0	12	26
5:00 PM	0	6	1	0	2	0	0	0	0	0	0	0	9	32
5:15 PM	0	6	0	0	5	0	0	0	0	0	0	0	11	39
5:30 PM	0	4	0	1	2	0	1	0	0	0	0	0	8	40
5:45 PM	0	1	0	3	2	0	0	0	3	0	0	0	9	37
Count Total	0	27	2	5	21	0	2	0	6	0	0	0	63	0
Peak Hour	0	20	1	1	13	0	1	0	3	0	0	0	39	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Location: 2. Soquel Dr \& Paul Sweet Rd/Commercial Way Date: $3 / 6 / 2018$

Peak Hour: 4:30 PM - 5:30 PM
Peak 15: 5:05 PM - 5:20 PM
PHF: 0.961343

Hwy 1 SB Ramps
 Soquel Ave

Date: 10-04-2018

	HV \%:	PHF
EB	2.7%	0.82
WB	1.6%	0.99
NB	-	-
SB	3.0%	0.97
TOTAL	2.5%	0.94

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				0				Hwy 1 SB Ramps				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
	AM	0	64	28	0	0	0	87	39	0	0	0	0	0	37	0	86	341	0
	AM	0	63	38	0	0	0	145	31	0	0	0	0	0	39	0	108	424	0
	AM	0	86	59	0	0	0	125	47	0	0	0	0	0	59	0	144	520	0
	AM	0	114	54	0	0	0	138	39	0	0	0	0	0	68	0	133	546	1,831
8:00	AM	0	96	51	0	0	0	136	49	0	0	0	0	0	79	0	140	551	2,041
	AM	0	99	81	0	0	0	144	38	0	0	0	0	0	72	0	155	589	2,206
	AM	0	81	52	0	0	0	148	33	0	0	0	0	0	71	0	149	534	2,220
	AM	0	88	45	0	0	0	137	47	0	0	0	0	0	86	0	144	547	2,221
Count	Total	0	691	408	0	0	0	1,060	323	0	0	0	0	0	511	0	1,059	4,052	0
	All	0	364	229	0	0	0	565	167	0	0	0	0	0	308	0	588	2,221	0
Peak Hour	HV	0	10	6	0	0	0	9	3	0	0	0	0	0	6	0	21	55	0
	HV\%	-	3\%	3\%	-	-	-	2\%	2\%	-	-	-	-	-	2\%	-	4\%	2\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	1	0	1	3	1	0	0	0	1	0	0	0	4	4
7:15 AM	3	2	0	2	7	2	0	0	0	2	0	0	0	3	3
7:30 AM	2	0	0	5	7	1	0	0	0	1	0	0	0	3	3
7:45 AM	1	3	0	6	10	1	0	0	0	1	0	0	0	2	2
8:00 AM	4	1	0	10	15	1	2	0	0	3	0	0	0	2	2
8:15 AM	9	2	0	5	16	0	1	0	0	1	0	0	0	2	2
8:30 AM	2	3	0	7	12	1	0	0	0	1	0	0	0	1	1
8:45 AM	1	6	0	5	12	0	0	0	0	0	0	0	0	1	1
Count Total	23	18	0	41	82	7	3	0	0	10	0	0	0	18	18
Peak Hr	16	12	0	27	55	2	3	0	0	5	0	0	0	6	6

Two-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Soquel Ave				Soquel Ave				0				Hwy 1 SB Ramps				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	3	0
7:15 AM	0	2	1	0	0	0	2	0	0	0	0	0	0	2	0	0	7	0
7:30 AM	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	4	7	0
7:45 AM	0	1	0	0	0	0	3	0	0	0	0	0	0	1	0	5	10	27
8:00 AM	0	3	1	0	0	0	0	1	0	0	0	0	0	2	0	8	15	39
8:15 AM	0	4	5	0	0	0	2	0	0	0	0	0	0	2	0	3	16	48
8:30 AM	0	2	0	0	0	0	3	0	0	0	0	0	0	1	0	6	12	53
8:45 AM	0	1	0	0	0	0	4	2	0	0	0	0	0	1	0	4	12	55
Count Total	0	14	9	0	0	0	14	4	0	0	0	0	0	10	0	31	82	0
Peak Hour	0	10	6	0	0	0	9	3	0	0	0	0	0	6	0	21	55	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			0			Hwy 1 SB Ramps			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	2	0	0	0	0	0	0	0	0	0	0	2	0
7:30 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:45 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	5
8:00 AM	0	1	0	0	2	0	0	0	0	0	0	0	3	7
8:15 AM	0	0	0	0	1	0	0	0	0	0	0	0	1	6
8:30 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	6
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Count Total	0	7	0	0	3	0	0	0	0	0	0	0	10	0
Peak Hour	0	2	0	0	3	0	0	0	0	0	0	0	5	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				0				Hwy 1 SB Ramps				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00	PM	0	88	114	0	0	0	122	12	0	0	0	0	0	143	0	102	581	0
4:15	PM	0	101	143	0	0	0	97	19	0	0	0	0	0	165	0	79	604	0
4:30	PM	0	81	136	0	0	0	114	11	0	0	0	0	0	150	0	120	612	0
4:4	PM	0	62	125	0	0	0	112	11	0	0	0	0	0	154	0	105	569	2,366
	PM	0	72	145	0	0	0	112	10	0	0	0	0	0	144	0	89	572	2,357
5:1	PM	0	82	136	0	0	0	115	14	0	0	0	0	0	160	0	93	600	2,353
	PM	0	65	126	0	0	0	78	19	0	0	0	0	0	182	0	125	595	2,336
	PM	0	59	92	0	0	0	105	11	0	0	0	0	0	160	0	114	541	2,308
Count	Total	0	610	1,017	0	0	0	855	107	0	0	0	0	0	1,258	0	827	4,674	0
	All	0	332	518	0	0	0	445	53	0	0	0	0	0	612	0	406	2,366	0
Peak Hour	HV	0	2	6	0	0	0	9	0	0	0	0	0	0	4	0	9	30	0
	HV\%	-	1\%	1\%	-	-	-	2\%	0\%	-	-	-	-	-	1\%	-	2\%	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	3	3	0	5	11	0	0	0	0	0	1	0	0	1	2
4:15 PM	1	2	0	4	7	1	0	0	0	1	0	0	0	2	2
4:30 PM	2	2	0	1	5	1	1	0	0	2	0	0	0	1	1
4:45 PM	2	2	0	3	7	1	0	0	0	1	0	0	0	2	2
5:00 PM	1	0	0	1	2	1	1	0	0	2	0	0	0	3	3
5:15 PM	1	0	0	1	2	1	1	0	0	2	0	0	0	2	2
5:30 PM	0	2	0	0	2	1	0	0	0	1	0	0	0	3	3
5:45 PM	0	0	0	3	3	1	0	0	0	1	0	0	0	0	0
Count Total	10	11	0	18	39	7	3	0	0	10	1	0	0	14	15
Peak Hr	8	9	0	13	30	3	1	0	0	4	1	0	0	6	7

Two-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Soquel Ave				Soquel Ave				0				Hwy 1 SB Ramps				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	1	2	0	0	0	3	0	0	0	0	0	0	2	0	3	11	0
4:15 PM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	4	7	0
4:30 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	1	0	0	5	0
4:45 PM	0	1	1	0	0	0	2	0	0	0	0	0	0	1	0	2	7	30
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	21
5:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	2	16
5:30 PM	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	2	13
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	3	9
Count Total	0	3	7	0	0	0	10	1	0	0	0	0	0	6	0	12	39	0
Peak Hour	0	2	6	0	0	0	9	0	0	0	0	0	0	4	0	9	30	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			0			Hwy 1 SB Ramps			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	1	0	0	1	0	0	0	0	0	0	0	2	0
4:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	4
5:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	2	6
5:15 PM	0	1	0	0	1	0	0	0	0	0	0	0	2	7
5:30 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	6
5:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	,	6
Count Total	0	7	0	0	3	0	0	0	0	0	0	0	10	0
Peak Hour	0	3	0	0	1	0	0	0	0	0	0	0	4	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

17th Ave
Soquel Ave しみx

Date: 10-04-2018
Count Period: 7:00 AM to 9:00 AM Peak Hour: 8:00 AM to 9:00 AM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				17th Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00 AM		0	0	31	30	0	8	56	0	0	76	0	10	0	0	0	0	211	0
7:15 AM		0	0	24	45	0	13	70	0	0	98	0	6	0	0	0	0	256	0
7:30 AM		0	0	33	56	0	10	64	0	0	121	0	5	0	0	0	0	289	0
7:45 AM		0	0	51	59	0	11	75	0	0	89	0	4	0	0	0	0	289	1,045
8:00 AM		0	0	67	52	0	12	82	0	0	104	0	11	0	0	0	0	328	1,162
8:15 AM		0	0	56	79	0	9	67	0	0	107	0	8	0	0	0	0	326	1,232
8:30 AM		0	0	47	69	0	11	75	0	0	98	0	6	0	0	0	0	306	1,249
8:45 AM		0	0	54	64	0	10	72	0	0	103	0	9	0	0	0	0	312	1,272
Count Total		0	0	363	454	0	84	561	0	0	796	0	59	0	0	0	0	2,317	0
Peak Hour	All	0	0	224	264	0	42	296	0	0	412	0	34	0	0	0	0	1,272	0
	HV	0	0	3	6	0	0	4	0	0	8	0	1	0	0	0	0	22	0
	HV\%	-	-	1\%	2\%	-	0\%	1\%	-	-	2\%	-	3\%	-	-	-	-	2\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	0	2	0	3	1	0	0	0	1	0	0	0	1	1
7:15 AM	3	1	0	0	4	3	0	0	0	3	0	0	0	1	1
7:30 AM	3	1	0	0	4	2	0	0	0	2	0	0	0	3	3
7:45 AM	2	2	2	0	6	1	0	1	0	2	0	0	0	0	0
8:00 AM	2	0	2	0	4	2	2	1	0	5	0	0	0	3	3
8:15 AM	5	1	2	0	8	0	0	0	0	0	0	0	0	0	0
8:30 AM	1	2	2	0	5	2	0	0	0	2	0	0	0	0	0
8:45 AM	1	1	3	0	5	1	0	0	0	1	0	0	0	1	1
Count Total	18	8	13	0	39	12	2	2	0	16	0	0	0	9	9
Peak Hr	9	4	9	0	22	5	2	1	0	8	0	0	0	4	4

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				17th Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	3	0
7:15 AM	0	0	1	2	0	0	1	0	0	0	0	0	0	0	0	0	4	0
7:30 AM	0	0	0	3	0	1	0	0	0	0	0	0	0	0	0	0	4	0
7:45 AM	0	0	1	1	0	2	0	0	0	2	0	0	0	0	0	0	6	17
8:00 AM	0	0	2	0	0	0	0	0	0	1	0	1	0	0	0	0	4	18
8:15 AM	0	0	1	4	0	0	1	0	0	2	0	0	0	0	0	0	8	22
8:30 AM	0	0	0	1	0	0	2	0	0	2	0	0	0	0	0	0	5	23
8:45 AM	0	0	0	1	0	0	1	0	0	3	0	0	0	0	0	0	5	22
Count Total	0	0	5	13	0	3	5	0	0	11	0	2	0	0	0	0	39	0
Peak Hour	0	0	3	6	0	0	4	0	0	8	0	1	0	0	0	0	22	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			17th Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	1	2	0	0	0	0	0	0	0	0	0	3	0
7:30 AM	0	1	1	0	0	0	0	0	0	0	0	0	2	0
7:45 AM	0	1	0	0	0	0	1	0	0	0	0	0	2	8
8:00 AM	0	1	1	0	2	0	1	0	0	0	0	0	5	12
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	9
8:30 AM	0	2	0	0	0	0	0	0	0	0	0	0	2	9
8:45 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	8
Count Total	0	8	4	0	2	0	2	0	0	0	0	0	16	0
Peak Hour	0	4	1	0	2	0	1	0	0	0	0	0	8	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

17th Ave
Soquel Ave

むみ
Date: 10-04-2018
Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:15 PM to 5:15 PM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				17th Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00	PM	0	0	144	114	0	13	57	0	0	68	0	6	0	0	0	0	402	0
4:15	PM	0	0	163	134	0	11	68	0	0	57	0	7	0	0	0	0	440	0
4:30	PM	0	0	157	87	0	18	56	0	0	66	0	8	0	0	0	0	392	0
4:45	PM	0	0	135	122	0	17	41	0	0	72	0	7	0	0	0	0	394	1,628
5:00	PM	0	0	156	122	0	14	56	0	0	72	0	6	0	0	0	0	426	1,652
5:15	PM	0	0	161	126	0	14	56	0	0	61	0	5	0	0	0	0	423	1,635
5:30	PM	0	0	158	130	0	7	36	0	0	56	0	7	0	0	0	0	394	1,637
5:45	PM	0	0	129	116	0	13	45	0	0	64	0	8	0	0	0	0	375	1,618
Count	Total	0	0	1,203	951	0	107	415	0	0	516	0	54	0	0	0	0	3,246	0
	All	0	0	611	465	0	60	221	0	0	267	0	28	0	0	0	0	1,652	0
Peak Hour	HV	0	0	6	2	0	0	1	0	0	4	0	0	0	0	0	0	13	0
	HV\%	-	-	1\%	0\%	-	0\%	0\%	-	-	1\%	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	3	0	2	0	5	0	0	0	0	0	0	0	0	1	1
4:15 PM	2	0	1	0	3	1	1	0	0	2	1	0	0	0	1
4:30 PM	3	1	1	0	5	0	0	0	0	0	0	0	0	1	1
4:45 PM	2	0	2	0	4	3	0	1	0	4	0	0	0	1	1
5:00 PM	1	0	0	0	1	1	1	1	0	3	0	0	0	2	2
5:15 PM	1	1	0	0	2	1	0	0	0	1	0	0	0	0	0
5:30 PM	1	1	0	0	2	0	0	1	0	1	0	0	0	4	4
5:45 PM	2	0	0	0	2	2	0	0	0	2	0	0	0	2	2
Count Total	15	3	6	0	24	8	2	3	0	13	1	0	0	11	12
Peak Hr	8	1	4	0	13	5	2	2	0	9	1	0	0	4	5

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				17th Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	0	2	1	0	0	0	0	0	2	0	0	0	0	0	0	5	0
4:15 PM	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	3	0
4:30 PM	0	0	2	1	0	0	1	0	0	1	0	0	0	0	0	0	5	0
4:45 PM	0	0	2	0	0	0	0	0	0	2	0	0	0	0	0	0	4	17
5:00 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	13
5:15 PM	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2	12
5:30 PM	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	2	9
5:45 PM	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	7
Count Total	0	0	10	5	0	1	2	0	0	6	0	0	0	0	0	0	24	0
Peak Hour	0	0	6	2	0	0	1	0	0	4	0	0	0	0	0	0	13	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			17th Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	1	0	1	0	0	0	0	0	0	0	2	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	3	0	0	0	0	0	0	1	0	0	0	4	6
5:00 PM	0	1	0	0	1	0	0	0	1	0	0	0	3	9
5:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	8
5:30 PM	0	0	0	0	0	0	1	0	0	0	0	0	1	9
5:45 PM	0	2	0	0	0	0	0	0	0	0	0	0	2	7
Count Total	0	7	1	0	2	0	1	0	2	0	0	0	13	0
Peak Hour	0	4	1	0	2	0	0	0	2	0	0	0	9	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Chanticleer Ave
Soquel Ave

Date: 10-04-2018
Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:45 AM to 8:45 AM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				Chanticleer Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00	AM	0	0	28	10	0	7	35	0	0	31	0	10	0	0	0	0	121	0
7:15	AM	0	0	18	9	0	23	45	0	0	39	0	14	0	0	0	0	148	0
7:30	AM	0	0	27	13	0	14	43	0	0	35	0	27	0	0	0	0	159	0
7:45	AM	0	0	31	19	0	20	51	0	0	37	0	32	0	0	0	0	190	618
8:00	AM	0	0	49	24	0	20	52	0	0	44	0	26	0	0	0	0	215	712
8:15	AM	0	0	47	23	0	24	39	0	0	37	0	20	0	0	0	0	190	754
8:30	AM	0	0	32	17	0	11	43	0	0	44	0	18	0	0	0	0	165	760
8:45	AM	0	0	48	16	0	14	50	0	0	34	0	20	0	0	0	0	182	752
Count	Total	0	0	280	131	0	133	358	0	0	301	0	167	0	0	0	0	1,370	0
	AII	0	0	159	83	0	75	185	0	0	162	0	96	0	0	0	0	760	0
Peak	HV	0	0	4	2	0	0	4	0	0	1	0	0	0	0	0	0	11	0
	HV\%	-	-	3\%	2\%	-	0\%	2\%	-	-	1\%	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0
7:15 AM	1	0	1	0	2	1	0	0	0	1	0	0	0	0	0
7:30 AM	0	3	0	0	3	2	0	1	0	3	0	0	0	2	2
7:45 AM	0	2	0	0	2	1	0	0	0	1	0	0	0	0	0
8:00 AM	4	0	0	0	4	0	2	0	0	2	0	0	0	0	0
8:15 AM	2	0	1	0	3	0	0	0	0	0	0	0	0	1	1
8:30 AM	0	2	0	0	2	2	0	1	0	3	0	0	0	0	0
8:45 AM	0	0	1	0	1	1	1	0	0	2	0	0	1	0	1
Count Total	8	7	3	0	18	8	3	2	0	13	0	0	1	3	4
Peak Hr	6	4	1	0	11	3	2	1	0	6	0	0	0	1	1

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				Chanticleer Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0
7:30 AM	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	3	0
7:45 AM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	8
8:00 AM	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	4	11
8:15 AM	0	0	2	0	0	0	0	0	0	1	0	0	0	0	0	0	3	12
8:30 AM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	11
8:45 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	10
Count Total	0	0	6	2	0	1	6	0	0	3	0	0	0	0	0	0	18	0
Peak Hour	0	0	4	2	0	0	4	0	0	1	0	0	0	0	0	0	11	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			Chanticleer Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:30 AM	0	2	0	0	0	0	0	0	1	0	0	0	3	0
7:45 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	6
8:00 AM	0	0	0	0	2	0	0	0	0	0	0	0	2	7
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	6
8:30 AM	0	2	0	0	0	0	0	0	1	0	0	0	3	6
8:45 AM	0	1	0	0	1	0	0	0	0	0	0	0	2	7
Count Total	0	8	0	0	3	0	0	0	2	0	0	0	13	0
Peak Hour	0	3	0	0	2	0	0	0	1	0	0	0	6	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Chanticleer Ave
 Soquel Ave

Date: 10-04-2018
Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:15 PM to 5:15 PM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				Chanticleer Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00	PM	0	0	108	41	0	24	51	0	0	20	0	20	0	0	0	0	264	0
4:15	PM	0	0	106	62	0	19	55	0	0	23	0	10	0	0	0	0	275	0
4:30	PM	0	0	121	45	0	20	56	0	0	14	0	14	0	0	0	0	270	0
4:45	PM	0	0	97	45	0	20	44	0	0	17	0	15	0	0	0	0	238	1,047
5:00	PM	0	0	115	52	0	22	52	0	0	18	0	10	0	0	0	0	269	1,052
5:15	PM	0	0	102	61	0	22	48	0	0	21	0	7	0	0	0	0	261	1,038
5:30	PM	0	0	107	63	0	16	28	0	0	17	0	7	0	0	0	0	238	1,006
5:45	PM	0	0	92	49	0	21	31	0	0	24	0	2	0	0	0	0	219	987
Count	Total	0	0	848	418	0	164	365	0	0	154	0	85	0	0	0	0	2,034	0
	AII	0	0	439	204	0	81	207	0	0	72	0	49	0	0	0	0	1,052	0
Peak	HV	0	0	5	2	0	0	0	0	0	0	0	0	0	0	0	0	7	0
	HV\%	-	-	1\%	1\%	-	0\%	0\%	-	-	0\%	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	3	2	0	0	5	0	0	0	0	0	0	0	0	0	0
4:15 PM	1	0	0	0	1	0	1	0	0	1	0	0	1	0	1
4:30 PM	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0
4:45 PM	2	0	0	0	2	4	0	0	0	4	0	0	0	1	1
5:00 PM	2	0	0	0	2	1	1	0	0	2	0	0	0	0	0
5:15 PM	1	1	0	0	2	1	0	1	0	2	0	0	0	0	0
5:30 PM	1	2	0	0	3	0	1	0	0	1	0	0	0	0	0
5:45 PM	1	1	0	0	2	4	0	0	0	4	0	0	0	1	1
Count Total	13	6	0	0	19	10	3	1	0	14	0	0	1	2	3
Peak Hr	7	0	0	0	7	5	2	0	0	7	0	0	1	1	2

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				Chanticleer Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	0	2	1	0	1	1	0	0	0	0	0	0	0	0	0	5	0
4:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
4:45 PM	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	10
5:00 PM	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	7
5:15 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	2	8
5:30 PM	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	3	9
5:45 PM	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	2	9
Count Total	0	0	8	5	0	3	3	0	0	0	0	0	0	0	0	0	19	0
Peak Hour	0	0	5	2	0	0	0	0	0	0	0	0	0	0	0	0	7	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			Chanticleer Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	1	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	4	0	0	0	0	0	0	0	0	0	0	4	5
5:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	2	7
5:15 PM	0	1	0	0	0	0	1	0	0	0	0	0	2	8
5:30 PM	0	0	0	1	0	0	0	0	0	0	0	0	1	9
5:45 PM	0	4	0	0	0	0	0	0	0	0	0	0	4	9
Count Total	0	10	0	1	2	0	1	0	0	0	0	0	14	0
Peak Hour	0	5	0	0	2	0	0	0	0	0	0	0	7	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Site Dwy \& Soquel Ave

Peak Hour Turning Movement Count

ID: 18-08275-007
City: Santa Cruz

Cars (NOON)

Day: Thursday
Date: 05/17/2018

$07: 0$ 04:0	$\begin{array}{r} \mathrm{NO}- \\ \mathrm{NO} \\ \mathrm{NO} \end{array}$	$\begin{aligned} & \text { 09:00 } \\ & \text { NE } \\ & 06: 00 \end{aligned}$		0 0 2_{1}^{2} -1 0 0 0 0 0
PM	NOON	AM		$\begin{aligned} & \text { O } \\ & 0 \\ & \text { O} \\ & \hline \mathbf{D} \\ & \hline \mathbf{D} \\ & \text { © } \end{aligned}$
0	0	0		
286	0	315		
2	0	9		
0	0	0		
561	0	246		
PM	NOON	AM		

HT (PM)

40th Ave \& Gross Rd

Peak Hour Turning Movement Count

ID: 18-08275-003
City: Santa Cruz

$\begin{aligned} & \text { n } \\ & \stackrel{y}{3} \\ & \text { 우 } \\ & \underline{y} \\ & \underset{\sim}{\mathbf{u}} \end{aligned}$	07:30 AM - 08:30 AM
	NONE
	04:00 PM - 05:00 PM

40th Ave
SOUTHBOUND

Day: Thursday
Date: 05/17/2018

AM	4	0	247	0	339	AM
NOON	0	0	0	0	0	NOON
PM	2	3	253	0	235	PM

07:00 AM - 09:00 AM

NONE

04:00 PM - 06:00 PM

0 0 0 0 0 0

Cars (NOON)

HT (PM)

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Deanes Ln				Driveway					40th Ave					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	T	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Deanes Ln				Driveway					40th Ave					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT			RT		
7:00 AM	0		0	0	0		0		0	0		0		0	0			0	0	0
7:15 AM	0		0	0	0		0		0	0		1		0	0			0	1	0
7:30 AM	0		0	5	0		0		0	0		0		0	0			0	6	0
7:45 AM	0		0	0	0		0		0	0		1		0	0			0	1	8
8:00 AM	0		0	0	0		0		0	0		0		0	0			0	0	8
8:15 AM	0		0	0	0		0		0	0		0		0	0			0	0	7
8:30 AM	0		0	0	0		0		0	0		1		0	0			0	2	3
8:45 AM	0		0	1	0		0		0	0		0		0	0			0	1	3
Count Total	0		0	6	0		0		0	0		3		0	0			0	11	0
Peak Hour	0		0	5	0		0		0	0		1		0	0			0	7	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Deanes Ln				Driveway					40th Ave					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	T	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
4:00 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
4:45 PM	0	0	0	1	0	0		0	0	0	0		0	0	0	0	0	0	1	1
5:00 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	1
5:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
Count Total	0	0	0	1	0	0		0	0	0	0		0	0	0	0	0	0	1	0
Peak Hour	0	0	0	1	0	0		0	0	0	0		0	0	0	0	0	0	1	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Deanes Ln				Driveway					40th Ave					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT			RT		
4:00 PM	0		0	0	0		0		0	0		0		0	0			0	0	0
4:15 PM	0		0	0	0		0		0	0		0		0	0			0	0	0
4:30 PM	0		0	0	0		0		0	0		0		0	0			0	5	0
4:45 PM	0		0	0	0		0		0	1		0		0	0			0	2	7
5:00 PM	0		0	0	0		0		0	0		1		0	0			0	1	8
5:15 PM	0		0	0	0		0		0	1		0		0	0			0	1	9
5:30 PM	0		0	1	0		0		0	1		0		0	0			0	2	6
5:45 PM	0		0	0	0		0		0	0		0		0	0			0	0	4
Count Total	0		0	1	0		0		0	3		1		0	0			0	11	0
Peak Hour	0		0	0	0		0		0	1		1		0	0			0	8	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Clares St				Clares St					Driveway					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT		RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		RT		
7:00 AM	0	0		0	0	0		0	0	0	0		0	1	0	0		0	1	0
7:15 AM	0	0	0	0	0	0		1	0	0	0		0	0	0	0		0	1	0
7:30 AM	0	0	1	0	0	0		2	0	0	0		0	1	0	0	0	0	4	0
7:45 AM	0	0	1	0	0	0		3	0	0	0		0	0	0	1		0	5	11
8:00 AM	0	0	0	0	0	0		2	0	0	0		0	1	0	0		0	3	13
8:15 AM	0	0		0	0	0		3	0	0	0		0	1	0	0		0	6	18
8:30 AM	0	0		0	0	0		1	1	0	0		0	1	0	0		0	4	18
8:45 AM	0	0	0	0	0	0		1	0	0	0		0	0	0	0		0	1	14
Count Total	0	0	5	0	0	0	-	13	1	0	0		0	5	0	1		0	25	0
Peak Hour	0	0	3	0	0	0		7	1	0	0		0	3	0	0	0	0	14	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Clares St				Clares St					Driveway					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT			RT	LT				RT	LT		TH		RT	LT		TH	RT		
7:00 AM	0		1	0	0		0		0	0		0		0	0		0	0	1	0
7:15 AM	0		1	0	0		1		1	0		0		0	0		1	0	4	0
7:30 AM	0		0	0	0		0		0	0		2		2	6		0	0	10	0
7:45 AM	0		1	0	0		0		0	0		0		0	0		0	0	1	16
8:00 AM	0		0	1	0		0		0	0		0		0	0		0	0	1	16
8:15 AM	0		0	0	0		0		0	0		0		1	0		0	1	2	14
8:30 AM	0		0	0	0		0		0	0		1		0	1		0	0	2	6
8:45 AM	0		0	0	0		0		0	0		0		0	0		0	0	0	5
Count Total	0		3	1	0		1		1	0		3		3	7		1	1	21	0
Peak Hour	0		0	1	0		0		0	0		1		1	1		0	1	5	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Clares St				Clares St					Driveway					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT		RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		RT		
4:00 PM	0	1		0	0	0		0	0	0	0		0	0	0	0		0	2	0
4:15 PM	0	0	0	0	0	0		0	0	0	0	0	0	1	0	0	0	1	2	0
4:30 PM	0	0		0	0	0		0	0	0	0		0	3	0	0	0	0	3	0
4:45 PM	0	0	0	0	0	0		1	0	0	0		0	0	0	1		0	2	9
5:00 PM	0	0	0	0	0	0		0	0	0	0		0	1	0	0	0	0	1	8
5:15 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	6
5:30 PM	0	0	1	1	0	0		0	0	0	0		0	1	0	0		0	3	6
5:45 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0		0	0	4
Count Total	0	1	2	1	0	0		1	0	0	0		0	6	0	1		1	13	0
Peak Hour	0	0	1	1	0	0		1	0	0	0	0	0	2	0	1	0	0	6	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Clares St				Clares St					Driveway					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT		TH	RT		
4:00 PM	0		0	0	0		0		0	0		0		0	0		0	0	0	0
4:15 PM	0		0	0	0		0		0	0		0		0	0		2	0	2	0
4:30 PM	0		1	0	0		2		0	0		0		0	2		5	0	10	0
4:45 PM	0		1	0	0		0		0	0		0		0	1		1	0	3	15
5:00 PM	0		1	0	0		0		0	0		1		0	0		0	0	2	17
5:15 PM	0		0	0	0		1		0	0		1		0	1		0	0	3	18
5:30 PM	0		0	0	1		0		1	0		1		0	0		1	0	4	12
5:45 PM	0		0	0	0		0		0	0		0		0	0		0	0	0	9
Count Total	0		3	0	1		3		1	0		3		0	4		9	0	24	0
Peak Hour	0		2	0	1		1		1	0		3		0	2		2	0	12	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																					
Interval Start	Clares St					Clares St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	1		0	0	0	0		0	1	0	0		2	1	0	0	4	0	9	0
7:15 AM	0	0	0	0	0	0	0		0	0	0	0		4	0	0	0	3	1	8	0
7:30 AM	0	2		0	0	0	0		0	0	0	0		5	0	0	0	12	2	21	0
7:45 AM	0	1		0	1	0	0		0	0	0	0		3	0	0	0	7	3	15	53
8:00 AM	0	1		0	0	0	0		0	1	0	0		5	1	0	1	4	2	15	59
8:15 AM	0	3		0	0	0	0		0	0	0	1		4	0	0	0	7	1	16	67
8:30 AM	0	2	0	0	0	0	0		1	1	0	0		2	0	0	0	7	2	15	61
8:45 AM	0	0	0	0	0	0	0		0	0	0	0		6	0	0	0	5	1	12	58
Count Total	0	10	0	0	1	0	0		1	3	0	1	3	31	2	0	1	49	12	111	0
Peak Hour	0	6	0	0	0	0	0		1	2	0	1		17	1	0	1	23	6	58	0
Two-Hour Count Summaries - Bikes																					
Interval Start	Clares St					Clares St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	LT		TH		RT	LT		TH		RT	LT		TH		RT	LT			RT		
7:00 AM	0		0		0	0		0		1	0		0		0	0			0	1	0
7:15 AM	0		2		0	0		1		0	0		0		0	0			0	3	0
7:30 AM	1		3		0	0		0		0	0		0		0	0			0	5	0
7:45 AM	0		1		0	0		0		0	0		0		0	0			0	1	10
8:00 AM	0		0		0	0		0		0	0		0		0	0			0	1	10
8:15 AM	0		0		0	0		0		0	0		0		0	0			0	0	7
8:30 AM	0		1		0	0		0		0	0		0		0	0			0	1	3
8:45 AM	0		0		0	0		0		1	0		0		0	0			0	3	5
Count Total	1		7		0	0		1		2	0		0		0	0			0	15	0
Peak Hour	0		1		0	0		0		1	0		0		0	0			0	5	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Clares St				Clares St				41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT		RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		RT		
4:00 PM	0	1	0	0	0	0	0	0	0	0		2	0	0	0		0	4	0
4:15 PM	0	1		0	0		0	0	0	0		4	0	0	1		0	7	0
4:30 PM	0	0	0	1	0		0	0	0	0		1	0	1	0	3	0	6	0
4:45 PM	0	3	0	1	0	0	0	0	0	0		1	0	0	0		1	7	24
5:00 PM	0	1	0	0	0	0	0	0	0	0		3	0	0	0		1	6	26
5:15 PM	0	0		0	0	0	0	0	0	0		1	0	0	0		0	1	20
5:30 PM	0	2		0	0	0	0	0	0	0		1	0	0	0		0	4	18
5:45 PM	0	0		0	0	0	0	0	0	0		0	1	0	0		0	3	14
Count Total	0	8	0	2	0	0	0	0	0	0		13	1	1	1	1	2	38	0
Peak Hour	0	5	0	2	0	0	0	0	0	0		9	0	1	1		2	26	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Clares St				Clares St				41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT		TH	RT		
4:00 PM	0		0	0	0		0	0	0		0		1	0		1	0	2	0
4:15 PM	0		0	0	0		0	0	0		0		1	0		0	0	1	0
4:30 PM	0		2	0	1		3	0	0		1		0	0		0	0	7	0
4:45 PM	0		1	0	0		0	0	0		0		0	0		0	0	1	11
5:00 PM	0		0	0	0		0	0	0		1		0	1		1	0	3	12
5:15 PM	0		0	0	0		1	0	0		0		0	2		1	0	4	15
5:30 PM	0		0	0	0		1	0	0		0		0	0		0	1	2	10
5:45 PM	0		0	0	0		0	1	0		0		0	1		1	0	3	12
Count Total	0		3	0	1		5	1	0		2		2	4		4	1	23	0
Peak Hour	0		3	0	1		3	0	0		2		1	1		1	0	12	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																					
Interval Start	Capitola Rd					Capitola Rd					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
4:00 PM	0	2		1	1	0	0		2	0	0	0		0	0	0	0	1	0	7	0
4:15 PM	0	3		1	0	0	0		1	1	0	0		1	0	0	0	0	0	7	0
4:30 PM	0	1		1	0	0	0		0	0	0	0		1	0	0	1	3	1	8	0
4:45 PM	0	0		0	1	0	0		0	0	0	0		1	0	0	0	1	0	3	25
5:00 PM	0	2		1	0	0	0		0	0	0	0		2	0	0	0	1	0	6	24
5:15 PM	0	2	0	0	0	0	0		0	0	0	0		2	0	0	0	0	0	4	21
5:30 PM	0	0		0	0	0	0		0	1	0	0		2	0	0	1	1	0	5	18
5:45 PM	0	1		0	0	0	0		0	0	0	0		0	0	0	2	0	0	3	18
Count Total	0	11	4	4	2	0	0	3	3	2	0	0		9	0	0	4	7	1	43	0
Peak Hour	0	5	2	2	1	0	0		0	0	0	0		6	0	0	1	5	1	21	0
Two-Hour Count Summaries - Bikes																					
Interval Start	Capitola Rd					Capitola Rd					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	LT		TH		RT	LT		TH		RT	LT		TH		RT	LT			RT		
4:00 PM	0		0		0	1		2		0	0		0		1	0			0	6	0
4:15 PM	0		0		0	0		1		0	0		1		0	0			0	2	0
4:30 PM	0		0		0	0		0		0	0		2		0	0			0	3	0
4:45 PM	0		0		0	1		0		0	1		1		0	0			0	3	14
5:00 PM	0		0		1	0		0		1	2		2		0	0			0	7	15
5:15 PM	0		0		0	1		0		0	0		1		0	0	0		1	3	16
5:30 PM	0		0		0	0		1		0	1		0		0	0			0	2	15
5:45 PM	0		0		0	0		2		0	1		1		0	0			1	6	18
Count Total	0		0		1	3		6		1	5		8		1	0			2	32	0
Peak Hour	0		0		1	2		0		1	3		6		0	0			1	16	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Brommer St				Jade St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	0	0	0	0	0		0	2	0	0		1	0	0	0	2	2	7	0
7:15 AM	0	1	0	0	0	0		0	0	0	0		1	0	0	0	1	1	4	0
7:30 AM	0	0	0	0	0	0		0	0	0	0		2	0	0	0	6	2	10	0
7:45 AM	0	2	0	0	0	0		0	0	0	0		1	0	0	0	0	2	5	26
8:00 AM	0	1	0	0	0	0		0	0	0	0		3	0	0	0	3	0	7	26
8:15 AM	0	1	0	0	0	0		0	1	0	0		1	0	0	0	3	1	7	29
8:30 AM	0	1	0	1	0	0		0	1	0	0		2	1	0	0	3	1	10	29
8:45 AM	0	3	0	0	0	0		0	0	0	0		5	0	0	0	6	0	14	38
Count Total	0	9	0	1	0	0		0	4	0	0	1	16	1	0	0	24	9	64	0
Peak Hour	0	6	0	1	0	0		0	2	0	0		11	1	0	0	15	2	38	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Brommer St				Jade St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT			RT		
7:00 AM	0		1	0	0		0		0	0		0		0	0			1	2	0
7:15 AM	0		2	0	0		1		0	0		0		0	0			1	4	0
7:30 AM	0			0	0		0		0	0		0		0	0			0	1	0
7:45 AM	0		0	3	0		1		0	0		0		0	0			1	6	13
8:00 AM	0		0	0	0		2		0	0		0		0	0			0	3	14
8:15 AM	0		5	0	0		0		0	0		1		0	0			0	6	16
8:30 AM	0		0	0	0		3		0	0		3		0	0			0	6	21
8:45 AM	0		2	0	0		4		0	0		0		0	2			1	9	24
Count Total	0		10	3	0		11		0	0		4		0	2			4	37	0
Peak Hour	0		7	0	0		9		0	0		4		0	2			1	24	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Brommer St				Jade St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
4:00 PM	0	1	0	0	0	0		0	0	0	0		0	0	0	0	2	1	4	0
4:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	1	0	1	0
4:30 PM	0	1	0	0	0	0		0	0	0	0		1	1	0	0	3	0	6	0
4:45 PM	0	0	0	0	0	0		0	0	0	0		1	0	0	0	2	0	3	14
5:00 PM	0	0	0	0	0	0		0	0	0	0		3	1	0	0	0	1	5	15
5:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	14
5:30 PM	0	0	0	0	0	0		0	0	0	0		2	0	0	0	1	0	3	11
5:45 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	8
Count Total	0	2	0	0	0	0		0	0	0	0		7	2	0	0	9	2	22	0
Peak Hour	0	0	0	0	0	0		0	0	0	0		6	1	0	0	3	1	11	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Brommer St				Jade St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT			RT		
4:00 PM	0		2	0	0		1		0	0		0		0	0			0	6	0
4:15 PM	2		2	0	0		0		0	0		2		0	0			0	7	0
4:30 PM	0		3	0	0		0		0	0		3		1	0			1	9	0
4:45 PM	0		0	0	0		0		0	0		1		3	0			0	5	27
5:00 PM	0		0	0	1		1		1	0		1		0	0			1	7	28
5:15 PM	0		0	0	0		0		0	0		0		0	0			0	0	21
5:30 PM	0		2	1	0		2		0	0		0		0	0			0	5	17
5:45 PM	0		1	0	0		1		0	0		3		0	0			0	6	18
Count Total	2		10	1	1		5		1	0		10		4	0			2	45	0
Peak Hour	0		2	1	1		3		1	0		2		3	0			1	17	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries

Interval Start		Capitola Rd				Capitola Rd				7th Ave				7th Ave				$\begin{gathered} 15-\mathrm{min} \\ \text { Total } \end{gathered}$	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00	AM	0	0	30	5	0	4	39	27	0	10	53	4	0	8	21	1	202	0
7:1	AM	0	2	33	14	0	7	81	27	0	31	49	9	0	9	16	2	280	0
7:30	AM	0	0	52	18	0	9	110	30	0	30	62	9	0	11	24	4	359	0
7:4	AM	0	1	42	26	0	13	121	34	0	45	96	14	0	7	38	7	444	1,285
8:00	AM	0	2	59	26	0	9	155	22	0	48	80	15	0	16	44	16	492	1,575
8:1	AM	0	3	81	41	0	5	119	33	0	54	65	8	0	21	32	2	464	1,759
8:3	AM	0	0	74	35	0	14	108	24	0	31	56	11	0	20	50	7	430	1,830
8:4	AM	0	2	70	36	0	12	109	27	0	50	55	14	0	17	53	5	450	1,836
Count	Total	0	10	441	201	0	73	842	224	0	299	516	84	0	109	278	44	3,121	0
	All	0	7	284	138	0	40	491	106	0	183	256	48	0	74	179	30	1,836	0
Peak	HV	0	0	5	3	0	1	5	2	0	4	9	0	0	1	5	0	35	0
	HV\%	-	0\%	2\%	2\%		3\%	1\%	2\%		2\%	4\%	0\%	-		3\%	0\%	2\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	2	3	0	6	0	0	0	0	0	0	2	0	0	2
7:15 AM	2	5	2	0	9	0	3	2	0	5	4	0	2	3	9
7:30 AM	0	5	2	1	8	0	3	3	2	8	1	1	1	1	4
7:45 AM	2	2	2	4	10	0	4	1	0	5	5	8	8	0	21
8:00 AM	1	1	5	4	11	1	2	4	0	7	4	2	0	0	6
8:15 AM	3	1	3	0	7	0	1	0	1	2	1	1	1	0	3
8:30 AM	1	3	2	2	8	0	1	0	0	1	2	0	1	1	4
8:45 AM	3	3	3	0	9	2	2	0	0	4	0	0	2	4	6
Count Total	13	22	22	11	68	3	16	10	3	32	17	14	15	9	55
Peak Hour	8	8	13	6	35	3	6	4	1	14	7	3	4	5	19

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Capitola Rd				Capitola Rd				7th Ave				7th Ave				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	1	0	0	0	1	1	0	0	3	0	0	0	0	0	6	0
7:15 AM	0	0	1	1	0	0	2	3	0	2	0	0	0	0	0	0	9	0
7:30 AM	0	0	0	0	0	2	2	1	0	0	2	0	0	1	0	0	8	0
7:45 AM	0	0	0	2	0	0	2	0	0	2	0	0	0	1	2	1	10	33
8:00 AM	0	0	0	1	0	1	0	0	0	1	4	0	0	1	3	0	11	38
8:15 AM	0	0	2	1	0	0	1	0	0	2	1	0	0	0	0	0	7	36
8:30 AM	0	0	1	0	0	0	2	1	0	0	2	0	0	0	2	0	8	36
8:45 AM	0	0	2	1	0	0	2	1	0	1	2	0	0	0	0	0	9	35
Count Total	0	0	7	6	0	3	12	7	0	8	14	0	0	3	7	1	68	0
Peak Hour	0	0	5	3	0	1	5	2	0	4	9	0	0	1	5	0	35	0

Two-Hour Count Summaries - Bikes

Interval Start	Capitola Rd			Capitola Rd			7th Ave			7th Ave			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	1	2	0	0	1	1	0	0	0	5	0
7:30 AM	0	0	0	1	2	0	1	2	0	0	2	0	8	0
7:45 AM	0	0	0	0	4	0	0	1	0	0	0	0	5	18
8:00 AM	0	0	1	1	0	1	0	4	0	0	0	0	7	25
8:15 AM	0	0	0	0	1	0	0	0	0	0	1	0	2	22
8:30 AM	0	0	0	0	1	0	0	0	0	0	0	0	1	15
8:45 AM	0	1	1	0	2	0	0	0	0	0	0	0	4	14
Count Total	0	1	2	3	12	1	1	8	1	0	3	0	32	0
Peak Hour	0	1	2	1	4	1	0	4	0	0	1	0	14	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries

Interval Start		Capitola Rd				Capitola Rd				7th Ave				7th Ave				$\begin{gathered} 15-\mathrm{min} \\ \text { Total } \end{gathered}$	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00		0	9	204	82	0	14	99	16	0	19	47	11	0	18	67	6	592	0
4:1	PM	0	4	236	83	0	21	98	14	0	32	37	16	0	32	59	7	639	0
4:30	PM	0	3	200	62	1	22	95	9	0	33	44	18	0	24	45	9	565	0
4:4	PM	0	5	205	64	0	8	91	19	0	29	41	23	0	25	47	3	560	2,356
5:00	PM	0	1	221	79	0	10	93	14	0	34	43	6	0	23	64	5	593	2,357
5:1	PM	0	5	244	76	0	7	116	9	0	40	43	10	0	31	62	6	649	2,367
5:3	PM	0	8	214	91	0	11	90	12	0	39	29	15	0	27	70	3	609	2,411
5:4	PM	0	3	200	63	0	14	80	9	0	27	45	8	0	11	53	4	517	2,368
Count	otal	0	38	1,724	600	1	107	762	102	0	253	329	107	0	191	467	43	4,724	0
	All	0	19	884	310	0	36	390	54	0	142	156	54	0	106	243	17	2,411	0
Peak	HV	0	0	5	2	0	0	5	0	0	1	1	0	0	3	1	0	18	0
	HV\%	-	0\%	1\%	1\%	-	0\%		0\%	-	1\%	1\%	0\%	-	3\%	0\%	0\%	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	4	1	2	1	8	2	0	1	2	5	0	0	0	2	2
4:15 PM	2	2	5	0	9	1	1	0	1	3	0	2	0	1	3
4:30 PM	2	2	1	0	5	1	2	4	0	7	1	1	7	1	10
4:45 PM	3	0	1	2	6	4	0	2	2	8	1	0	1	0	2
5:00 PM	2	2	0	1	5	0	0	4	2	6	1	2	2	1	6
5:15 PM	1	2	1	0	4	2	1	2	0	5	3	1	0	1	5
5:30 PM	1	1	0	1	3	4	0	5	3	12	0	2	0	2	4
5:45 PM	2	1	0	1	4	1	3	1	0	5	4	1	3	2	10
Count Total	17	11	10	6	44	15	7	19	10	51	10	9	13	10	42
Peak Hour	7	5	2	4	18	10	1	13	7	31	5	5	3	4	17

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Capitola Rd				Capitola Rd				7th Ave				7th Ave				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	1	2	1	0	0	1	0	0	2	0	0	0	0	1	0	8	0
4:15 PM	0	0	1	1	0	0	2	0	0	3	1	1	0	0	0	0	9	0
4:30 PM	0	0	2	0	0	0	2	0	0	0	1	0	0	0	0	0	5	0
4:45 PM	0	0	3	0	0	0	0	0	0	0	1	0	0	2	0	0	6	28
5:00 PM	0	0	0	2	0	0	2	0	0	0	0	0	0	0	1	0	5	25
5:15 PM	0	0	1	0	0	0	2	0	0	1	0	0	0	0	0	0	4	20
5:30 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	3	18
5:45 PM	0	0	2	0	0	0	0	1	0	0	0	0	0	0	1	0	4	16
Count Total	0	1	12	4	0	0	10	1	0	6	3	1	0	3	3	0	44	0
Peak Hour	0	0	5	2	0	0	5	0	0	1	1	0	0	3	1	0	18	0

Two-Hour Count Summaries - Bikes

Interval Start	Capitola Rd			Capitola Rd			7th Ave			7th Ave			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	2	0	0	0	0	0	0	1	0	2	0	5	0
4:15 PM	0	0	1	1	0	0	0	0	0	0	1	0	3	0
4:30 PM	0	1	0	0	1	1	1	3	0	0	0	0	7	0
4:45 PM	0	4	0	0	0	0	0	2	0	0	2	0	8	23
5:00 PM	0	0	0	0	0	0	1	2	1	0	2	0	6	24
5:15 PM	0	2	0	0	1	0	0	2	0	0	0	0	5	26
5:30 PM	0	3	1	0	0	0	0	3	2	0	3	0	12	31
5:45 PM	0	1	0	0	3	0	0	1	0	0	0	0	5	28
Count Total	0	13	2	1	5	1	2	13	4	0	10	0	51	0
Peak Hour	0	9	1	0	1	0	1	9	3	0	7	0	31	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																					
Interval Start	Capitola Rd					Capitola Rd					17th Ave					17th Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	1		1	0	0	1		1	0	0	1		1	0	0	0	1	0	7	0
7:15 AM	0	0	1	1	0	0	0		0	0	0	2		1	0	0	0	1	0	5	0
7:30 AM	0	0	1	1	0	0	0		2	0	0	0	0	0	0	0	1	4	0	8	0
7:45 AM	0	0		1	1	0	0		2	0	0	1		2	0	0	1	1	0	9	29
8:00 AM	0	0	0	0	1	0	0		1	0	0	1		2	0	0		1	0	6	28
8:15 AM	0	0		2	1	0	0		0	0	0	0		2	1	0	0	3	1	10	33
8:30 AM	0	1	2	2	0	0	1		3	0	0	2	2	2	0	0	0	0	0	11	36
8:45 AM	0	1		1	0	0	0		2	1	0	0		0	0	0	0	0	1	6	33
Count Total	0	3	9	9	3	0	2		11	1	0	7		10	1	0	2	11	2	62	0
Peak Hour	0	2	5	5	2	0	1		6	1	0	3		6	1	0	0	4	2	33	0
Two-Hour Count Summaries - Bikes																					
Interval Start	Capitola Rd					Capitola Rd					17th Ave					17th Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	LT		TH		RT	LT		TH		RT	LT		TH		RT	LT			RT		
7:00 AM	0		1		0	0		2		0	0		1		0	0			0	4	0
7:15 AM	0		0		0	0		1		0	0		0		0	0			1	4	0
7:30 AM	0				0	0		2		1	1		5		0	1			1	16	0
7:45 AM	0		4		0	0		3		0	0		6		0	0			0	16	40
8:00 AM	0		2		0	0		0		1	0		3		0	1	0		0	7	43
8:15 AM	0		0		0	0		2		0	1		0		0	0			0	7	46
8:30 AM	0		0		0	0		1		0	0		0		0	0	0		0	1	31
8:45 AM	0		0		1	0		0		0	0		0		0	0			0	1	16
Count Total	0		8		1	0		11		2	2		15		0	2			2	56	0
Peak Hour	0		2		1	0		3		1	1		3		0	1			0	16	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Four-Hour Count Summaries																			
Interval Start		Capitola Rd				Capitola Rd				17th Ave				17th Ave				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	5	106	20	0	12	99	16	0	24	68	16	0	20	79	12	477	0
2:15	PM	0	12	102	22	1	17	106	12	0	16	76	16	0	21	80	16	497	0
	PM	0	11	126	19	0	26	136	18	0	32	58	18	0	32	71	15	562	0
2:45	PM	0	7	140	15	1	20	107	11	0	23	78	23	0	44	74	9	552	2,088
3:00	PM	0	10	176	35	0	22	112	11	0	23	63	22	0	27	66	9	576	2,187
	PM	0	12	170	35	1	21	90	15	0	25	61	14	0	31	74	16	565	2,255
	PM	0	7	194	19	0	26	106	14	0	21	52	12	0	49	77	7	584	2,277
3:4	PM	0	6	194	27	1	18	73	12	0	26	60	21	0	34	93	10	575	2,300
4:00	PM	0	13	212	30	1	19	119	19	0	24	36	14	0	43	69	9	608	2,332
4:15	PM	0	7	198	28	0	11	91	10	0	32	55	19	0	49	86	11	597	2,364
4:30	PM	0	6	210	22	0	29	79	9	0	13	48	14	0	43	59	11	543	2,323
4:45	PM	0	8	171	31	2	24	82	13	0	23	51	18	0	41	84	4	552	2,300
5:00	PM	0	9	213	26	1	23	106	11	0	23	53	23	0	48	89	5	630	2,322
	PM	0	6	213	26	2	14	78	15	0	33	48	21	0	49	102	6	613	2,338
	PM	0	12	210	29	3	16	91	10	0	15	34	18	0	55	87	8	588	2,383
5:4	PM	0	6	185	2	1	28	97	13	0	27	55	16	0	50	81	14	575	2,406
Count	Total	0	137	2,820	386	14	326	1,572	209	0	380	896	285	0	636	1,271	162	9,094	0
	All	0	33	821	83	7	81	372	49	0	98	190	78	0	202	359	33	2,406	0
Hour	HV	0	0	3	0	0	0	2	0	0	0	0	0	0	0	0	0	5	0
	HV\%	-	0\%	0\%	0\%	0\%	0\%	1\%	0\%	-	0\%	0\%	0\%	-	0\%	0\%	0\%	0\%	0

Note: Four-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	2	2	2	3	9	2	2	1	1	6	6	3	1	9	19
2:15 PM	1	1	3	3	8	1	1	1	0	3	2	1	3	2	8
2:30 PM	2	5	1	1	9	0	2	0	0	2	1	1	0	10	12
2:45 PM	3	1	3	4	11	4	0	6	2	12	7	19	4	5	35
3:00 PM	4	2	2	1	9	4	2	2	1	9	13	5	16	7	41
3:15 PM	2	2	1	3	8	2	2	1	3	8	0	10	2	0	12
3:30 PM	1	2	2	4	9	4	0	0	5	9	2	2	3	0	7
3:45 PM	3	2	1	7	13	0	1	1	1	3	2	1	3	0	6
4:00 PM	0	3	0	3	6	2	0	0	1	3	0	2	4	1	7
4:15 PM	2	0	4	1	7	1	0	0	0	1	5	4	2	2	13
4:30 PM	0	2	1	2	5	1	0	0	1	2	6	1	4	0	11
4:45 PM	3	1	1	0	5	3	0	1	0	4	4	0	2	2	8
5:00 PM	0	1	0	0	1	0	1	0	0	1	2	1	2	3	8
5:15 PM	2	0	0	0	2	0	3	2	2	7	7	3	0	7	17
5:30 PM	0	1	0	0	1	1	1	0	4	6	0	1	1	0	2
5:45 PM	1	0	0	0	1	3	1	4	1	9	2	2	1	5	10
Count Total	26	25	21	32	104	28	16	19	22	85	59	56	48	53	216
Peak Hour	3	2	0	0	5	4	6	6	7	23	11	7	4	15	37

Four-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Capitola Rd				Capitola Rd				17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
2:00 PM	0	0	2	0	0	0	2	0	0	0	1	1	0	0	3	0	9	0
2:15 PM	0	0	1	0	0	1	0	0	0	1	2	0	0	1	1	1	8	0
2:30 PM	0	1	1	0	0	1	3	1	0	0	0	1	0	0	1	0	9	0
2:45 PM	0	2	1	0	0	0	0	1	0	0	2	1	0	1	3	0	11	37
3:00 PM	0	0	4	0	0	1	1	0	0	0	2	0	0	0	1	0	9	37
3:15 PM	0	0	2	0	0	0	2	0	0	0	1	0	0	0	3	0	8	37
3:30 PM	0	0	1	0	0	0	1	1	0	0	2	0	0	0	4	0	9	37
3:45 PM	0	0	3	0	0	1	1	0	0	1	0	0	0	0	6	1	13	39
4:00 PM	0	0	0	0	0	0	2	1	0	0	0	0	0	1	2	0	6	36
4:15 PM	0	0	2	0	0	0	0	0	0	3	1	0	0	0	1	0	7	35
4:30 PM	0	0	0	0	0	1	1	0	0	0	1	0	0	0	2	0	5	31
4:45 PM	0	0	2	1	0	0	0	1	0	0	1	0	0	0	0	0	5	23
5:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	18
5:15 PM	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	13
5:30 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	9
5:45 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5
Count Total	0	3	22	1	0	5	15	5	0	5	13	3	0	3	27	2	104	0
Peak Hour	0	0	3	0	0	0	2	0	0	0	0	0	0	0	0	0	5	0
Four-Hour Count Summaries - Bikes																		
Interval Start	Capitola Rd				Capitola Rd				17th Ave				17th Ave				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	LT			RT	LT	TH		RT	LT	TH		RT	LT	TH		RT		
2:00 PM	0			0	0	2		0	1	0		0	0	1		0	6	0
2:15 PM	0			0	0	1		0	0	1		0	0	0		0	3	0
2:30 PM	0			0	1	0		1	0	0		0	0	0		0	2	0
2:45 PM	0			1	0	0		0	0	6		0	0	2		0	12	23
3:00 PM	0			2	0	2		0	0	2		0	0	1		0	9	26
3:15 PM	0			0	0	2		0	1	0		0	0	3		0	8	31
3:30 PM	0			0	0	0		0	0	0		0	0	5		0	9	38
3:45 PM	0	0		0	1	0		0	0	1		0	0	1		0	3	29
4:00 PM	0			0	0	0		0	0	0		0	0	1		0	3	23
4:15 PM	0			0	0	0		0	0	0		0	0	0		0	1	16
4:30 PM	0			0	0	0		0	0	0		0	0	1		0	2	9
4:45 PM	0			0	0	0		0	0	1		0	0	0		0	4	10
5:00 PM	0			0	0	1		0	0	0		0	0	0		0	1	8
5:15 PM	0			0	0	3		0	2	0		0	0	1		1	7	14
5:30 PM	0			0	0	1		0	0	0		0	0	4		0	6	18
5:45 PM	0			1	0	1		0	0	4		0	0	0		1	9	23
Count Total	0	2		4	2	13		1	4	15		0	0	20		2	85	0
Peak Hour	0	3		1	0	6		0	2	4		0	0	5		2	23	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																		

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Capitola Rd				Capitola Rd				Chanticleer Ave					Chanticleer Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	T	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	0	1	0	0	0	1	1	0	0		0	0	0	0	0	0	3	0
7:15 AM	0	0	1	0	0	0	0	0	0	0		0	0	0	0	0	0	1	0
7:30 AM	0	0	2	0	0	0	1	0	0	0		0	0	0	0	0	1	4	0
7:45 AM	0	0	2	0	0	0	2	1	0	0		0	0	0	0	0	0	5	13
8:00 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	0	1	11
8:15 AM	0	0	3	0	0	0	1	0	0	0		0	0	0	0	0	0	4	14
8:30 AM	0	0	2	0	0	0	4	1	0	2		0	0	0	0	0	0	9	19
8:45 AM	0	0	2	0	0	0	2	0	0	0		0	0	0	0	0	0	4	18
Count Total	0	0	1	0	0	0	1	3	0	2		0	0	0	0	1	1	31	0
Peak Hour	0	0	7	0	0	0	7	2	0	2		0	0	0	0	1	0	19	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Capitola Rd				Capitola Rd				Chanticleer Ave					Chanticleer Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT			RT		
7:00 AM	0		1	0	0		1	1	0		0		1	0			1	5	0
7:15 AM	0		0	0	0		1	1	0		3		0	0			1	6	0
7:30 AM	0		2	0	1		3	0	0		0		0	0			1	9	0
7:45 AM	0		2	1	0		1	3	0		0		0	1			0	9	29
8:00 AM	0		0	0	1		1	0	0		1		0	0			1	5	29
8:15 AM	0		0	0	0		1	3	0		4		0	0			0	8	31
8:30 AM	0		1	0	0		1	0	0		2		2	0			1	7	29
8:45 AM	0		2	0	0		1	0	0		0		0	1			2	8	28
Count Total	0		8	1	2		10	8	0		10		3	2			7	57	0
Peak Hour	0		3	1	1		4	6	0		7		2	1			2	29	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Capitola Rd				Capitola Rd					Chanticleer Ave				Chanticleer Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound				Southbound					
	UT	LT		RT	UT	LT		TH	RT	UT	LT	TH	RT	UT	LT		RT		
4:00 PM	0	0		0	0	0		3	0	0	0	1	0	0	0	1	0	7	0
4:15 PM	0	0	1	0	0	0		0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	1	0	0	0		2	0	0	0	0	0	0	0	0	0	3	0
4:45 PM	0	0	2	0	0	0		0	0	0	0	0	0	0	1	0	0	3	14
5:00 PM	0	0	0	0	0	0		1	0	0	0	0	1	0	0	0	0	2	9
5:15 PM	0	0		0	0	0		0	0	0	0		0	0	0	0	0	2	10
5:30 PM	0	0	0	0	0	0		1	0		0	0	0		0	0	0	1	8
5:45 PM	0	0	1	0	0	0		0	0	0	0	0	0	0	0	1	0	2	7
Count Total	0	0	9	0	0	0		7	0	0	0	1	1	0	1	2	0	21	0
Peak Hour	0	0	3	0	0	0		2	0	0	0	0	1	0	0	1	0	7	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Capitola Rd				Capitola Rd					Chanticleer Ave				Chanticleer Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound				Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH	RT	LT		TH	RT		
4:00 PM	0		2	0	0		0		0	0		1	0	1		2	0	6	0
4:15 PM	0		1	0	0		0		0	0		1	1	1		1	0	5	0
4:30 PM	0			0	0				0	0		0	1	0			0	5	0
4:45 PM	0		3	0	0		0		0	0		2	0	0		0	0	5	21
5:00 PM	0		0	0	0		0		1	0		1	0	0		0	0	2	17
5:15 PM	0		1	0	0		3		0	0		0	0	0		0	0	4	16
5:30 PM	0		3	0	0		1		1	0		2	2	0		2	0	11	22
5:45 PM	0		3	1	0		1		0	0		1	0	0		2	1	9	26
Count Total	0		15	1	0		6		2	0		8	4	2		8	1	47	0
Peak Hour	0		7	1	0		5		2	0		4	2	0		4	1	26	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Capitola Rd				Capitola Rd					30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT		RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		RT		
7:00 AM	0	0		0	0	0		2	0	0	0		0	0	0	0		0	3	0
7:15 AM	0	0	2	0	0	0		0	0	0	0		0	0	0	0		0	2	0
7:30 AM	0	0		0	0	0		1	0	0	0	1	1	0	0	0	0	0	3	0
7:45 AM	0	0	2	0	0	0		2	0	0	1		0	0	0	0		1	6	14
8:00 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0		0	0	11
8:15 AM	0	0	3	0	0	0		1	0	0	0		0	0	0	0		0	4	13
8:30 AM	0	0	2	0	0	0		4	0	0	1		0	0	0	0		0	7	17
8:45 AM	0	0	2	0	0	1		2	0	0	0		0	0	0	0		0	5	16
Count Total	0	0	1	0	0	1	1	12	0	0	2		1	0	0	0		1	30	0
Peak Hour	0	0	7	0	0	1		7	0	0	1		0	0	0	0	0	0	16	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Capitola Rd				Capitola Rd					30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT			RT	LT		TH		RT	LT		TH		RT	LT		TH	RT		
7:00 AM	0		3	1	0		1		0	0		0		0	0		0	0	5	0
7:15 AM	0		1	0	1		2		0	0		0		1	0		0	0	5	0
7:30 AM	0			0	0		5		1	0		0		0	0		0	0	9	0
7:45 AM	0		3	1	0		0		0	0		0		0	0		0	1	5	24
8:00 AM	0		1	0	0		2		0	5		0		0	0		0	0	8	27
8:15 AM	0		1	0	0		3		0	0		0		0	0		0	0	4	26
8:30 AM	0		2	1	0		0		0	1		0		0	0		0	0	4	21
8:45 AM	0		1	1	0		0		0	1		0		0	0		0	0	3	19
Count Total	0		15	4	1		13		1	7		0		1	0		0	1	43	0
Peak Hour	0		5	2	0		5		0	7		0		0	0		0	0	19	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Capitola Rd				Capitola Rd					30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		RT		
4:00 PM	0	0	3	1	0	0		3	0	0	0		1	1	0	0		0	9	0
4:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	1	0	0	1	0
4:30 PM	0	0	2	0	0	0		1	0	0	0		0	0	0	0		0	3	0
4:45 PM	0	0	3	0	0	0		0	0	0	1		0	0	0	0		0	4	17
5:00 PM	0	0	1	0	0	0		1	0	0	0		0	0	0	0	0	0	2	10
5:15 PM	0	0	2	0	0	0		0	0	0	0		0	0	0	0		0	2	11
5:30 PM	0	0	0	0	0	0		1	0	0	0		0	0	0	0		0	1	9
5:45 PM	0	0	1	0	0	0		0	0	0	0		0	0	0	0		0	1	6
Count Total	0	0	12	1	0	0		6	0	0	1		1	1	0	1		0	23	0
Peak Hour	0	0	6	0	0	0		2	0	0	1		0	0	0	0		0	9	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Capitola Rd				Capitola Rd					30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT		TH	RT		
4:00 PM	0		3	1	0		1		0	0		0		0	0		0	0	5	0
4:15 PM	0		3	0	0		1		0	0		0		0	0		0	0	4	0
4:30 PM	0		5	0	0		1		0	0		0		0	0		0	1	7	0
4:45 PM	1		3	0	0		0		0	0		0		0	0		0	0	4	20
5:00 PM	1		1	0	1		1		0	0		0		0	0		0	2	6	21
5:15 PM	0		1	2	0		2		0	1		0		0	0		0	0	6	23
5:30 PM	0		1	0	0		0		0	1		1		0	0		0	1	4	20
5:45 PM	0		3	0	0		1		0	0		1		0	1		0	0	6	22
Count Total	2		20	3	1		7		0	2		2		0	1		0	4	42	0
Peak Hour	2		6	2	1		3		0	2		1		0	0		0	3	20	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Brommer St					Brommer St					17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound				Southbound					
	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT	UT	LT	TH	RT		
7:00 AM	0	0		0	2	0	0		0	0	0	1	2	0	0	0	1	0	6	0
7:15 AM	0	0	0	0	0	0	0		1	0	0	0	2	1	0	0	1	0	5	0
7:30 AM	0	0		0	0	0	0		0	0	0	0	0	0	0	1	4	0	5	0
7:45 AM	0	0	3	3	0	0	0		2	1	0	0	2	0	0	0	1	1	10	26
8:00 AM	0	0		0	1	0	0		0	0	0	1	2	0	0	0	1	0	5	25
8:15 AM	0	0	0	0	0	0	1		0	1	0	0	2	0	0	1	2	1	8	28
8:30 AM	0	0		1	0	0	0		2	0	0	0	2	1	0	0	2	0	8	31
8:45 AM	0	0	0	0	0	0	0		0	0	0	0	1	0	0	0	0	0	1	22
Count Total	0	0	4	4	3	0	1		5	2	0	2	13	2	0	2	12	2	48	0
Peak Hour	0	0		4	1	0	1		4	2	0	1	8	1	0	1	6	2	31	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Brommer St					Brommer St					17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound				Southbound					
	LT		TH		RT	LT		TH		RT	LT		TH	RT	LT			RT		
7:00 AM	0		3		0	0		0		0	2		0	0	0			1	6	0
7:15 AM	0		2		4	0		6		0	1		3	0	0			0	18	0
7:30 AM	0		0		4	0		4		0	0		5	0	0			0	18	0
7:45 AM	0		3		6	0		4		0	0		7	0	0			0	26	68
8:00 AM	0		2		1	1		3		0	1		7	0	0			0	24	86
8:15 AM	0		3		2	0		5		0	2		4	1	0			0	20	88
8:30 AM	0		1		0	0		0		0	2		0	1	1			0	5	75
8:45 AM	1		1		4	0		2		0	0		1	0	0			1	12	61
Count Total	1		15		21	1		24		0	8		27	2	1			2	129	0
Peak Hour	0		9		9	1		12		0	5		18	2	1			0	75	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Four-Hour Count Summaries																			
Interval Start		Brommer St				Brommer St				17th Ave				17th Ave				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	12	33	20	0	18	47	5	0	13	90	19	0	17	88	12	374	0
2:15	PM	0	10	44	25	0	20	35	11	0	20	81	26	0	8	93	7	380	0
	PM	0	12	36	21	0	22	40	5	0	19	87	17	0	12	88	11	370	0
2:45	PM	0	15	63	22	0	31	45	6	0	23	94	27	0	15	79	4	424	1,548
3:00	PM	0	8	75	31	0	26	52	7	0	22	87	22	0	14	67	9	420	1,594
	PM	0	14	78	30	0	26	59	4	0	15	80	23	0	17	113	11	470	1,684
3:30	PM	0	11	81	28	0	28	46	5	0	12	76	25	0	11	82	15	420	1,734
3:4	PM	0	1	69	21	0	29	41	7	0	17	90	9	0	12	93	8	397	1,707
4:00	PM	0	6	72	31	0	25	44	7	0	23	65	32	0	20	84	8	417	1,704
	PM	0	16	87	27	0	24	56	5	0	19	85	25	0	16	92	5	457	1,691
	PM	0	9	76	39	0	23	46	9	0	21	67	29	0	16	82	8	425	1,696
4:45	PM	0	7	71	30	0	38	42	8	0	13	76	24	0	16	90	9	424	1,723
	PM	0	14	73	30	0	27	55	6	0	18	77	33	0	18	85	10	446	1,752
5:15	PM	0	11	81	22	0	30	45	13	0	18	80	21	0	16	117	5	459	1,754
5:30	PM	0	11	84	26	0	34	54	4	0	13	59	22	0	11	106	4	428	1,757
5:4	PM	0	13	49	34	0	30	49	8	0	10	89	24	0	11	99	7	423	1,756
Count	Total	0	170	1,072	437	0	431	756	110	0	276	1,283	378	0	230	1,458	133	6,734	0
	All	0	43	309	108	0	129	196	31	0		292	100	0	61	398	28	1,757	0
Hour	HV	0	0	1	2	0	0	0	0	0		2	0	0	0	2	0	8	0
	HV\%	-	0\%	0\%	2\%	-	0\%	0\%	0\%	-	2\%	1\%	0\%	-	0\%	1\%	0\%	0\%	0

Note: Four-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	2	1	2	2	7	2	2	3	1	8	3	3	2	0	8
2:15 PM	2	1	5	2	10	1	1	2	0	4	0	0	1	0	1
2:30 PM	1	1	2	2	6	2	1	1	2	6	0	2	3	1	6
2:45 PM	3	2	3	3	11	1	1	18	2	22	29	34	28	8	99
3:00 PM	3	1	5	2	11	3	2	3	0	8	9	33	30	4	76
3:15 PM	2	0	2	4	8	2	1	3	1	7	9	3	5	2	19
3:30 PM	2	2	1	3	8	3	1	4	6	14	4	2	5	2	13
3:45 PM	2	2	2	7	13	3	1	2	4	10	4	6	4	1	15
4:00 PM	2	0	3	0	5	5	2	3	3	13	6	1	13	3	23
4:15 PM	0	0	5	1	6	6	1	0	2	9	6	3	4	2	15
4:30 PM	1	0	1	2	4	2	1	0	3	6	4	4	4	1	13
4:45 PM	2	0	1	0	3	3	1	1	2	7	1	0	11	1	13
5:00 PM	1	0	1	2	4	3	0	1	1	5	4	1	4	2	11
5:15 PM	0	0	1	0	1	3	1	6	0	10	4	3	5	1	13
5:30 PM	0	0	0	0	0	7	2	3	0	12	6	1	0	4	11
5:45 PM	0	0	0	0	0	8	5	1	2	16	7	0	0	0	7
Count Total	23	10	34	30	97	54	23	51	29	157	96	96	119	32	343
Peak Hour	3	0	3	2	8	16	4	11	3	34	15	5	20	8	48

Four-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Brommer St				Brommer St				17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
2:00 PM	0	0	0	2	0	1	0	0	0	0	2	0	0	0	2	0	7	0
2:15 PM	0	0	0	2	0	0	0	1	0	1	4	0	0	0	2	0	10	0
2:30 PM	0	0	0	1	0	0	1	0	0	1	1	0	0	0	2	0	6	0
2:45 PM	0	1	2	0	0	1	1	0	0	1	2	0	0	0	3	0	11	34
3:00 PM	0	1	0	2	0	0	1	0	0	2	2	1	0	0	2	0	11	38
3:15 PM	0	0	1	1	0	0	0	0	0	1	1	0	0	0	4	0	8	36
3:30 PM	0	1	1	0	0	0	2	0	0	0	1	0	0	0	2	1	8	38
3:45 PM	0	0	1	1	0	1	1	0	0	0	1	1	0	0	5	2	13	40
4:00 PM	0	0	1	1	0	0	0	0	0	2	1	0	0	0	0	0	5	34
4:15 PM	0	0	0	0	0	0	0	0	0	1	4	0	0	1	0	0	6	32
4:30 PM	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	1	4	28
4:45 PM	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	3	18
5:00 PM	0	0	0	1	0	0	0	0	0	0	1	0	0	0	2	0	4	17
5:15 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	12
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Count Total	0	3	8	12	0	3	6	1	0	10	22	2	0	2	24	4	97	0
Peak Hour	0	0	1	2	0	0	0	0	0	1	2	0	0	0	2	0	8	0
Four-Hour Count Summaries - Bikes																		
Interval Start	Brommer St				Brommer St				17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	LT			RT	LT	T		RT	LT	TH		RT	LT	TH		RT		
2:00 PM	0			0	0	2		0	2	1		0	0	1		0	8	0
2:15 PM	0			0	0	0		1	1	1		0	0	0		0	4	0
2:30 PM	0			1	0	1		0	0	1		0	0	1		1	6	0
2:45 PM	0			0	0	1		0	4	12		2	0	2		0	22	40
3:00 PM	0			1	0	2		0	0	3		0	0	0		0	8	40
3:15 PM	0			1	0	1		0	0	3		0	0	1		0	7	43
3:30 PM	0			1	1	0		0	1	2		1	0	6		0	14	51
3:45 PM	0	0		3	0	1		0	0	1		1	0	4		0	10	39
4:00 PM	0			0	0	2		0	0	3		0	0	3		0	13	44
4:15 PM	0			1	0	1		0	0	0		0	0	2		0	9	46
4:30 PM	0			0	0	1		0	0	0		0	0	2		1	6	38
4:45 PM	0			3	0	1		0	0	1		0	0	2		0	7	35
5:00 PM	0			1	0	0		0	0	1		0	0	1		0	5	27
5:15 PM	0			0	0	1		0	1	4		1	0	0		0	10	28
5:30 PM	0			1	0	2		0	2	1		0	0	0		0	12	34
5:45 PM	0			1	2	3		0	0	0		1	0	0		2	16	43
Count Total	0			14	3	1		1	11	34		6	0	25		4	157	0
Peak Hour	0	1		5	0	4		0	3	7		1	0	3		0	34	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																		

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Brommer St				Brommer St				30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		RT		
7:00 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0
7:30 AM	0	0	0	1	0	0	1	1	0	0		0	1	0	0		0	4	0
7:45 AM	0	0	4	0	0	0	0	1	0	0		0	0	0	0		0	5	9
8:00 AM		0	1	1	0	0	0	0	0	0		0	0	0	0		0	2	11
8:15 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	11
8:30 AM	0	0	2	0	0	0	2	1	0	0		0	0	0	0		0	5	12
8:45 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	1	8
Count Total	0	0	7	2	0	0	3	3	0	0		0	1	0	0		0	17	0
Peak Hour	0	0	5	2	0	0	1	2	0	0		0	1	0	0	0	0	11	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Brommer St				Brommer St				30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT		TH	RT		
7:00 AM	0		1	0	0		2	0	1		1		0	0		1	0	6	0
7:15 AM	1		2	1	3		4	0	5		1		0	0		0	1	18	0
7:30 AM	0		0	3	2		5	0	3		1		0	0		0	1	15	0
7:45 AM	0		0	1	0		6	0	6		0		1	0		1	0	15	54
8:00 AM	0		2	1	1		2	0	9		4		0	0		0	0	19	67
8:15 AM	0		2	1	2		1	0	2		0		0	0		0	0	8	57
8:30 AM	0		1	1	0		1	0	0		0		1	0		1	0	5	47
8:45 AM	0		1	2	0		0	0	0		1		0	0		1	0	5	37
Count Total	1		9	10	8		21	0	26		8		2	0		4	2	91	0
Peak Hour	0		4	6	5		14	0	20		5		1	0		1	1	57	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)					17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		RT		
7:00 AM	0	1	0	0	0	0	0	1	0	0		0	0	0	1		0	3	0
7:15 AM	0		0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	2	0
7:30 AM	0	1	3	0	0		1	0	0	0	1	1	0	0	0		0	7	0
7:45 AM	0	0	0	0	0	0	0	2	0	0		0	0	0	0		0	2	14
8:00 AM	0	1	1	0	0	0	0	1	0	1		0	0	0	1		2	7	18
8:15 AM	0	0	2	0	0	0	1	0	0	0		0	0	0	1		2	6	22
8:30 AM	0	0	1	0	0	0	1	0	0	1		0	0	0	2		0	6	21
8:45 AM	0	1	0	0	0	0	2	2	0	0		0	0	0	1		0	6	25
Count Total	0	4	7	0	0	0	5	7	0	2		1	0	0	6		5	39	0
Peak Hour	0	2	4	0	0	0	4	3	0	2		0	0	0	5		4	25	0
Two-Hour Count Summaries - Bikes																			
Interval Start	E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)					17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT		TH	RT		
7:00 AM	0		2	0	0		0	0	0		0		0	0		0	0	2	0
7:15 AM	0		0	0	0		1	0	1		0		0	0		0	1	3	0
7:30 AM	0			0	0		4	0	2		0		0	2		0	0	10	0
7:45 AM	0		0	0	0		2	1	2		2		0	2		0	1	10	25
8:00 AM	0		0	0	0		6	0	0		2		0	1		0	0	9	32
8:15 AM	0		3	3	0		1	0	0		0		0	0		1	0	8	37
8:30 AM	0		0	1	0		4	1	1		1		0	0		2	0	10	37
8:45 AM	0		1	0	0		4	2	1		0		0	0		2	1	11	38
Count Total	0		8	4	0		22	4	7		5		0	5		5	3	63	0
Peak Hour	0		4	4	0		15	3	2		3		0	1		5	1	38	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Four-Hour Count Summaries																			
Interval Start		E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)				17th Ave				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	28	62	44	0	3	73	28	0	17	13	2	0	31	27	13	341	0
2:15	PM	0	26	70	54	0	3	72	20	0	17	11	2	0	26	19	26	346	0
2:30	PM	0	23	74	34	0	2	67	23	0	21	11	4	0	21	9	25	314	0
2:45	PM	0	9	81	52	0	3	60	24	0	25	6	1	0	44	12	27	344	1,345
3:00	PM	0	15	100	38	0	6	69	23	0	21	10	4	0	23	19	21	349	1,353
	PM	0	22	104	58	0	4	57	22	0	18	9	2	0	31	23	18	368	1,375
3:30	PM	0	15	103	69	0	1	79	19	0	21	10	4	0	27	20	23	391	1,452
3:4	PM	0	18	119	49	0	1	54	26	0	16	18	4	0	35	21	18	379	1,487
4:00	PM	0	12	119	49	0	5	62	19	0	20	11	2	0	32	23	11	365	1,503
	PM	0	20	134	54	0	6	51	24	0	18	7	2	0	39	20	21	396	1,531
	PM	0	12	111	61	0	3	63	24	0	17	9	1	0	21	22	30	374	1,514
4:45	PM	0	9	112	61	0	3	68	29	0	23	10	2	0	36	19	16	388	1,523
	PM	0	11	136	56	0	6	70	21	0	20	20	1	0	36	27	25	429	1,587
5:15	PM	0	18	147	59	0	4	72	28	1	27	8	2	0	46	27	26	465	1,656
5:30	PM	0	18	113	66	0	2	63	23	1	15	6	2	0	39	24	24	396	1,678
5:4	PM	0	22	87	52	0	3	57	27	0	20	8	3	0	45	21	16	361	1,651
Count	Total	0	278	1,672	856	0	55	1,037	380	2	316	167	38	0	532	333	340	6,006	0
	All	0	56	508	242	0	15	273	101	2	85	44	7	0	157	97	91	1,678	0
Peak Hour	HV	0	0	4	2	0	0		1	0	0	0	0	0	1	1	1	11	0
					1\%	-	0\%	0\%	1\%	0\%	0\%	0\%	0\%		1\%	1\%	1\%		0

Note: Four-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	1	2	0	1	4	3	3	1	0	7	2	0	0	0	2
2:15 PM	2	0	0	0	2	4	1	5	0	10	0	5	0	0	5
2:30 PM	4	2	0	1	7	5	2	2	2	11	1	2	0	0	3
2:45 PM	2	1	0	0	3	3	4	0	0	7	3	2	1	2	8
3:00 PM	2	3	1	2	8	1	0	1	3	5	6	0	3	1	10
3:15 PM	2	1	0	1	4	2	0	0	1	3	2	6	1	1	10
3:30 PM	1	1	0	1	3	1	0	1	5	7	0	4	0	0	4
3:45 PM	0	1	1	0	2	3	2	3	0	8	0	1	0	1	2
4:00 PM	1	0	0	1	2	1	3	3	2	9	5	1	2	5	13
4:15 PM	1	2	0	1	4	3	2	1	3	9	3	2	0	3	8
4:30 PM	4	1	0	0	5	5	1	1	1	8	2	1	1	2	6
4:45 PM	4	0	0	0	4	5	1	3	0	9	2	2	0	1	5
5:00 PM	1	0	0	2	3	2	1	5	1	9	1	17	1	1	20
5:15 PM	0	1	0	1	2	0	1	2	1	4	1	5	1	5	12
5:30 PM	1	1	0	0	2	0	2	1	1	4	3	6	1	0	10
5:45 PM	0	0	0	0	0	0	2	3	1	6	0	6	1	1	8
Count Total	26	16	2	11	55	38	25	32	21	116	31	60	12	23	126
Peak Hour	6	2	0	3	11	7	5	11	3	26	7	30	3	7	47

Four-Hour Count Summaries - Heavy Vehicles																			
Interval Start	E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)					17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
2:00 PM	0	1	0	0	0	0	0	2	0	0		0	0	0	1	0	0	4	0
2:15 PM	0	0	1	1	0		0	0	0	0		0	0	0	0	0	0	2	0
2:30 PM	0	0	4	0	0	0	1	1	0	0		0	0	0	0	0	1	7	0
2:45 PM	0	0	2	0	0		1	0	0	0		0	0	0	0	0	0	3	16
3:00 PM	0	1	1	0	0	0	2	1	0	1		0	0	0	1	0	1	8	20
3:15 PM	0	0	1	1	0	0	0	1	0	0		0	0	0	1	0	0	4	22
3:30 PM	0	0	1	0	0	0	1	0	0	0		0	0	0	0	0	1	3	18
3:45 PM	0	0	0	0	0	0	0	1	0	0		1	0	0	0	0	0	2	17
4:00 PM	0	0	1	0	0		0	0	0	0		0	0	0	0	1	0	2	11
4:15 PM	0	0	0	1	0	0	0	2	0	0		0	0	0	1	0	0	4	11
4:30 PM	0	0	1	3	0	0	1	0	0	0		0	0	0	0	0	0	5	13
4:45 PM	0	0	2	2	0	0	0	0	0	0		0	0	0	0	0	0	4	15
5:00 PM	0	0	1	0	0	0	0	0	0	0		0	0	0	1	0	1	3	16
5:15 PM	0	0	0	0	0	0	0	1	0	0		0	0	0	0	1	0	2	14
5:30 PM	0	0	1	0	0	0	1	0	0	0		0	0	0	0	0	0	2	11
5:45 PM	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	7
Count Total	0	2	16	8	0	0	7	9	0	1		1	0	0	5	2	4	55	0
Peak Hour	0	0	4	2	0	0	1	1	0	0		0	0	0	1	1	1	11	0
Four-Hour Count Summaries - Bikes																			
Interval Start	E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)					17th Ave				$\begin{gathered} \text { 15-min } \\ \text { Total } \end{gathered}$	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT			RT	LT	TH		RT	LT		TH		RT	LT	TH		RT		
2:00 PM	0			1	0	1		2	1		0		0	0	0		0	7	0
2:15 PM	0			1	0	1		0	3		2		0	0	0		0	10	0
2:30 PM	0			5	0	1		1	1		0		1	1	0		1	11	0
2:45 PM	0			1	0	4		0	0		0		0	0	0		0	7	35
3:00 PM	0			1	0	0		0	0		1		0	0	0		3	5	33
3:15 PM	0			2	0	0		0	0		0		0	0	1		0	3	26
3:30 PM	0			0	0	0		0	1		0		0	0	3		2	7	22
3:45 PM	0			2	0	2		0	3		0		0	0	0		0	8	23
4:00 PM	0			1	0	3		0	3		0		0	0	2		0	9	27
4:15 PM	0			2	0	2		0	0		1		0	0	2		1	9	33
4:30 PM	0			4	0	1		0	1		0		0	0	1		0	8	34
4:45 PM	0			2	0	1		0	3		0		0	0	0		0	9	35
5:00 PM	0			1	0	1		0	1		4		0	0	1		0	9	35
5:15 PM	0			0	0	1		0	1		0		1	0	1		0	4	30
5:30 PM	0			0	0	1		1	1		0		0	0	1		0	4	26
5:45 PM	0			0	0	2		0	3		0		0	0	1		0	6	23
Count Total	0		-	23	0	21		4	22		8		2	1	13		7	116	0
Peak Hour	0	4		3	0	4		1	6		4		1	0	3		0	26	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																			

7th Ave
Soquel Ave

Date: 10-04-2018
Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:45 AM to 8:45 AM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				7th Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00	AM	0	0	40	4	0	40	76	0	0	7	0	77	0	0	0	0	244	0
7:15	AM	0	0	68	8	0	48	104	0	0	11	0	77	0	0	0	0	316	0
7:30	AM	0	0	99	8	0	33	112	0	0	11	0	115	0	0	0	0	378	0
7:45	AM	0	0	139	18	0	51	126	0	0	29	0	128	0	0	0	0	491	1,429
8:00	AM	0	0	110	16	0	55	147	0	0	51	0	117	0	0	0	0	496	1,681
8:15	AM	0	0	137	24	0	59	163	0	0	30	0	91	0	0	0	0	504	1,869
8:30	AM	0	0	106	13	0	64	132	0	0	21	0	95	0	0	0	0	431	1,922
8:45	AM	0	0	117	5	1	54	124	0	0	21	0	103	0	0	0	0	425	1,856
Count	Total	0	0	816	96	1	404	984	0	0	181	0	803	0	0	0	0	3,285	0
	AII	0	0	492	71	0	229	568	0	0	131	0	431	0	0	0	0	1,922	0
Peak	HV	0	0	21	2	0	11	22	0	0	3	0	7	0	0	0	0	66	0
	HV\%	-	-	4\%	3\%	-	5\%	4\%	-	-	2\%	-	2\%	-	-	-	-	3\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	1	3	0	5	0	3	0	0	3	0	2	6	0	8
7:15 AM	4	4	2	0	10	5	5	4	0	14	0	8	10	0	18
7:30 AM	2	2	1	0	5	0	4	1	0	5	0	5	6	4	15
7:45 AM	8	4	0	0	12	5	4	2	0	11	0	3	4	3	10
8:00 AM	4	9	8	0	21	4	10	5	0	19	0	20	19	5	44
8:15 AM	7	5	1	0	13	2	4	2	0	8	0	13	15	2	30
8:30 AM	4	15	1	0	20	2	4	0	0	6	0	2	1	2	5
8:45 AM	6	3	3	0	12	1	4	1	0	6	0	1	0	1	2
Count Total	36	43	19	0	98	19	38	15	0	72	0	54	61	17	132
Peak Hr	23	33	10	0	66	13	22	9	0	44	0	38	39	12	89

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				7th Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	1	0	0	0	1	0	0	0	0	3	0	0	0	0	5	0
7:15 AM	0	0	4	0	0	3	1	0	0	0	0	2	0	0	0	0	10	0
7:30 AM	0	0	2	0	0	1	1	0	0	0	0	1	0	0	0	0	5	0
7:45 AM	0	0	8	0	0	0	4	0	0	0	0	0	0	0	0	0	12	32
8:00 AM	0	0	4	0	0	4	5	0	0	1	0	7	0	0	0	0	21	48
8:15 AM	0	0	7	0	0	1	4	0	0	1	0	0	0	0	0	0	13	51
8:30 AM	0	0	2	2	0	6	9	0	0	1	0	0	0	0	0	0	20	66
8:45 AM	0	0	6	0	0	1	2	0	0	1	0	2	0	0	0	0	12	66
Count Total	0	0	34	2	0	16	27	0	0	4	0	15	0	0	0	0	98	0
Peak Hour	0	0	21	2	0	11	22	0	0	3	0	7	0	0	0	0	66	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			7th Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	0	0	0	3	0	0	0	0	0	0	0	3	0
7:15 AM	0	5	0	1	4	0	1	0	3	0	0	0	14	0
7:30 AM	0	0	0	0	4	0	1	0	0	0	0	0	5	0
7:45 AM	0	5	0	0	4	0	0	0	2	0	0	0	11	33
8:00 AM	0	4	0	0	10	0	0	0	5	0	0	0	19	49
8:15 AM	0	1	1	0	4	0	0	0	2	0	0	0	8	43
8:30 AM	0	2	0	0	4	0	0	0	0	0	0	0	6	44
8:45 AM	0	1	0	0	4	0	0	0	1	0	0	0	6	39
Count Total	0	18	1	1	37	0	2	0	13	0	0	0	72	0
Peak Hour	0	12	1	0	22	0	0	0	9	0	0	0	44	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

7th Ave
Soquel Ave іみx

Date: 10-04-2018
Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:30 PM to 5:30 PM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				7th Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00	PM	0	0	203	26	0	63	110	0	0	12	0	70	0	0	0	0	484	0
4:15	PM	0	0	196	22	0	69	113	0	0	21	0	46	0	0	0	0	467	0
4:30	PM	0	0	241	13	0	72	122	0	0	23	0	53	0	0	0	0	524	0
4:45	PM	0	0	211	17	0	69	138	0	0	17	0	65	0	0	0	0	517	1,992
5:00	PM	0	0	231	24	1	72	127	0	0	25	0	58	0	0	0	0	538	2,046
5:15	PM	0	0	201	17	0	83	138	0	0	29	0	67	0	0	0	0	535	2,114
5:30	PM	0	0	232	22	0	78	91	0	0	18	0	62	0	0	0	0	503	2,093
5:45	PM	0	0	196	13	0	72	96	0	0	22	0	56	0	0	0	0	455	2,031
Count	Total	0	0	1,711	154	1	578	935	0	0	167	0	477	0	0	0	0	4,023	0
	AII	0	0	884	71	1	296	525	0	0	94	0	243	0	0	0	0	2,114	0
Peak	HV	0	0	10	1	0	5	5	0	0	1	0	1	0	0	0	0	23	0
	HV\%	-	-	1\%	1\%	0\%	2\%	1\%	-	-	1\%	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	7	2	3	0	12	1	2	0	0	3	0	6	5	1	12
4:15 PM	4	6	1	0	11	2	2	0	0	4	0	10	8	2	20
4:30 PM	5	1	1	0	7	2	4	1	0	7	0	5	4	1	10
4:45 PM	2	2	1	0	5	6	3	3	0	12	0	9	7	1	17
5:00 PM	2	3	0	0	5	7	2	0	0	9	0	3	2	1	6
5:15 PM	2	4	0	0	6	6	5	0	0	11	0	8	7	1	16
5:30 PM	1	1	1	0	3	4	3	1	0	8	0	7	10	2	19
5:45 PM	1	3	1	0	5	1	5	3	0	9	0	6	3	0	9
Count Total	24	22	8	0	54	29	26	8	0	63	0	54	46	9	109
Peak Hr	11	10	2	0	23	21	14	4	0	39	0	25	20	4	49

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				7th Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	0	7	0	0	0	2	0	0	0	0	3	0	0	0	0	12	0
4:15 PM	0	0	4	0	0	2	4	0	0	0	0	1	0	0	0	0	11	0
4:30 PM	0	0	5	0	0	1	0	0	0	1	0	0	0	0	0	0	7	0
4:45 PM	0	0	2	0	0	0	2	0	0	0	0	1	0	0	0	0	5	35
5:00 PM	0	0	2	0	0	2	1	0	0	0	0	0	0	0	0	0	5	28
5:15 PM	0	0	1	1	0	2	2	0	0	0	0	0	0	0	0	0	6	23
5:30 PM	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	3	19
5:45 PM	0	0	1	0	0	2	1	0	0	1	0	0	0	0	0	0	5	19
Count Total	0	0	23	1	0	9	13	0	0	2	0	6	0	0	0	0	54	0
Peak Hour	0	0	10	1	0	5	5	0	0	1	0	1	0	0	0	0	23	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			7th Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	1	0	2	0	0	0	0	0	0	0	3	0
4:15 PM	0	2	0	0	2	0	0	0	0	0	0	0	4	0
4:30 PM	0	2	0	0	4	0	0	0	1	0	0	0	7	0
4:45 PM	0	6	0	1	2	0	1	0	2	0	0	0	12	26
5:00 PM	0	6	1	0	2	0	0	0	0	0	0	0	9	32
5:15 PM	0	6	0	0	5	0	0	0	0	0	0	0	11	39
5:30 PM	0	4	0	1	2	0	1	0	0	0	0	0	8	40
5:45 PM	0	1	0	3	2	0	0	0	3	0	0	0	9	37
Count Total	0	27	2	5	21	0	2	0	6	0	0	0	63	0
Peak Hour	0	20	1	1	13	0	1	0	3	0	0	0	39	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Quality Counts

 QLocation: 2. Soquel Dr \& Paul Sweet Rd/Commercial Way

[^35]
Hwy 1 SB Ramps
 Soquel Ave

Date: 10-04-2018
Count Period: 7:00 AM to 9:00 AM Peak Hour: 8:00 AM to 9:00 AM

Soquel Ave

	HV \%:	PHF
EB	2.7%	0.82
WB	1.6%	0.99
NB	-	-
SB	3.0%	0.97
TOTAL	2.5%	0.94

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				0				Hwy 1 SB Ramps				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00	AM	0	64	28	0	0	0	87	39	0	0	0	0	0	37	0	86	341	0
7:15	AM	0	63	38	0	0	0	145	31	0	0	0	0	0	39	0	108	424	0
7:30	AM	0	86	59	0	0	0	125	47	0	0	0	0	0	59	0	144	520	0
7:45	AM	0	114	54	0	0	0	138	39	0	0	0	0	0	68	0	133	546	1,831
8:00	AM	0	96	51	0	0	0	136	49	0	0	0	0	0	79	0	140	551	2,041
8:15	AM	0	99	81	0	0	0	144	38	0	0	0	0	0	72	0	155	589	2,206
8:30	AM	0	81	52	0	0	0	148	33	0	0	0	0	0	71	0	149	534	2,220
8:45	AM	0	88	45	0	0	0	137	47	0	0	0	0	0	86	0	144	547	2,221
Count	Total	0	691	408	0	0	0	1,060	323	0	0	0	0	0	511	0	1,059	4,052	0
	All	0	364	229	0	0	0	565	167	0	0	0	0	0	308	0	588	2,221	0
Peak	HV	0	10	6	0	0	0	9	3	0	0	0	0	0	6	0	21	55	0
	HV\%	-	3\%	3\%	-	-	-	2\%	2\%	-	-	-	-	-	2\%	-	4\%	2\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	1	0	1	3	1	0	0	0	1	0	0	0	4	4
7:15 AM	3	2	0	2	7	2	0	0	0	2	0	0	0	3	3
7:30 AM	2	0	0	5	7	1	0	0	0	1	0	0	0	3	3
7:45 AM	1	3	0	6	10	1	0	0	0	1	0	0	0	2	2
8:00 AM	4	1	0	10	15	1	2	0	0	3	0	0	0	2	2
8:15 AM	9	2	0	5	16	0	1	0	0	1	0	0	0	2	2
8:30 AM	2	3	0	7	12	1	0	0	0	1	0	0	0	1	1
8:45 AM	1	6	0	5	12	0	0	0	0	0	0	0	0	1	1
Count Total	23	18	0	41	82	7	3	0	0	10	0	0	0	18	18
Peak Hr	16	12	0	27	55	2	3	0	0	5	0	0	0	6	6

Two-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Soquel Ave				Soquel Ave				0				Hwy 1 SB Ramps				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	3	0
7:15 AM	0	2	1	0	0	0	2	0	0	0	0	0	0	2	0	0	7	0
7:30 AM	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	4	7	0
7:45 AM	0	1	0	0	0	0	3	0	0	0	0	0	0	1	0	5	10	27
8:00 AM	0	3	1	0	0	0	0	1	0	0	0	0	0	2	0	8	15	39
8:15 AM	0	4	5	0	0	0	2	0	0	0	0	0	0	2	0	3	16	48
8:30 AM	0	2	0	0	0	0	3	0	0	0	0	0	0	1	0	6	12	53
8:45 AM	0	1	0	0	0	0	4	2	0	0	0	0	0	1	0	4	12	55
Count Total	0	14	9	0	0	0	14	4	0	0	0	0	0	10	0	31	82	0
Peak Hour	0	10	6	0	0	0	9	3	0	0	0	0	0	6	0	21	55	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			0			Hwy 1 SB Ramps			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	2	0	0	0	0	0	0	0	0	0	0	2	0
7:30 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:45 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	5
8:00 AM	0	1	0	0	2	0	0	0	0	0	0	0	3	7
8:15 AM	0	0	0	0	1	0	0	0	0	0	0	0	1	6
8:30 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	6
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Count Total	0	7	0	0	3	0	0	0	0	0	0	0	10	0
Peak Hour	0	2	0	0	3	0	0	0	0	0	0	0	5	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				0				Hwy 1 SB Ramps				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00	PM	0	88	114	0	0	0	122	12	0	0	0	0	0	143	0	102	581	0
4:15	PM	0	101	143	0	0	0	97	19	0	0	0	0	0	165	0	79	604	0
4:30	PM	0	81	136	0	0	0	114	11	0	0	0	0	0	150	0	120	612	0
4:45	PM	0	62	125	0	0	0	112	11	0	0	0	0	0	154	0	105	569	2,366
	PM	0	72	145	0	0	0	112	10	0	0	0	0	0	144	0	89	572	2,357
5:1	PM	0	82	136	0	0	0	115	14	0	0	0	0	0	160	0	93	600	2,353
	PM	0	65	126	0	0	0	78	19	0	0	0	0	0	182	0	125	595	2,336
	PM	0	59	92	0	0	0	105	11	0	0	0	0	0	160	0	114	541	2,308
Count	Total	0	610	1,017	0	0	0	855	107	0	0	0	0	0	1,258	0	827	4,674	0
	All	0	332	518	0	0	0	445	53	0	0	0	0	0	612	0	406	2,366	0
Peak Hour	HV	0	2	6	0	0	0	9	0	0	0	0	0	0	4	0	9	30	0
	HV\%	-	1\%	1\%	-	-	-	2\%	0\%	-	-	-	-	-	1\%	-	2\%	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	3	3	0	5	11	0	0	0	0	0	1	0	0	1	2
4:15 PM	1	2	0	4	7	1	0	0	0	1	0	0	0	2	2
4:30 PM	2	2	0	1	5	1	1	0	0	2	0	0	0	1	1
4:45 PM	2	2	0	3	7	1	0	0	0	1	0	0	0	2	2
5:00 PM	1	0	0	1	2	1	1	0	0	2	0	0	0	3	3
5:15 PM	1	0	0	1	2	1	1	0	0	2	0	0	0	2	2
5:30 PM	0	2	0	0	2	1	0	0	0	1	0	0	0	3	3
5:45 PM	0	0	0	3	3	1	0	0	0	1	0	0	0	0	0
Count Total	10	11	0	18	39	7	3	0	0	10	1	0	0	14	15
Peak Hr	8	9	0	13	30	3	1	0	0	4	1	0	0	6	7

Two-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Soquel Ave				Soquel Ave				0				Hwy 1 SB Ramps				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	1	2	0	0	0	3	0	0	0	0	0	0	2	0	3	11	0
4:15 PM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	4	7	0
4:30 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	1	0	0	5	0
4:45 PM	0	1	1	0	0	0	2	0	0	0	0	0	0	1	0	2	7	30
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	21
5:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	2	16
5:30 PM	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	2	13
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	3	9
Count Total	0	3	7	0	0	0	10	1	0	0	0	0	0	6	0	12	39	0
Peak Hour	0	2	6	0	0	0	9	0	0	0	0	0	0	4	0	9	30	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			0			Hwy 1 SB Ramps			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	1	0	0	1	0	0	0	0	0	0	0	2	0
4:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	4
5:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	2	6
5:15 PM	0	1	0	0	1	0	0	0	0	0	0	0	2	7
5:30 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	6
5:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	,	6
Count Total	0	7	0	0	3	0	0	0	0	0	0	0	10	0
Peak Hour	0	3	0	0	1	0	0	0	0	0	0	0	4	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

17th Ave
Soquel Ave しみx

Date: 10-04-2018
Count Period: 7:00 AM to 9:00 AM Peak Hour: 8:00 AM to 9:00 AM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				17th Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00 AM		0	0	31	30	0	8	56	0	0	76	0	10	0	0	0	0	211	0
7:15 AM		0	0	24	45	0	13	70	0	0	98	0	6	0	0	0	0	256	0
7:30 AM		0	0	33	56	0	10	64	0	0	121	0	5	0	0	0	0	289	0
7:45 AM		0	0	51	59	0	11	75	0	0	89	0	4	0	0	0	0	289	1,045
8:00 AM		0	0	67	52	0	12	82	0	0	104	0	11	0	0	0	0	328	1,162
8:15 AM		0	0	56	79	0	9	67	0	0	107	0	8	0	0	0	0	326	1,232
8:30 AM		0	0	47	69	0	11	75	0	0	98	0	6	0	0	0	0	306	1,249
8:45 AM		0	0	54	64	0	10	72	0	0	103	0	9	0	0	0	0	312	1,272
Count Total		0	0	363	454	0	84	561	0	0	796	0	59	0	0	0	0	2,317	0
Peak Hour	All	0	0	224	264	0	42	296	0	0	412	0	34	0	0	0	0	1,272	0
	HV	0	0	3	6	0	0	4	0	0	8	0	1	0	0	0	0	22	0
	HV\%	-	-	1\%	2\%	-	0\%	1\%	-	-	2\%	-	3\%	-	-	-	-	2\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	0	2	0	3	1	0	0	0	1	0	0	0	1	1
7:15 AM	3	1	0	0	4	3	0	0	0	3	0	0	0	1	1
7:30 AM	3	1	0	0	4	2	0	0	0	2	0	0	0	3	3
7:45 AM	2	2	2	0	6	1	0	1	0	2	0	0	0	0	0
8:00 AM	2	0	2	0	4	2	2	1	0	5	0	0	0	3	3
8:15 AM	5	1	2	0	8	0	0	0	0	0	0	0	0	0	0
8:30 AM	1	2	2	0	5	2	0	0	0	2	0	0	0	0	0
8:45 AM	1	1	3	0	5	1	0	0	0	1	0	0	0	1	1
Count Total	18	8	13	0	39	12	2	2	0	16	0	0	0	9	9
Peak Hr	9	4	9	0	22	5	2	1	0	8	0	0	0	4	4

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				17th Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	3	0
7:15 AM	0	0	1	2	0	0	1	0	0	0	0	0	0	0	0	0	4	0
7:30 AM	0	0	0	3	0	1	0	0	0	0	0	0	0	0	0	0	4	0
7:45 AM	0	0	1	1	0	2	0	0	0	2	0	0	0	0	0	0	6	17
8:00 AM	0	0	2	0	0	0	0	0	0	1	0	1	0	0	0	0	4	18
8:15 AM	0	0	1	4	0	0	1	0	0	2	0	0	0	0	0	0	8	22
8:30 AM	0	0	0	1	0	0	2	0	0	2	0	0	0	0	0	0	5	23
8:45 AM	0	0	0	1	0	0	1	0	0	3	0	0	0	0	0	0	5	22
Count Total	0	0	5	13	0	3	5	0	0	11	0	2	0	0	0	0	39	0
Peak Hour	0	0	3	6	0	0	4	0	0	8	0	1	0	0	0	0	22	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			17th Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	1	2	0	0	0	0	0	0	0	0	0	3	0
7:30 AM	0	1	1	0	0	0	0	0	0	0	0	0	2	0
7:45 AM	0	1	0	0	0	0	1	0	0	0	0	0	2	8
8:00 AM	0	1	1	0	2	0	1	0	0	0	0	0	5	12
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	9
8:30 AM	0	2	0	0	0	0	0	0	0	0	0	0	2	9
8:45 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	8
Count Total	0	8	4	0	2	0	2	0	0	0	0	0	16	0
Peak Hour	0	4	1	0	2	0	1	0	0	0	0	0	8	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

17th Ave
Soquel Ave

むみ
Date: 10-04-2018
Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:15 PM to 5:15 PM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				17th Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00	PM	0	0	144	114	0	13	57	0	0	68	0	6	0	0	0	0	402	0
4:15	PM	0	0	163	134	0	11	68	0	0	57	0	7	0	0	0	0	440	0
4:30	PM	0	0	157	87	0	18	56	0	0	66	0	8	0	0	0	0	392	0
4:45	PM	0	0	135	122	0	17	41	0	0	72	0	7	0	0	0	0	394	1,628
5:00	PM	0	0	156	122	0	14	56	0	0	72	0	6	0	0	0	0	426	1,652
5:15	PM	0	0	161	126	0	14	56	0	0	61	0	5	0	0	0	0	423	1,635
5:30	PM	0	0	158	130	0	7	36	0	0	56	0	7	0	0	0	0	394	1,637
5:45	PM	0	0	129	116	0	13	45	0	0	64	0	8	0	0	0	0	375	1,618
Count	Total	0	0	1,203	951	0	107	415	0	0	516	0	54	0	0	0	0	3,246	0
	All	0	0	611	465	0	60	221	0	0	267	0	28	0	0	0	0	1,652	0
Peak Hour	HV	0	0	6	2	0	0	1	0	0	4	0	0	0	0	0	0	13	0
	HV\%	-	-	1\%	0\%	-	0\%	0\%	-	-	1\%	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	3	0	2	0	5	0	0	0	0	0	0	0	0	1	1
4:15 PM	2	0	1	0	3	1	1	0	0	2	1	0	0	0	1
4:30 PM	3	1	1	0	5	0	0	0	0	0	0	0	0	1	1
4:45 PM	2	0	2	0	4	3	0	1	0	4	0	0	0	1	1
5:00 PM	1	0	0	0	1	1	1	1	0	3	0	0	0	2	2
5:15 PM	1	1	0	0	2	1	0	0	0	1	0	0	0	0	0
5:30 PM	1	1	0	0	2	0	0	1	0	1	0	0	0	4	4
5:45 PM	2	0	0	0	2	2	0	0	0	2	0	0	0	2	2
Count Total	15	3	6	0	24	8	2	3	0	13	1	0	0	11	12
Peak Hr	8	1	4	0	13	5	2	2	0	9	1	0	0	4	5

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				17th Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	0	2	1	0	0	0	0	0	2	0	0	0	0	0	0	5	0
4:15 PM	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	3	0
4:30 PM	0	0	2	1	0	0	1	0	0	1	0	0	0	0	0	0	5	0
4:45 PM	0	0	2	0	0	0	0	0	0	2	0	0	0	0	0	0	4	17
5:00 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	13
5:15 PM	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2	12
5:30 PM	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	2	9
5:45 PM	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	7
Count Total	0	0	10	5	0	1	2	0	0	6	0	0	0	0	0	0	24	0
Peak Hour	0	0	6	2	0	0	1	0	0	4	0	0	0	0	0	0	13	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			17th Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	1	0	1	0	0	0	0	0	0	0	2	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	3	0	0	0	0	0	0	1	0	0	0	4	6
5:00 PM	0	1	0	0	1	0	0	0	1	0	0	0	3	9
5:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	8
5:30 PM	0	0	0	0	0	0	1	0	0	0	0	0	1	9
5:45 PM	0	2	0	0	0	0	0	0	0	0	0	0	2	7
Count Total	0	7	1	0	2	0	1	0	2	0	0	0	13	0
Peak Hour	0	4	1	0	2	0	0	0	2	0	0	0	9	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Chanticleer Ave
Soquel Ave

Date: 10-04-2018
Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:45 AM to 8:45 AM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				Chanticleer Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00	AM	0	0	28	10	0	7	35	0	0	31	0	10	0	0	0	0	121	0
7:15	AM	0	0	18	9	0	23	45	0	0	39	0	14	0	0	0	0	148	0
7:30	AM	0	0	27	13	0	14	43	0	0	35	0	27	0	0	0	0	159	0
7:45	AM	0	0	31	19	0	20	51	0	0	37	0	32	0	0	0	0	190	618
8:00	AM	0	0	49	24	0	20	52	0	0	44	0	26	0	0	0	0	215	712
8:15	AM	0	0	47	23	0	24	39	0	0	37	0	20	0	0	0	0	190	754
8:30	AM	0	0	32	17	0	11	43	0	0	44	0	18	0	0	0	0	165	760
8:45	AM	0	0	48	16	0	14	50	0	0	34	0	20	0	0	0	0	182	752
Count	Total	0	0	280	131	0	133	358	0	0	301	0	167	0	0	0	0	1,370	0
	AII	0	0	159	83	0	75	185	0	0	162	0	96	0	0	0	0	760	0
Peak	HV	0	0	4	2	0	0	4	0	0	1	0	0	0	0	0	0	11	0
	HV\%	-	-	3\%	2\%	-	0\%	2\%	-	-	1\%	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0
7:15 AM	1	0	1	0	2	1	0	0	0	1	0	0	0	0	0
7:30 AM	0	3	0	0	3	2	0	1	0	3	0	0	0	2	2
7:45 AM	0	2	0	0	2	1	0	0	0	1	0	0	0	0	0
8:00 AM	4	0	0	0	4	0	2	0	0	2	0	0	0	0	0
8:15 AM	2	0	1	0	3	0	0	0	0	0	0	0	0	1	1
8:30 AM	0	2	0	0	2	2	0	1	0	3	0	0	0	0	0
8:45 AM	0	0	1	0	1	1	1	0	0	2	0	0	1	0	1
Count Total	8	7	3	0	18	8	3	2	0	13	0	0	1	3	4
Peak Hr	6	4	1	0	11	3	2	1	0	6	0	0	0	1	1

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				Chanticleer Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0
7:30 AM	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	3	0
7:45 AM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	8
8:00 AM	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	4	11
8:15 AM	0	0	2	0	0	0	0	0	0	1	0	0	0	0	0	0	3	12
8:30 AM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	11
8:45 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	10
Count Total	0	0	6	2	0	1	6	0	0	3	0	0	0	0	0	0	18	0
Peak Hour	0	0	4	2	0	0	4	0	0	1	0	0	0	0	0	0	11	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			Chanticleer Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:30 AM	0	2	0	0	0	0	0	0	1	0	0	0	3	0
7:45 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	6
8:00 AM	0	0	0	0	2	0	0	0	0	0	0	0	2	7
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	6
8:30 AM	0	2	0	0	0	0	0	0	1	0	0	0	3	6
8:45 AM	0	1	0	0	1	0	0	0	0	0	0	0	2	7
Count Total	0	8	0	0	3	0	0	0	2	0	0	0	13	0
Peak Hour	0	3	0	0	2	0	0	0	1	0	0	0	6	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Chanticleer Ave
 Soquel Ave

Date: 10-04-2018
Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:15 PM to 5:15 PM

Two-Hour Count Summaries

Interval Start		Soquel Ave				Soquel Ave				Chanticleer Ave				0				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00	PM	0	0	108	41	0	24	51	0	0	20	0	20	0	0	0	0	264	0
4:15	PM	0	0	106	62	0	19	55	0	0	23	0	10	0	0	0	0	275	0
4:30	PM	0	0	121	45	0	20	56	0	0	14	0	14	0	0	0	0	270	0
4:45	PM	0	0	97	45	0	20	44	0	0	17	0	15	0	0	0	0	238	1,047
5:00	PM	0	0	115	52	0	22	52	0	0	18	0	10	0	0	0	0	269	1,052
5:15	PM	0	0	102	61	0	22	48	0	0	21	0	7	0	0	0	0	261	1,038
5:30	PM	0	0	107	63	0	16	28	0	0	17	0	7	0	0	0	0	238	1,006
5:45	PM	0	0	92	49	0	21	31	0	0	24	0	2	0	0	0	0	219	987
Count	Total	0	0	848	418	0	164	365	0	0	154	0	85	0	0	0	0	2,034	0
	AII	0	0	439	204	0	81	207	0	0	72	0	49	0	0	0	0	1,052	0
Peak	HV	0	0	5	2	0	0	0	0	0	0	0	0	0	0	0	0	7	0
	HV\%	-	-	1\%	1\%	-	0\%	0\%	-	-	0\%	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	3	2	0	0	5	0	0	0	0	0	0	0	0	0	0
4:15 PM	1	0	0	0	1	0	1	0	0	1	0	0	1	0	1
4:30 PM	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0
4:45 PM	2	0	0	0	2	4	0	0	0	4	0	0	0	1	1
5:00 PM	2	0	0	0	2	1	1	0	0	2	0	0	0	0	0
5:15 PM	1	1	0	0	2	1	0	1	0	2	0	0	0	0	0
5:30 PM	1	2	0	0	3	0	1	0	0	1	0	0	0	0	0
5:45 PM	1	1	0	0	2	4	0	0	0	4	0	0	0	1	1
Count Total	13	6	0	0	19	10	3	1	0	14	0	0	1	2	3
Peak Hr	7	0	0	0	7	5	2	0	0	7	0	0	1	1	2

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Soquel Ave				Soquel Ave				Chanticleer Ave				0				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	0	2	1	0	1	1	0	0	0	0	0	0	0	0	0	5	0
4:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
4:45 PM	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	10
5:00 PM	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	7
5:15 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	2	8
5:30 PM	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	3	9
5:45 PM	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	2	9
Count Total	0	0	8	5	0	3	3	0	0	0	0	0	0	0	0	0	19	0
Peak Hour	0	0	5	2	0	0	0	0	0	0	0	0	0	0	0	0	7	0

Two-Hour Count Summaries - Bikes

Interval Start	Soquel Ave			Soquel Ave			Chanticleer Ave			0			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	1	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	4	0	0	0	0	0	0	0	0	0	0	4	5
5:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	2	7
5:15 PM	0	1	0	0	0	0	1	0	0	0	0	0	2	8
5:30 PM	0	0	0	1	0	0	0	0	0	0	0	0	1	9
5:45 PM	0	4	0	0	0	0	0	0	0	0	0	0	4	9
Count Total	0	10	0	1	2	0	1	0	0	0	0	0	14	0
Peak Hour	0	5	0	0	2	0	0	0	0	0	0	0	7	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Site Dwy \& Soquel Ave

Peak Hour Turning Movement Count

ID: 18-08275-007
City: Santa Cruz

Cars (NOON)

Day: Thursday
Date: 05/17/2018

$07: 0$ 04:0	$\begin{array}{r} \mathrm{NO}- \\ \mathrm{NO} \\ \mathrm{NO} \end{array}$	$\begin{aligned} & \text { 09:00 } \\ & \text { NE } \\ & 06: 00 \end{aligned}$		0 0 2_{1}^{2} -1 0 0 0 0 0
PM	NOON	AM		$\begin{aligned} & \text { O } \\ & 0 \\ & \text { O} \\ & \hline \mathbf{D} \\ & \hline \mathbf{D} \\ & \text { © } \end{aligned}$
0	0	0		
286	0	315		
2	0	9		
0	0	0		
561	0	246		
PM	NOON	AM		

HT (PM)

40th Ave \& Gross Rd

Peak Hour Turning Movement Count

ID: 18-08275-003
City: Santa Cruz

$\begin{aligned} & \text { n } \\ & \stackrel{y}{3} \\ & \text { 우 } \\ & \underline{y} \\ & \underset{\sim}{\mathbf{u}} \end{aligned}$	07:30 AM - 08:30 AM
	NONE
	04:00 PM - 05:00 PM

40th Ave
SOUTHBOUND

Day: Thursday
Date: 05/17/2018

AM	4	0	247	0	339	AM
NOON	0	0	0	0	0	NOON
PM	2	3	253	0	235	PM

07:00 AM - 09:00 AM

NONE

04:00 PM - 06:00 PM

0 0 0 0 0 0

Cars (NOON)

HT (PM)

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Deanes Ln				Driveway					40th Ave					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	T	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Deanes Ln				Driveway					40th Ave					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT			RT		
7:00 AM	0		0	0	0		0		0	0		0		0	0			0	0	0
7:15 AM	0		0	0	0		0		0	0		1		0	0			0	1	0
7:30 AM	0		0	5	0		0		0	0		0		0	0			0	6	0
7:45 AM	0		0	0	0		0		0	0		1		0	0			0	1	8
8:00 AM	0		0	0	0		0		0	0		0		0	0			0	0	8
8:15 AM	0		0	0	0		0		0	0		0		0	0			0	0	7
8:30 AM	0		0	0	0		0		0	0		1		0	0			0	2	3
8:45 AM	0		0	1	0		0		0	0		0		0	0			0	1	3
Count Total	0		0	6	0		0		0	0		3		0	0			0	11	0
Peak Hour	0		0	5	0		0		0	0		1		0	0			0	7	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Deanes Ln				Driveway					40th Ave					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	T	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
4:00 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
4:45 PM	0	0	0	1	0	0		0	0	0	0		0	0	0	0	0	0	1	1
5:00 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	1
5:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0
Count Total	0	0	0	1	0	0		0	0	0	0		0	0	0	0	0	0	1	0
Peak Hour	0	0	0	1	0	0		0	0	0	0		0	0	0	0	0	0	1	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Deanes Ln				Driveway					40th Ave					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT			RT		
4:00 PM	0		0	0	0		0		0	0		0		0	0			0	0	0
4:15 PM	0		0	0	0		0		0	0		0		0	0			0	0	0
4:30 PM	0		0	0	0		0		0	0		0		0	0			0	5	0
4:45 PM	0		0	0	0		0		0	1		0		0	0			0	2	7
5:00 PM	0		0	0	0		0		0	0		1		0	0			0	1	8
5:15 PM	0		0	0	0		0		0	1		0		0	0			0	1	9
5:30 PM	0		0	1	0		0		0	1		0		0	0			0	2	6
5:45 PM	0		0	0	0		0		0	0		0		0	0			0	0	4
Count Total	0		0	1	0		0		0	3		1		0	0			0	11	0
Peak Hour	0		0	0	0		0		0	1		1		0	0			0	8	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Clares St				Clares St					Driveway					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT		RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		RT		
7:00 AM	0	0		0	0	0		0	0	0	0		0	1	0	0		0	1	0
7:15 AM	0	0	0	0	0	0		1	0	0	0		0	0	0	0		0	1	0
7:30 AM	0	0	1	0	0	0		2	0	0	0		0	1	0	0	0	0	4	0
7:45 AM	0	0	1	0	0	0		3	0	0	0		0	0	0	1		0	5	11
8:00 AM	0	0	0	0	0	0		2	0	0	0		0	1	0	0		0	3	13
8:15 AM	0	0		0	0	0		3	0	0	0		0	1	0	0		0	6	18
8:30 AM	0	0		0	0	0		1	1	0	0		0	1	0	0		0	4	18
8:45 AM	0	0	0	0	0	0		1	0	0	0		0	0	0	0		0	1	14
Count Total	0	0	5	0	0	0	-	13	1	0	0		0	5	0	1		0	25	0
Peak Hour	0	0	3	0	0	0		7	1	0	0		0	3	0	0	0	0	14	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Clares St				Clares St					Driveway					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT			RT	LT				RT	LT		TH		RT	LT		TH	RT		
7:00 AM	0		1	0	0		0		0	0		0		0	0		0	0	1	0
7:15 AM	0		1	0	0		1		1	0		0		0	0		1	0	4	0
7:30 AM	0		0	0	0		0		0	0		2		2	6		0	0	10	0
7:45 AM	0		1	0	0		0		0	0		0		0	0		0	0	1	16
8:00 AM	0		0	1	0		0		0	0		0		0	0		0	0	1	16
8:15 AM	0		0	0	0		0		0	0		0		1	0		0	1	2	14
8:30 AM	0		0	0	0		0		0	0		1		0	1		0	0	2	6
8:45 AM	0		0	0	0		0		0	0		0		0	0		0	0	0	5
Count Total	0		3	1	0		1		1	0		3		3	7		1	1	21	0
Peak Hour	0		0	1	0		0		0	0		1		1	1		0	1	5	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Clares St				Clares St					Driveway					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT		RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		RT		
4:00 PM	0	1		0	0	0		0	0	0	0		0	0	0	0		0	2	0
4:15 PM	0	0	0	0	0	0		0	0	0	0	0	0	1	0	0	0	1	2	0
4:30 PM	0	0		0	0	0		0	0	0	0		0	3	0	0	0	0	3	0
4:45 PM	0	0	0	0	0	0		1	0	0	0		0	0	0	1		0	2	9
5:00 PM	0	0	0	0	0	0		0	0	0	0		0	1	0	0	0	0	1	8
5:15 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	6
5:30 PM	0	0	1	1	0	0		0	0	0	0		0	1	0	0		0	3	6
5:45 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0		0	0	4
Count Total	0	1	2	1	0	0		1	0	0	0		0	6	0	1		1	13	0
Peak Hour	0	0	1	1	0	0		1	0	0	0	0	0	2	0	1	0	0	6	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Clares St				Clares St					Driveway					40th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT		TH	RT		
4:00 PM	0		0	0	0		0		0	0		0		0	0		0	0	0	0
4:15 PM	0		0	0	0		0		0	0		0		0	0		2	0	2	0
4:30 PM	0		1	0	0		2		0	0		0		0	2		5	0	10	0
4:45 PM	0		1	0	0		0		0	0		0		0	1		1	0	3	15
5:00 PM	0		1	0	0		0		0	0		1		0	0		0	0	2	17
5:15 PM	0		0	0	0		1		0	0		1		0	1		0	0	3	18
5:30 PM	0		0	0	1		0		1	0		1		0	0		1	0	4	12
5:45 PM	0		0	0	0		0		0	0		0		0	0		0	0	0	9
Count Total	0		3	0	1		3		1	0		3		0	4		9	0	24	0
Peak Hour	0		2	0	1		1		1	0		3		0	2		2	0	12	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																					
Interval Start	Clares St					Clares St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	1		0	0	0	0		0	1	0	0		2	1	0	0	4	0	9	0
7:15 AM	0	0	0	0	0	0	0		0	0	0	0		4	0	0	0	3	1	8	0
7:30 AM	0	2		0	0	0	0		0	0	0	0		5	0	0	0	12	2	21	0
7:45 AM	0	1		0	1	0	0		0	0	0	0		3	0	0	0	7	3	15	53
8:00 AM	0	1		0	0	0	0		0	1	0	0		5	1	0	1	4	2	15	59
8:15 AM	0	3		0	0	0	0		0	0	0	1		4	0	0	0	7	1	16	67
8:30 AM	0	2	0	0	0	0	0		1	1	0	0		2	0	0	0	7	2	15	61
8:45 AM	0	0	0	0	0	0	0		0	0	0	0		6	0	0	0	5	1	12	58
Count Total	0	10	0	0	1	0	0		1	3	0	1	3	31	2	0	1	49	12	111	0
Peak Hour	0	6	0	0	0	0	0		1	2	0	1		17	1	0	1	23	6	58	0
Two-Hour Count Summaries - Bikes																					
Interval Start	Clares St					Clares St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	LT		TH		RT	LT		TH		RT	LT		TH		RT	LT			RT		
7:00 AM	0		0		0	0		0		1	0		0		0	0			0	1	0
7:15 AM	0		2		0	0		1		0	0		0		0	0			0	3	0
7:30 AM	1		3		0	0		0		0	0		0		0	0			0	5	0
7:45 AM	0		1		0	0		0		0	0		0		0	0			0	1	10
8:00 AM	0		0		0	0		0		0	0		0		0	0			0	1	10
8:15 AM	0		0		0	0		0		0	0		0		0	0			0	0	7
8:30 AM	0		1		0	0		0		0	0		0		0	0			0	1	3
8:45 AM	0		0		0	0		0		1	0		0		0	0			0	3	5
Count Total	1		7		0	0		1		2	0		0		0	0			0	15	0
Peak Hour	0		1		0	0		0		1	0		0		0	0			0	5	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Clares St				Clares St				41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT		RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		RT		
4:00 PM	0	1	0	0	0	0	0	0	0	0		2	0	0	0		0	4	0
4:15 PM	0	1		0	0		0	0	0	0		4	0	0	1		0	7	0
4:30 PM	0	0	0	1	0		0	0	0	0		1	0	1	0	3	0	6	0
4:45 PM	0	3	0	1	0	0	0	0	0	0		1	0	0	0		1	7	24
5:00 PM	0	1	0	0	0	0	0	0	0	0		3	0	0	0		1	6	26
5:15 PM	0	0		0	0	0	0	0	0	0		1	0	0	0		0	1	20
5:30 PM	0	2		0	0	0	0	0	0	0		1	0	0	0		0	4	18
5:45 PM	0	0		0	0	0	0	0	0	0		0	1	0	0		0	3	14
Count Total	0	8	0	2	0	0	0	0	0	0		13	1	1	1	1	2	38	0
Peak Hour	0	5	0	2	0	0	0	0	0	0		9	0	1	1		2	26	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Clares St				Clares St				41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT		TH	RT		
4:00 PM	0		0	0	0		0	0	0		0		1	0		1	0	2	0
4:15 PM	0		0	0	0		0	0	0		0		1	0		0	0	1	0
4:30 PM	0		2	0	1		3	0	0		1		0	0		0	0	7	0
4:45 PM	0		1	0	0		0	0	0		0		0	0		0	0	1	11
5:00 PM	0		0	0	0		0	0	0		1		0	1		1	0	3	12
5:15 PM	0		0	0	0		1	0	0		0		0	2		1	0	4	15
5:30 PM	0		0	0	0		1	0	0		0		0	0		0	1	2	10
5:45 PM	0		0	0	0		0	1	0		0		0	1		1	0	3	12
Count Total	0		3	0	1		5	1	0		2		2	4		4	1	23	0
Peak Hour	0		3	0	1		3	0	0		2		1	1		1	0	12	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																					
Interval Start	Capitola Rd					Capitola Rd					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
4:00 PM	0	2		1	1	0	0		2	0	0	0		0	0	0	0	1	0	7	0
4:15 PM	0	3		1	0	0	0		1	1	0	0		1	0	0	0	0	0	7	0
4:30 PM	0	1		1	0	0	0		0	0	0	0		1	0	0	1	3	1	8	0
4:45 PM	0	0		0	1	0	0		0	0	0	0		1	0	0	0	1	0	3	25
5:00 PM	0	2		1	0	0	0		0	0	0	0		2	0	0	0	1	0	6	24
5:15 PM	0	2	0	0	0	0	0		0	0	0	0		2	0	0	0	0	0	4	21
5:30 PM	0	0		0	0	0	0		0	1	0	0		2	0	0	1	1	0	5	18
5:45 PM	0	1		0	0	0	0		0	0	0	0		0	0	0	2	0	0	3	18
Count Total	0	11	4	4	2	0	0	3	3	2	0	0		9	0	0	4	7	1	43	0
Peak Hour	0	5	2	2	1	0	0		0	0	0	0		6	0	0	1	5	1	21	0
Two-Hour Count Summaries - Bikes																					
Interval Start	Capitola Rd					Capitola Rd					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	LT		TH		RT	LT		TH		RT	LT		TH		RT	LT			RT		
4:00 PM	0		0		0	1		2		0	0		0		1	0			0	6	0
4:15 PM	0		0		0	0		1		0	0		1		0	0			0	2	0
4:30 PM	0		0		0	0		0		0	0		2		0	0			0	3	0
4:45 PM	0		0		0	1		0		0	1		1		0	0			0	3	14
5:00 PM	0		0		1	0		0		1	2		2		0	0			0	7	15
5:15 PM	0		0		0	1		0		0	0		1		0	0	0		1	3	16
5:30 PM	0		0		0	0		1		0	1		0		0	0			0	2	15
5:45 PM	0		0		0	0		2		0	1		1		0	0			1	6	18
Count Total	0		0		1	3		6		1	5		8		1	0			2	32	0
Peak Hour	0		0		1	2		0		1	3		6		0	0			1	16	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Brommer St				Jade St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	0	0	0	0	0		0	2	0	0		1	0	0	0	2	2	7	0
7:15 AM	0	1	0	0	0	0		0	0	0	0		1	0	0	0	1	1	4	0
7:30 AM	0	0	0	0	0	0		0	0	0	0		2	0	0	0	6	2	10	0
7:45 AM	0	2	0	0	0	0		0	0	0	0		1	0	0	0	0	2	5	26
8:00 AM	0	1	0	0	0	0		0	0	0	0		3	0	0	0	3	0	7	26
8:15 AM	0	1	0	0	0	0		0	1	0	0		1	0	0	0	3	1	7	29
8:30 AM	0	1	0	1	0	0		0	1	0	0		2	1	0	0	3	1	10	29
8:45 AM	0	3	0	0	0	0		0	0	0	0		5	0	0	0	6	0	14	38
Count Total	0	9	0	1	0	0		0	4	0	0	1	16	1	0	0	24	9	64	0
Peak Hour	0	6	0	1	0	0		0	2	0	0		11	1	0	0	15	2	38	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Brommer St				Jade St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT			RT		
7:00 AM	0		1	0	0		0		0	0		0		0	0			1	2	0
7:15 AM	0		2	0	0		1		0	0		0		0	0			1	4	0
7:30 AM	0			0	0		0		0	0		0		0	0			0	1	0
7:45 AM	0		0	3	0		1		0	0		0		0	0			1	6	13
8:00 AM	0		0	0	0		2		0	0		0		0	0			0	3	14
8:15 AM	0		5	0	0		0		0	0		1		0	0			0	6	16
8:30 AM	0		0	0	0		3		0	0		3		0	0			0	6	21
8:45 AM	0		2	0	0		4		0	0		0		0	2			1	9	24
Count Total	0		10	3	0		11		0	0		4		0	2			4	37	0
Peak Hour	0		7	0	0		9		0	0		4		0	2			1	24	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Brommer St				Jade St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
4:00 PM	0	1	0	0	0	0		0	0	0	0		0	0	0	0	2	1	4	0
4:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	1	0	1	0
4:30 PM	0	1	0	0	0	0		0	0	0	0		1	1	0	0	3	0	6	0
4:45 PM	0	0	0	0	0	0		0	0	0	0		1	0	0	0	2	0	3	14
5:00 PM	0	0	0	0	0	0		0	0	0	0		3	1	0	0	0	1	5	15
5:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	14
5:30 PM	0	0	0	0	0	0		0	0	0	0		2	0	0	0	1	0	3	11
5:45 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	8
Count Total	0	2	0	0	0	0		0	0	0	0		7	2	0	0	9	2	22	0
Peak Hour	0	0	0	0	0	0		0	0	0	0		6	1	0	0	3	1	11	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Brommer St				Jade St					41st Ave					41st Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT			RT		
4:00 PM	0		2	0	0		1		0	0		0		0	0			0	6	0
4:15 PM	2		2	0	0		0		0	0		2		0	0			0	7	0
4:30 PM	0		3	0	0		0		0	0		3		1	0			1	9	0
4:45 PM	0		0	0	0		0		0	0		1		3	0			0	5	27
5:00 PM	0		0	0	1		1		1	0		1		0	0			1	7	28
5:15 PM	0		0	0	0		0		0	0		0		0	0			0	0	21
5:30 PM	0		2	1	0		2		0	0		0		0	0			0	5	17
5:45 PM	0		1	0	0		1		0	0		3		0	0			0	6	18
Count Total	2		10	1	1		5		1	0		10		4	0			2	45	0
Peak Hour	0		2	1	1		3		1	0		2		3	0			1	17	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries

Interval Start		Capitola Rd				Capitola Rd				7th Ave				7th Ave				$\begin{gathered} 15-\mathrm{min} \\ \text { Total } \end{gathered}$	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00	AM	0	0	30	5	0	4	39	27	0	10	53	4	0	8	21	1	202	0
7:1	AM	0	2	33	14	0	7	81	27	0	31	49	9	0	9	16	2	280	0
7:30	AM	0	0	52	18	0	9	110	30	0	30	62	9	0	11	24	4	359	0
7:4	AM	0	1	42	26	0	13	121	34	0	45	96	14	0	7	38	7	444	1,285
8:00	AM	0	2	59	26	0	9	155	22	0	48	80	15	0	16	44	16	492	1,575
8:1	AM	0	3	81	41	0	5	119	33	0	54	65	8	0	21	32	2	464	1,759
8:3	AM	0	0	74	35	0	14	108	24	0	31	56	11	0	20	50	7	430	1,830
8:4	AM	0	2	70	36	0	12	109	27	0	50	55	14	0	17	53	5	450	1,836
Count	Total	0	10	441	201	0	73	842	224	0	299	516	84	0	109	278	44	3,121	0
	All	0	7	284	138	0	40	491	106	0	183	256	48	0	74	179	30	1,836	0
Peak	HV	0	0	5	3	0	1	5	2	0	4	9	0	0	1	5	0	35	0
	HV\%	-	0\%	2\%	2\%		3\%	1\%	2\%		2\%	4\%	0\%	-		3\%	0\%	2\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	2	3	0	6	0	0	0	0	0	0	2	0	0	2
7:15 AM	2	5	2	0	9	0	3	2	0	5	4	0	2	3	9
7:30 AM	0	5	2	1	8	0	3	3	2	8	1	1	1	1	4
7:45 AM	2	2	2	4	10	0	4	1	0	5	5	8	8	0	21
8:00 AM	1	1	5	4	11	1	2	4	0	7	4	2	0	0	6
8:15 AM	3	1	3	0	7	0	1	0	1	2	1	1	1	0	3
8:30 AM	1	3	2	2	8	0	1	0	0	1	2	0	1	1	4
8:45 AM	3	3	3	0	9	2	2	0	0	4	0	0	2	4	6
Count Total	13	22	22	11	68	3	16	10	3	32	17	14	15	9	55
Peak Hour	8	8	13	6	35	3	6	4	1	14	7	3	4	5	19

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Capitola Rd				Capitola Rd				7th Ave				7th Ave				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	1	0	0	0	1	1	0	0	3	0	0	0	0	0	6	0
7:15 AM	0	0	1	1	0	0	2	3	0	2	0	0	0	0	0	0	9	0
7:30 AM	0	0	0	0	0	2	2	1	0	0	2	0	0	1	0	0	8	0
7:45 AM	0	0	0	2	0	0	2	0	0	2	0	0	0	1	2	1	10	33
8:00 AM	0	0	0	1	0	1	0	0	0	1	4	0	0	1	3	0	11	38
8:15 AM	0	0	2	1	0	0	1	0	0	2	1	0	0	0	0	0	7	36
8:30 AM	0	0	1	0	0	0	2	1	0	0	2	0	0	0	2	0	8	36
8:45 AM	0	0	2	1	0	0	2	1	0	1	2	0	0	0	0	0	9	35
Count Total	0	0	7	6	0	3	12	7	0	8	14	0	0	3	7	1	68	0
Peak Hour	0	0	5	3	0	1	5	2	0	4	9	0	0	1	5	0	35	0

Two-Hour Count Summaries - Bikes

Interval Start	Capitola Rd			Capitola Rd			7th Ave			7th Ave			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	1	2	0	0	1	1	0	0	0	5	0
7:30 AM	0	0	0	1	2	0	1	2	0	0	2	0	8	0
7:45 AM	0	0	0	0	4	0	0	1	0	0	0	0	5	18
8:00 AM	0	0	1	1	0	1	0	4	0	0	0	0	7	25
8:15 AM	0	0	0	0	1	0	0	0	0	0	1	0	2	22
8:30 AM	0	0	0	0	1	0	0	0	0	0	0	0	1	15
8:45 AM	0	1	1	0	2	0	0	0	0	0	0	0	4	14
Count Total	0	1	2	3	12	1	1	8	1	0	3	0	32	0
Peak Hour	0	1	2	1	4	1	0	4	0	0	1	0	14	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries

Interval Start		Capitola Rd				Capitola Rd				7th Ave				7th Ave				$\begin{gathered} 15-\mathrm{min} \\ \text { Total } \end{gathered}$	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00		0	9	204	82	0	14	99	16	0	19	47	11	0	18	67	6	592	0
4:1	PM	0	4	236	83	0	21	98	14	0	32	37	16	0	32	59	7	639	0
4:30	PM	0	3	200	62	1	22	95	9	0	33	44	18	0	24	45	9	565	0
4:4	PM	0	5	205	64	0	8	91	19	0	29	41	23	0	25	47	3	560	2,356
5:00	PM	0	1	221	79	0	10	93	14	0	34	43	6	0	23	64	5	593	2,357
5:1	PM	0	5	244	76	0	7	116	9	0	40	43	10	0	31	62	6	649	2,367
5:3	PM	0	8	214	91	0	11	90	12	0	39	29	15	0	27	70	3	609	2,411
5:4	PM	0	3	200	63	0	14	80	9	0	27	45	8	0	11	53	4	517	2,368
Count	otal	0	38	1,724	600	1	107	762	102	0	253	329	107	0	191	467	43	4,724	0
	All	0	19	884	310	0	36	390	54	0	142	156	54	0	106	243	17	2,411	0
Peak	HV	0	0	5	2	0	0	5	0	0	1	1	0	0	3	1	0	18	0
	HV\%	-	0\%	1\%	1\%	-	0\%		0\%	-	1\%	1\%	0\%	-	3\%	0\%	0\%	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	4	1	2	1	8	2	0	1	2	5	0	0	0	2	2
4:15 PM	2	2	5	0	9	1	1	0	1	3	0	2	0	1	3
4:30 PM	2	2	1	0	5	1	2	4	0	7	1	1	7	1	10
4:45 PM	3	0	1	2	6	4	0	2	2	8	1	0	1	0	2
5:00 PM	2	2	0	1	5	0	0	4	2	6	1	2	2	1	6
5:15 PM	1	2	1	0	4	2	1	2	0	5	3	1	0	1	5
5:30 PM	1	1	0	1	3	4	0	5	3	12	0	2	0	2	4
5:45 PM	2	1	0	1	4	1	3	1	0	5	4	1	3	2	10
Count Total	17	11	10	6	44	15	7	19	10	51	10	9	13	10	42
Peak Hour	7	5	2	4	18	10	1	13	7	31	5	5	3	4	17

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Capitola Rd				Capitola Rd				7th Ave				7th Ave				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	1	2	1	0	0	1	0	0	2	0	0	0	0	1	0	8	0
4:15 PM	0	0	1	1	0	0	2	0	0	3	1	1	0	0	0	0	9	0
4:30 PM	0	0	2	0	0	0	2	0	0	0	1	0	0	0	0	0	5	0
4:45 PM	0	0	3	0	0	0	0	0	0	0	1	0	0	2	0	0	6	28
5:00 PM	0	0	0	2	0	0	2	0	0	0	0	0	0	0	1	0	5	25
5:15 PM	0	0	1	0	0	0	2	0	0	1	0	0	0	0	0	0	4	20
5:30 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	3	18
5:45 PM	0	0	2	0	0	0	0	1	0	0	0	0	0	0	1	0	4	16
Count Total	0	1	12	4	0	0	10	1	0	6	3	1	0	3	3	0	44	0
Peak Hour	0	0	5	2	0	0	5	0	0	1	1	0	0	3	1	0	18	0

Two-Hour Count Summaries - Bikes

Interval Start	Capitola Rd			Capitola Rd			7th Ave			7th Ave			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	2	0	0	0	0	0	0	1	0	2	0	5	0
4:15 PM	0	0	1	1	0	0	0	0	0	0	1	0	3	0
4:30 PM	0	1	0	0	1	1	1	3	0	0	0	0	7	0
4:45 PM	0	4	0	0	0	0	0	2	0	0	2	0	8	23
5:00 PM	0	0	0	0	0	0	1	2	1	0	2	0	6	24
5:15 PM	0	2	0	0	1	0	0	2	0	0	0	0	5	26
5:30 PM	0	3	1	0	0	0	0	3	2	0	3	0	12	31
5:45 PM	0	1	0	0	3	0	0	1	0	0	0	0	5	28
Count Total	0	13	2	1	5	1	2	13	4	0	10	0	51	0
Peak Hour	0	9	1	0	1	0	1	9	3	0	7	0	31	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																					
Interval Start	Capitola Rd					Capitola Rd					17th Ave					17th Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	1		1	0	0	1		1	0	0	1		1	0	0	0	1	0	7	0
7:15 AM	0	0	1	1	0	0	0		0	0	0	2		1	0	0	0	1	0	5	0
7:30 AM	0	0	1	1	0	0	0		2	0	0	0	0	0	0	0	1	4	0	8	0
7:45 AM	0	0		1	1	0	0		2	0	0	1		2	0	0	1	1	0	9	29
8:00 AM	0	0	0	0	1	0	0		1	0	0	1		2	0	0		1	0	6	28
8:15 AM	0	0		2	1	0	0		0	0	0	0		2	1	0	0	3	1	10	33
8:30 AM	0	1	2	2	0	0	1		3	0	0	2	2	2	0	0	0	0	0	11	36
8:45 AM	0	1		1	0	0	0		2	1	0	0		0	0	0	0	0	1	6	33
Count Total	0	3	9	9	3	0	2		11	1	0	7		10	1	0	2	11	2	62	0
Peak Hour	0	2	5	5	2	0	1		6	1	0	3		6	1	0	0	4	2	33	0
Two-Hour Count Summaries - Bikes																					
Interval Start	Capitola Rd					Capitola Rd					17th Ave					17th Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound					Southbound					
	LT		TH		RT	LT		TH		RT	LT		TH		RT	LT			RT		
7:00 AM	0		1		0	0		2		0	0		1		0	0			0	4	0
7:15 AM	0		0		0	0		1		0	0		0		0	0			1	4	0
7:30 AM	0				0	0		2		1	1		5		0	1			1	16	0
7:45 AM	0		4		0	0		3		0	0		6		0	0			0	16	40
8:00 AM	0		2		0	0		0		1	0		3		0	1	0		0	7	43
8:15 AM	0		0		0	0		2		0	1		0		0	0			0	7	46
8:30 AM	0		0		0	0		1		0	0		0		0	0	0		0	1	31
8:45 AM	0		0		1	0		0		0	0		0		0	0			0	1	16
Count Total	0		8		1	0		11		2	2		15		0	2			2	56	0
Peak Hour	0		2		1	0		3		1	1		3		0	1			0	16	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Four-Hour Count Summaries																			
Interval Start		Capitola Rd				Capitola Rd				17th Ave				17th Ave				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	5	106	20	0	12	99	16	0	24	68	16	0	20	79	12	477	0
2:15	PM	0	12	102	22	1	17	106	12	0	16	76	16	0	21	80	16	497	0
	PM	0	11	126	19	0	26	136	18	0	32	58	18	0	32	71	15	562	0
2:45	PM	0	7	140	15	1	20	107	11	0	23	78	23	0	44	74	9	552	2,088
3:00	PM	0	10	176	35	0	22	112	11	0	23	63	22	0	27	66	9	576	2,187
	PM	0	12	170	35	1	21	90	15	0	25	61	14	0	31	74	16	565	2,255
	PM	0	7	194	19	0	26	106	14	0	21	52	12	0	49	77	7	584	2,277
3:4	PM	0	6	194	27	1	18	73	12	0	26	60	21	0	34	93	10	575	2,300
4:00	PM	0	13	212	30	1	19	119	19	0	24	36	14	0	43	69	9	608	2,332
4:15	PM	0	7	198	28	0	11	91	10	0	32	55	19	0	49	86	11	597	2,364
4:30	PM	0	6	210	22	0	29	79	9	0	13	48	14	0	43	59	11	543	2,323
4:45	PM	0	8	171	31	2	24	82	13	0	23	51	18	0	41	84	4	552	2,300
5:00	PM	0	9	213	26	1	23	106	11	0	23	53	23	0	48	89	5	630	2,322
	PM	0	6	213	26	2	14	78	15	0	33	48	21	0	49	102	6	613	2,338
	PM	0	12	210	29	3	16	91	10	0	15	34	18	0	55	87	8	588	2,383
5:4	PM	0	6	185	2	1	28	97	13	0	27	55	16	0	50	81	14	575	2,406
Count	Total	0	137	2,820	386	14	326	1,572	209	0	380	896	285	0	636	1,271	162	9,094	0
	All	0	33	821	83	7	81	372	49	0	98	190	78	0	202	359	33	2,406	0
Hour	HV	0	0	3	0	0	0	2	0	0	0	0	0	0	0	0	0	5	0
	HV\%	-	0\%	0\%	0\%	0\%	0\%	1\%	0\%	-	0\%	0\%	0\%	-	0\%	0\%	0\%	0\%	0

Note: Four-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	2	2	2	3	9	2	2	1	1	6	6	3	1	9	19
2:15 PM	1	1	3	3	8	1	1	1	0	3	2	1	3	2	8
2:30 PM	2	5	1	1	9	0	2	0	0	2	1	1	0	10	12
2:45 PM	3	1	3	4	11	4	0	6	2	12	7	19	4	5	35
3:00 PM	4	2	2	1	9	4	2	2	1	9	13	5	16	7	41
3:15 PM	2	2	1	3	8	2	2	1	3	8	0	10	2	0	12
3:30 PM	1	2	2	4	9	4	0	0	5	9	2	2	3	0	7
3:45 PM	3	2	1	7	13	0	1	1	1	3	2	1	3	0	6
4:00 PM	0	3	0	3	6	2	0	0	1	3	0	2	4	1	7
4:15 PM	2	0	4	1	7	1	0	0	0	1	5	4	2	2	13
4:30 PM	0	2	1	2	5	1	0	0	1	2	6	1	4	0	11
4:45 PM	3	1	1	0	5	3	0	1	0	4	4	0	2	2	8
5:00 PM	0	1	0	0	1	0	1	0	0	1	2	1	2	3	8
5:15 PM	2	0	0	0	2	0	3	2	2	7	7	3	0	7	17
5:30 PM	0	1	0	0	1	1	1	0	4	6	0	1	1	0	2
5:45 PM	1	0	0	0	1	3	1	4	1	9	2	2	1	5	10
Count Total	26	25	21	32	104	28	16	19	22	85	59	56	48	53	216
Peak Hour	3	2	0	0	5	4	6	6	7	23	11	7	4	15	37

Four-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Capitola Rd				Capitola Rd				17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
2:00 PM	0	0	2	0	0	0	2	0	0	0	1	1	0	0	3	0	9	0
2:15 PM	0	0	1	0	0	1	0	0	0	1	2	0	0	1	1	1	8	0
2:30 PM	0	1	1	0	0	1	3	1	0	0	0	1	0	0	1	0	9	0
2:45 PM	0	2	1	0	0	0	0	1	0	0	2	1	0	1	3	0	11	37
3:00 PM	0	0	4	0	0	1	1	0	0	0	2	0	0	0	1	0	9	37
3:15 PM	0	0	2	0	0	0	2	0	0	0	1	0	0	0	3	0	8	37
3:30 PM	0	0	1	0	0	0	1	1	0	0	2	0	0	0	4	0	9	37
3:45 PM	0	0	3	0	0	1	1	0	0	1	0	0	0	0	6	1	13	39
4:00 PM	0	0	0	0	0	0	2	1	0	0	0	0	0	1	2	0	6	36
4:15 PM	0	0	2	0	0	0	0	0	0	3	1	0	0	0	1	0	7	35
4:30 PM	0	0	0	0	0	1	1	0	0	0	1	0	0	0	2	0	5	31
4:45 PM	0	0	2	1	0	0	0	1	0	0	1	0	0	0	0	0	5	23
5:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	18
5:15 PM	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	13
5:30 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	9
5:45 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5
Count Total	0	3	22	1	0	5	15	5	0	5	13	3	0	3	27	2	104	0
Peak Hour	0	0	3	0	0	0	2	0	0	0	0	0	0	0	0	0	5	0
Four-Hour Count Summaries - Bikes																		
Interval Start	Capitola Rd				Capitola Rd				17th Ave				17th Ave				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	LT			RT	LT	TH		RT	LT	TH		RT	LT	TH		RT		
2:00 PM	0			0	0	2		0	1	0		0	0	1		0	6	0
2:15 PM	0			0	0	1		0	0	1		0	0	0		0	3	0
2:30 PM	0			0	1	0		1	0	0		0	0	0		0	2	0
2:45 PM	0			1	0	0		0	0	6		0	0	2		0	12	23
3:00 PM	0			2	0	2		0	0	2		0	0	1		0	9	26
3:15 PM	0			0	0	2		0	1	0		0	0	3		0	8	31
3:30 PM	0			0	0	0		0	0	0		0	0	5		0	9	38
3:45 PM	0	0		0	1	0		0	0	1		0	0	1		0	3	29
4:00 PM	0			0	0	0		0	0	0		0	0	1		0	3	23
4:15 PM	0			0	0	0		0	0	0		0	0	0		0	1	16
4:30 PM	0			0	0	0		0	0	0		0	0	1		0	2	9
4:45 PM	0			0	0	0		0	0	1		0	0	0		0	4	10
5:00 PM	0			0	0	1		0	0	0		0	0	0		0	1	8
5:15 PM	0			0	0	3		0	2	0		0	0	1		1	7	14
5:30 PM	0			0	0	1		0	0	0		0	0	4		0	6	18
5:45 PM	0			1	0	1		0	0	4		0	0	0		1	9	23
Count Total	0	2		4	2	13		1	4	15		0	0	20		2	85	0
Peak Hour	0	3		1	0	6		0	2	4		0	0	5		2	23	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																		

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Capitola Rd				Capitola Rd				Chanticleer Ave					Chanticleer Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	T	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	0	1	0	0	0	1	1	0	0		0	0	0	0	0	0	3	0
7:15 AM	0	0	1	0	0	0	0	0	0	0		0	0	0	0	0	0	1	0
7:30 AM	0	0	2	0	0	0	1	0	0	0		0	0	0	0	0	1	4	0
7:45 AM	0	0	2	0	0	0	2	1	0	0		0	0	0	0	0	0	5	13
8:00 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	0	1	11
8:15 AM	0	0	3	0	0	0	1	0	0	0		0	0	0	0	0	0	4	14
8:30 AM	0	0	2	0	0	0	4	1	0	2		0	0	0	0	0	0	9	19
8:45 AM	0	0	2	0	0	0	2	0	0	0		0	0	0	0	0	0	4	18
Count Total	0	0	1	0	0	0	1	3	0	2		0	0	0	0	1	1	31	0
Peak Hour	0	0	7	0	0	0	7	2	0	2		0	0	0	0	1	0	19	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Capitola Rd				Capitola Rd				Chanticleer Ave					Chanticleer Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT			RT		
7:00 AM	0		1	0	0		1	1	0		0		1	0			1	5	0
7:15 AM	0		0	0	0		1	1	0		3		0	0			1	6	0
7:30 AM	0		2	0	1		3	0	0		0		0	0			1	9	0
7:45 AM	0		2	1	0		1	3	0		0		0	1			0	9	29
8:00 AM	0		0	0	1		1	0	0		1		0	0			1	5	29
8:15 AM	0		0	0	0		1	3	0		4		0	0			0	8	31
8:30 AM	0		1	0	0		1	0	0		2		2	0			1	7	29
8:45 AM	0		2	0	0		1	0	0		0		0	1			2	8	28
Count Total	0		8	1	2		10	8	0		10		3	2			7	57	0
Peak Hour	0		3	1	1		4	6	0		7		2	1			2	29	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Capitola Rd				Capitola Rd					Chanticleer Ave				Chanticleer Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound				Southbound					
	UT	LT		RT	UT	LT		TH	RT	UT	LT	TH	RT	UT	LT		RT		
4:00 PM	0	0		0	0	0		3	0	0	0	1	0	0	0	1	0	7	0
4:15 PM	0	0	1	0	0	0		0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	1	0	0	0		2	0	0	0	0	0	0	0	0	0	3	0
4:45 PM	0	0	2	0	0	0		0	0	0	0	0	0	0	1	0	0	3	14
5:00 PM	0	0	0	0	0	0		1	0	0	0	0	1	0	0	0	0	2	9
5:15 PM	0	0		0	0	0		0	0	0	0		0	0	0	0	0	2	10
5:30 PM	0	0	0	0	0	0		1	0		0	0	0		0	0	0	1	8
5:45 PM	0	0	1	0	0	0		0	0	0	0	0	0	0	0	1	0	2	7
Count Total	0	0	9	0	0	0		7	0	0	0	1	1	0	1	2	0	21	0
Peak Hour	0	0	3	0	0	0		2	0	0	0	0	1	0	0	1	0	7	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Capitola Rd				Capitola Rd					Chanticleer Ave				Chanticleer Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound				Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH	RT	LT		TH	RT		
4:00 PM	0		2	0	0		0		0	0		1	0	1		2	0	6	0
4:15 PM	0		1	0	0		0		0	0		1	1	1		1	0	5	0
4:30 PM	0			0	0				0	0		0	1	0			0	5	0
4:45 PM	0		3	0	0		0		0	0		2	0	0		0	0	5	21
5:00 PM	0		0	0	0		0		1	0		1	0	0		0	0	2	17
5:15 PM	0		1	0	0		3		0	0		0	0	0		0	0	4	16
5:30 PM	0		3	0	0		1		1	0		2	2	0		2	0	11	22
5:45 PM	0		3	1	0		1		0	0		1	0	0		2	1	9	26
Count Total	0		15	1	0		6		2	0		8	4	2		8	1	47	0
Peak Hour	0		7	1	0		5		2	0		4	2	0		4	1	26	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Capitola Rd				Capitola Rd					30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT		RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		RT		
7:00 AM	0	0		0	0	0		2	0	0	0		0	0	0	0		0	3	0
7:15 AM	0	0	2	0	0	0		0	0	0	0		0	0	0	0		0	2	0
7:30 AM	0	0		0	0	0		1	0	0	0	1	1	0	0	0	0	0	3	0
7:45 AM	0	0	2	0	0	0		2	0	0	1		0	0	0	0		1	6	14
8:00 AM	0	0	0	0	0	0		0	0	0	0		0	0	0	0		0	0	11
8:15 AM	0	0	3	0	0	0		1	0	0	0		0	0	0	0		0	4	13
8:30 AM	0	0	2	0	0	0		4	0	0	1		0	0	0	0		0	7	17
8:45 AM	0	0	2	0	0	1		2	0	0	0		0	0	0	0		0	5	16
Count Total	0	0	1	0	0	1	1	12	0	0	2		1	0	0	0		1	30	0
Peak Hour	0	0	7	0	0	1		7	0	0	1		0	0	0	0	0	0	16	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Capitola Rd				Capitola Rd					30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT			RT	LT		TH		RT	LT		TH		RT	LT		TH	RT		
7:00 AM	0		3	1	0		1		0	0		0		0	0		0	0	5	0
7:15 AM	0		1	0	1		2		0	0		0		1	0		0	0	5	0
7:30 AM	0			0	0		5		1	0		0		0	0		0	0	9	0
7:45 AM	0		3	1	0		0		0	0		0		0	0		0	1	5	24
8:00 AM	0		1	0	0		2		0	5		0		0	0		0	0	8	27
8:15 AM	0		1	0	0		3		0	0		0		0	0		0	0	4	26
8:30 AM	0		2	1	0		0		0	1		0		0	0		0	0	4	21
8:45 AM	0		1	1	0		0		0	1		0		0	0		0	0	3	19
Count Total	0		15	4	1		13		1	7		0		1	0		0	1	43	0
Peak Hour	0		5	2	0		5		0	7		0		0	0		0	0	19	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Capitola Rd				Capitola Rd					30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT		RT		
4:00 PM	0	0	3	1	0	0		3	0	0	0		1	1	0	0		0	9	0
4:15 PM	0	0	0	0	0	0		0	0	0	0		0	0	0	1	0	0	1	0
4:30 PM	0	0	2	0	0	0		1	0	0	0		0	0	0	0		0	3	0
4:45 PM	0	0	3	0	0	0		0	0	0	1		0	0	0	0		0	4	17
5:00 PM	0	0	1	0	0	0		1	0	0	0		0	0	0	0	0	0	2	10
5:15 PM	0	0	2	0	0	0		0	0	0	0		0	0	0	0		0	2	11
5:30 PM	0	0	0	0	0	0		1	0	0	0		0	0	0	0		0	1	9
5:45 PM	0	0	1	0	0	0		0	0	0	0		0	0	0	0		0	1	6
Count Total	0	0	12	1	0	0		6	0	0	1		1	1	0	1		0	23	0
Peak Hour	0	0	6	0	0	0		2	0	0	1		0	0	0	0		0	9	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Capitola Rd				Capitola Rd					30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT		TH	RT		
4:00 PM	0		3	1	0		1		0	0		0		0	0		0	0	5	0
4:15 PM	0		3	0	0		1		0	0		0		0	0		0	0	4	0
4:30 PM	0		5	0	0		1		0	0		0		0	0		0	1	7	0
4:45 PM	1		3	0	0		0		0	0		0		0	0		0	0	4	20
5:00 PM	1		1	0	1		1		0	0		0		0	0		0	2	6	21
5:15 PM	0		1	2	0		2		0	1		0		0	0		0	0	6	23
5:30 PM	0		1	0	0		0		0	1		1		0	0		0	1	4	20
5:45 PM	0		3	0	0		1		0	0		1		0	1		0	0	6	22
Count Total	2		20	3	1		7		0	2		2		0	1		0	4	42	0
Peak Hour	2		6	2	1		3		0	2		1		0	0		0	3	20	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	Brommer St					Brommer St					17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound				Southbound					
	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT	UT	LT	TH	RT		
7:00 AM	0	0		0	2	0	0		0	0	0	1	2	0	0	0	1	0	6	0
7:15 AM	0	0	0	0	0	0	0		1	0	0	0	2	1	0	0	1	0	5	0
7:30 AM	0	0		0	0	0	0		0	0	0	0	0	0	0	1	4	0	5	0
7:45 AM	0	0	3	3	0	0	0		2	1	0	0	2	0	0	0	1	1	10	26
8:00 AM	0	0		0	1	0	0		0	0	0	1	2	0	0	0	1	0	5	25
8:15 AM	0	0	0	0	0	0	1		0	1	0	0	2	0	0	1	2	1	8	28
8:30 AM	0	0		1	0	0	0		2	0	0	0	2	1	0	0	2	0	8	31
8:45 AM	0	0	0	0	0	0	0		0	0	0	0	1	0	0	0	0	0	1	22
Count Total	0	0	4	4	3	0	1		5	2	0	2	13	2	0	2	12	2	48	0
Peak Hour	0	0		4	1	0	1		4	2	0	1	8	1	0	1	6	2	31	0
Two-Hour Count Summaries - Bikes																				
Interval Start	Brommer St					Brommer St					17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound					Westbound					Northbound				Southbound					
	LT		TH		RT	LT		TH		RT	LT		TH	RT	LT			RT		
7:00 AM	0		3		0	0		0		0	2		0	0	0			1	6	0
7:15 AM	0		2		4	0		6		0	1		3	0	0			0	18	0
7:30 AM	0		0		4	0		4		0	0		5	0	0			0	18	0
7:45 AM	0		3		6	0		4		0	0		7	0	0			0	26	68
8:00 AM	0		2		1	1		3		0	1		7	0	0			0	24	86
8:15 AM	0		3		2	0		5		0	2		4	1	0			0	20	88
8:30 AM	0		1		0	0		0		0	2		0	1	1			0	5	75
8:45 AM	1		1		4	0		2		0	0		1	0	0			1	12	61
Count Total	1		15		21	1		24		0	8		27	2	1			2	129	0
Peak Hour	0		9		9	1		12		0	5		18	2	1			0	75	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Four-Hour Count Summaries																			
Interval Start		Brommer St				Brommer St				17th Ave				17th Ave				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	12	33	20	0	18	47	5	0	13	90	19	0	17	88	12	374	0
2:15	PM	0	10	44	25	0	20	35	11	0	20	81	26	0	8	93	7	380	0
	PM	0	12	36	21	0	22	40	5	0	19	87	17	0	12	88	11	370	0
2:45	PM	0	15	63	22	0	31	45	6	0	23	94	27	0	15	79	4	424	1,548
3:00	PM	0	8	75	31	0	26	52	7	0	22	87	22	0	14	67	9	420	1,594
	PM	0	14	78	30	0	26	59	4	0	15	80	23	0	17	113	11	470	1,684
3:30	PM	0	11	81	28	0	28	46	5	0	12	76	25	0	11	82	15	420	1,734
3:4	PM	0	1	69	21	0	29	41	7	0	17	90	9	0	12	93	8	397	1,707
4:00	PM	0	6	72	31	0	25	44	7	0	23	65	32	0	20	84	8	417	1,704
	PM	0	16	87	27	0	24	56	5	0	19	85	25	0	16	92	5	457	1,691
	PM	0	9	76	39	0	23	46	9	0	21	67	29	0	16	82	8	425	1,696
4:45	PM	0	7	71	30	0	38	42	8	0	13	76	24	0	16	90	9	424	1,723
	PM	0	14	73	30	0	27	55	6	0	18	77	33	0	18	85	10	446	1,752
5:15	PM	0	11	81	22	0	30	45	13	0	18	80	21	0	16	117	5	459	1,754
5:30	PM	0	11	84	26	0	34	54	4	0	13	59	22	0	11	106	4	428	1,757
5:4	PM	0	13	49	34	0	30	49	8	0	10	89	24	0	11	99	7	423	1,756
Count	Total	0	170	1,072	437	0	431	756	110	0	276	1,283	378	0	230	1,458	133	6,734	0
	All	0	43	309	108	0	129	196	31	0		292	100	0	61	398	28	1,757	0
Hour	HV	0	0	1	2	0	0	0	0	0		2	0	0	0	2	0	8	0
	HV\%	-	0\%	0\%	2\%	-	0\%	0\%	0\%	-	2\%	1\%	0\%	-	0\%	1\%	0\%	0\%	0

Note: Four-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	2	1	2	2	7	2	2	3	1	8	3	3	2	0	8
2:15 PM	2	1	5	2	10	1	1	2	0	4	0	0	1	0	1
2:30 PM	1	1	2	2	6	2	1	1	2	6	0	2	3	1	6
2:45 PM	3	2	3	3	11	1	1	18	2	22	29	34	28	8	99
3:00 PM	3	1	5	2	11	3	2	3	0	8	9	33	30	4	76
3:15 PM	2	0	2	4	8	2	1	3	1	7	9	3	5	2	19
3:30 PM	2	2	1	3	8	3	1	4	6	14	4	2	5	2	13
3:45 PM	2	2	2	7	13	3	1	2	4	10	4	6	4	1	15
4:00 PM	2	0	3	0	5	5	2	3	3	13	6	1	13	3	23
4:15 PM	0	0	5	1	6	6	1	0	2	9	6	3	4	2	15
4:30 PM	1	0	1	2	4	2	1	0	3	6	4	4	4	1	13
4:45 PM	2	0	1	0	3	3	1	1	2	7	1	0	11	1	13
5:00 PM	1	0	1	2	4	3	0	1	1	5	4	1	4	2	11
5:15 PM	0	0	1	0	1	3	1	6	0	10	4	3	5	1	13
5:30 PM	0	0	0	0	0	7	2	3	0	12	6	1	0	4	11
5:45 PM	0	0	0	0	0	8	5	1	2	16	7	0	0	0	7
Count Total	23	10	34	30	97	54	23	51	29	157	96	96	119	32	343
Peak Hour	3	0	3	2	8	16	4	11	3	34	15	5	20	8	48

Four-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Brommer St				Brommer St				17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
2:00 PM	0	0	0	2	0	1	0	0	0	0	2	0	0	0	2	0	7	0
2:15 PM	0	0	0	2	0	0	0	1	0	1	4	0	0	0	2	0	10	0
2:30 PM	0	0	0	1	0	0	1	0	0	1	1	0	0	0	2	0	6	0
2:45 PM	0	1	2	0	0	1	1	0	0	1	2	0	0	0	3	0	11	34
3:00 PM	0	1	0	2	0	0	1	0	0	2	2	1	0	0	2	0	11	38
3:15 PM	0	0	1	1	0	0	0	0	0	1	1	0	0	0	4	0	8	36
3:30 PM	0	1	1	0	0	0	2	0	0	0	1	0	0	0	2	1	8	38
3:45 PM	0	0	1	1	0	1	1	0	0	0	1	1	0	0	5	2	13	40
4:00 PM	0	0	1	1	0	0	0	0	0	2	1	0	0	0	0	0	5	34
4:15 PM	0	0	0	0	0	0	0	0	0	1	4	0	0	1	0	0	6	32
4:30 PM	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	1	4	28
4:45 PM	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	3	18
5:00 PM	0	0	0	1	0	0	0	0	0	0	1	0	0	0	2	0	4	17
5:15 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	12
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Count Total	0	3	8	12	0	3	6	1	0	10	22	2	0	2	24	4	97	0
Peak Hour	0	0	1	2	0	0	0	0	0	1	2	0	0	0	2	0	8	0
Four-Hour Count Summaries - Bikes																		
Interval Start	Brommer St				Brommer St				17th Ave				17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	LT			RT	LT	T		RT	LT	TH		RT	LT	TH		RT		
2:00 PM	0			0	0	2		0	2	1		0	0	1		0	8	0
2:15 PM	0			0	0	0		1	1	1		0	0	0		0	4	0
2:30 PM	0			1	0	1		0	0	1		0	0	1		1	6	0
2:45 PM	0			0	0	1		0	4	12		2	0	2		0	22	40
3:00 PM	0			1	0	2		0	0	3		0	0	0		0	8	40
3:15 PM	0			1	0	1		0	0	3		0	0	1		0	7	43
3:30 PM	0			1	1	0		0	1	2		1	0	6		0	14	51
3:45 PM	0	0		3	0	1		0	0	1		1	0	4		0	10	39
4:00 PM	0			0	0	2		0	0	3		0	0	3		0	13	44
4:15 PM	0			1	0	1		0	0	0		0	0	2		0	9	46
4:30 PM	0			0	0	1		0	0	0		0	0	2		1	6	38
4:45 PM	0			3	0	1		0	0	1		0	0	2		0	7	35
5:00 PM	0			1	0	0		0	0	1		0	0	1		0	5	27
5:15 PM	0			0	0	1		0	1	4		1	0	0		0	10	28
5:30 PM	0			1	0	2		0	2	1		0	0	0		0	12	34
5:45 PM	0			1	2	3		0	0	0		1	0	0		2	16	43
Count Total	0			14	3	1		1	11	34		6	0	25		4	157	0
Peak Hour	0	1		5	0	4		0	3	7		1	0	3		0	34	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																		

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Brommer St				Brommer St				30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		RT		
7:00 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0
7:30 AM	0	0	0	1	0	0	1	1	0	0		0	1	0	0		0	4	0
7:45 AM	0	0	4	0	0	0	0	1	0	0		0	0	0	0		0	5	9
8:00 AM		0	1	1	0	0	0	0	0	0		0	0	0	0		0	2	11
8:15 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	11
8:30 AM	0	0	2	0	0	0	2	1	0	0		0	0	0	0		0	5	12
8:45 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	1	8
Count Total	0	0	7	2	0	0	3	3	0	0		0	1	0	0		0	17	0
Peak Hour	0	0	5	2	0	0	1	2	0	0		0	1	0	0	0	0	11	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Brommer St				Brommer St				30th Ave					30th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT		TH	RT		
7:00 AM	0		1	0	0		2	0	1		1		0	0		1	0	6	0
7:15 AM	1		2	1	3		4	0	5		1		0	0		0	1	18	0
7:30 AM	0		0	3	2		5	0	3		1		0	0		0	1	15	0
7:45 AM	0		0	1	0		6	0	6		0		1	0		1	0	15	54
8:00 AM	0		2	1	1		2	0	9		4		0	0		0	0	19	67
8:15 AM	0		2	1	2		1	0	2		0		0	0		0	0	8	57
8:30 AM	0		1	1	0		1	0	0		0		1	0		1	0	5	47
8:45 AM	0		1	2	0		0	0	0		1		0	0		1	0	5	37
Count Total	1		9	10	8		21	0	26		8		2	0		4	2	91	0
Peak Hour	0		4	6	5		14	0	20		5		1	0		1	1	57	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)					17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		RT		
7:00 AM	0	1	0	0	0	0	0	1	0	0		0	0	0	1		0	3	0
7:15 AM	0		0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	2	0
7:30 AM	0	1	3	0	0		1	0	0	0	1	1	0	0	0		0	7	0
7:45 AM	0	0	0	0	0	0	0	2	0	0		0	0	0	0		0	2	14
8:00 AM	0	1	1	0	0	0	0	1	0	1		0	0	0	1		2	7	18
8:15 AM	0	0	2	0	0	0	1	0	0	0		0	0	0	1		2	6	22
8:30 AM	0	0	1	0	0	0	1	0	0	1		0	0	0	2		0	6	21
8:45 AM	0	1	0	0	0	0	2	2	0	0		0	0	0	1		0	6	25
Count Total	0	4	7	0	0	0	5	7	0	2		1	0	0	6		5	39	0
Peak Hour	0	2	4	0	0	0	4	3	0	2		0	0	0	5		4	25	0
Two-Hour Count Summaries - Bikes																			
Interval Start	E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)					17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT		TH	RT		
7:00 AM	0		2	0	0		0	0	0		0		0	0		0	0	2	0
7:15 AM	0		0	0	0		1	0	1		0		0	0		0	1	3	0
7:30 AM	0			0	0		4	0	2		0		0	2		0	0	10	0
7:45 AM	0		0	0	0		2	1	2		2		0	2		0	1	10	25
8:00 AM	0		0	0	0		6	0	0		2		0	1		0	0	9	32
8:15 AM	0		3	3	0		1	0	0		0		0	0		1	0	8	37
8:30 AM	0		0	1	0		4	1	1		1		0	0		2	0	10	37
8:45 AM	0		1	0	0		4	2	1		0		0	0		2	1	11	38
Count Total	0		8	4	0		22	4	7		5		0	5		5	3	63	0
Peak Hour	0		4	4	0		15	3	2		3		0	1		5	1	38	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Four-Hour Count Summaries																			
Interval Start		E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)				17th Ave				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	28	62	44	0	3	73	28	0	17	13	2	0	31	27	13	341	0
2:15	PM	0	26	70	54	0	3	72	20	0	17	11	2	0	26	19	26	346	0
2:30	PM	0	23	74	34	0	2	67	23	0	21	11	4	0	21	9	25	314	0
2:45	PM	0	9	81	52	0	3	60	24	0	25	6	1	0	44	12	27	344	1,345
3:00	PM	0	15	100	38	0	6	69	23	0	21	10	4	0	23	19	21	349	1,353
	PM	0	22	104	58	0	4	57	22	0	18	9	2	0	31	23	18	368	1,375
3:30	PM	0	15	103	69	0	1	79	19	0	21	10	4	0	27	20	23	391	1,452
3:4	PM	0	18	119	49	0	1	54	26	0	16	18	4	0	35	21	18	379	1,487
4:00	PM	0	12	119	49	0	5	62	19	0	20	11	2	0	32	23	11	365	1,503
	PM	0	20	134	54	0	6	51	24	0	18	7	2	0	39	20	21	396	1,531
	PM	0	12	111	61	0	3	63	24	0	17	9	1	0	21	22	30	374	1,514
4:45	PM	0	9	112	61	0	3	68	29	0	23	10	2	0	36	19	16	388	1,523
	PM	0	11	136	56	0	6	70	21	0	20	20	1	0	36	27	25	429	1,587
5:15	PM	0	18	147	59	0	4	72	28	1	27	8	2	0	46	27	26	465	1,656
5:30	PM	0	18	113	66	0	2	63	23	1	15	6	2	0	39	24	24	396	1,678
5:4	PM	0	22	87	52	0	3	57	27	0	20	8	3	0	45	21	16	361	1,651
Count	Total	0	278	1,672	856	0	55	1,037	380	2	316	167	38	0	532	333	340	6,006	0
	All	0	56	508	242	0	15	273	101	2	85	44	7	0	157	97	91	1,678	0
Peak Hour	HV	0	0	4	2	0	0		1	0	0	0	0	0	1	1	1	11	0
					1\%	-	0\%	0\%	1\%	0\%	0\%	0\%	0\%		1\%	1\%	1\%		0

Note: Four-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	1	2	0	1	4	3	3	1	0	7	2	0	0	0	2
2:15 PM	2	0	0	0	2	4	1	5	0	10	0	5	0	0	5
2:30 PM	4	2	0	1	7	5	2	2	2	11	1	2	0	0	3
2:45 PM	2	1	0	0	3	3	4	0	0	7	3	2	1	2	8
3:00 PM	2	3	1	2	8	1	0	1	3	5	6	0	3	1	10
3:15 PM	2	1	0	1	4	2	0	0	1	3	2	6	1	1	10
3:30 PM	1	1	0	1	3	1	0	1	5	7	0	4	0	0	4
3:45 PM	0	1	1	0	2	3	2	3	0	8	0	1	0	1	2
4:00 PM	1	0	0	1	2	1	3	3	2	9	5	1	2	5	13
4:15 PM	1	2	0	1	4	3	2	1	3	9	3	2	0	3	8
4:30 PM	4	1	0	0	5	5	1	1	1	8	2	1	1	2	6
4:45 PM	4	0	0	0	4	5	1	3	0	9	2	2	0	1	5
5:00 PM	1	0	0	2	3	2	1	5	1	9	1	17	1	1	20
5:15 PM	0	1	0	1	2	0	1	2	1	4	1	5	1	5	12
5:30 PM	1	1	0	0	2	0	2	1	1	4	3	6	1	0	10
5:45 PM	0	0	0	0	0	0	2	3	1	6	0	6	1	1	8
Count Total	26	16	2	11	55	38	25	32	21	116	31	60	12	23	126
Peak Hour	6	2	0	3	11	7	5	11	3	26	7	30	3	7	47

Four-Hour Count Summaries - Heavy Vehicles																			
Interval Start	E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)					17th Ave				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
2:00 PM	0	1	0	0	0	0	0	2	0	0		0	0	0	1	0	0	4	0
2:15 PM	0	0	1	1	0		0	0	0	0		0	0	0	0	0	0	2	0
2:30 PM	0	0	4	0	0	0	1	1	0	0		0	0	0	0	0	1	7	0
2:45 PM	0	0	2	0	0		1	0	0	0		0	0	0	0	0	0	3	16
3:00 PM	0	1	1	0	0	0	2	1	0	1		0	0	0	1	0	1	8	20
3:15 PM	0	0	1	1	0	0	0	1	0	0		0	0	0	1	0	0	4	22
3:30 PM	0	0	1	0	0	0	1	0	0	0		0	0	0	0	0	1	3	18
3:45 PM	0	0	0	0	0	0	0	1	0	0		1	0	0	0	0	0	2	17
4:00 PM	0	0	1	0	0		0	0	0	0		0	0	0	0	1	0	2	11
4:15 PM	0	0	0	1	0	0	0	2	0	0		0	0	0	1	0	0	4	11
4:30 PM	0	0	1	3	0	0	1	0	0	0		0	0	0	0	0	0	5	13
4:45 PM	0	0	2	2	0	0	0	0	0	0		0	0	0	0	0	0	4	15
5:00 PM	0	0	1	0	0	0	0	0	0	0		0	0	0	1	0	1	3	16
5:15 PM	0	0	0	0	0	0	0	1	0	0		0	0	0	0	1	0	2	14
5:30 PM	0	0	1	0	0	0	1	0	0	0		0	0	0	0	0	0	2	11
5:45 PM	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	7
Count Total	0	2	16	8	0	0	7	9	0	1		1	0	0	5	2	4	55	0
Peak Hour	0	0	4	2	0	0	1	1	0	0		0	0	0	1	1	1	11	0
Four-Hour Count Summaries - Bikes																			
Interval Start	E Cliff Dr (W)				Portola Dr				E Cliff Dr (S)					17th Ave				$\begin{gathered} \text { 15-min } \\ \text { Total } \end{gathered}$	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT			RT	LT	TH		RT	LT		TH		RT	LT	TH		RT		
2:00 PM	0			1	0	1		2	1		0		0	0	0		0	7	0
2:15 PM	0			1	0	1		0	3		2		0	0	0		0	10	0
2:30 PM	0			5	0	1		1	1		0		1	1	0		1	11	0
2:45 PM	0			1	0	4		0	0		0		0	0	0		0	7	35
3:00 PM	0			1	0	0		0	0		1		0	0	0		3	5	33
3:15 PM	0			2	0	0		0	0		0		0	0	1		0	3	26
3:30 PM	0			0	0	0		0	1		0		0	0	3		2	7	22
3:45 PM	0			2	0	2		0	3		0		0	0	0		0	8	23
4:00 PM	0			1	0	3		0	3		0		0	0	2		0	9	27
4:15 PM	0			2	0	2		0	0		1		0	0	2		1	9	33
4:30 PM	0			4	0	1		0	1		0		0	0	1		0	8	34
4:45 PM	0			2	0	1		0	3		0		0	0	0		0	9	35
5:00 PM	0			1	0	1		0	1		4		0	0	1		0	9	35
5:15 PM	0			0	0	1		0	1		0		1	0	1		0	4	30
5:30 PM	0			0	0	1		1	1		0		0	0	1		0	4	26
5:45 PM	0			0	0	2		0	3		0		0	0	1		0	6	23
Count Total	0		-	23	0	21		4	22		8		2	1	13		7	116	0
Peak Hour	0	4		3	0	4		1	6		4		1	0	3		0	26	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																			

Kimley»)Horn

APPENDIX B. EXISTING CONDITIONS SYNCHRO OUTPUT SHEETS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	种	7	\%	中 ${ }^{\text {c }}$		${ }^{7}$	4	F		\uparrow	F
Traffic Volume (veh/h)	28	529	314	63	514	65	541	24	88	27	23	12
Future Volume (veh/h)	28	529	314	63	514	65	541	24	88	27	23	12
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	29	545	0	65	530	67	576	0	0	28	24	12
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	1	1	1	1	1	1	1	1	1	0	0	0
Cap, veh/h	48	2088		84	1922	242	625	0		53	46	83
Arrive On Green	0.03	0.58	0.00	0.05	0.60	0.60	0.17	0.00	0.00	0.05	0.05	0.05
Sat Flow, veh/h	1795	3582	1598	1795	3187	401	3591	0	1598	996	854	1551
Grp Volume(v), veh/h	29	545	0	65	297	300	576	0	0	52	0	12
Grp Sat Flow(s),veh/h/n	1795	1791	1598	1795	1791	1797	1795	0	1598	1850	0	1551
Q Serve(g_s), s	1.8	8.4	0.0	4.0	8.8	8.9	17.7	0.0	0.0	3.1	0.0	0.8
Cycle Q Clear(g_c), s	1.8	8.4	0.0	4.0	8.8	8.9	17.7	0.0	0.0	3.1	0.0	0.8
Prop In Lane	1.00		1.00	1.00		0.22	1.00		1.00	0.54		1.00
Lane Grp Cap (c), veh/h	48	2088		84	1080	1084	625	0		99	0	83
V/C Ratio(X)	0.61	0.26		0.78	0.27	0.28	0.92	0.00		0.53	0.00	0.14
Avail Cap(c_a), veh/h	88	2088		88	1080	1084	625	0		372	0	312
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	0.00	0.97	0.97	0.97	0.80	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	53.9	11.5	0.0	52.8	10.6	10.6	45.5	0.0	0.0	51.6	0.0	50.6
Incr Delay (d2), s/veh	4.6	0.3	0.0	29.2	0.6	0.6	15.9	0.0	0.0	1.6	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	0.9	3.4	0.0	2.5	3.6	3.7	9.1	0.0	0.0	1.5	0.0	0.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	58.5	11.8	0.0	82.0	11.2	11.2	61.4	0.0	0.0	53.2	0.0	50.9
LnGrp LOS	E	B		F	B	B	E	A		D	A	D
Approach Vol, veh/h		574	A		662			576	A		64	
Approach Delay, s/veh		14.1			18.1			61.4			52.8	
Approach LOS		B			B			E			D	

Timer - Assigned Phs	1	2	4	5	6	8
Phs Duration (G+Y+Rc), s	9.2	69.3	10.0	7.0	71.5	23.5
Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting (Gmax), s	5.5	48.5	22.5	5.5	48.5	19.5
Max Q Clear Time (g_c+\|1), s	6.0	10.4	5.1	3.8	10.9	19.7
Green Ext Time (p_c), s	0.0	4.4	0.1	0.0	4.4	0.0

Intersection Summary

HCM 6th Ctrl Delay	31.4
HCM 6th LOS	C

Notes
User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	4	\rightarrow	\％	7		4	4	\dagger	1		$\frac{1}{*}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个4	F	\％	中 ${ }^{\text {c }}$			4	「		\uparrow	
Traffic Volume（veh／h）	6	643	354	313	588	6	230	2	936	1	0	2
Future Volume（veh／h）	6	643	354	313	588	6	230	2	936	1	0	2
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.86
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／n	1900	1900	1737	1870	1900	1900	1885	1885	1856	1870	1870	1870
Adj Flow Rate，veh／h	6	670	0	326	612	6	240	2	0	1	0	2
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	0	0	11	2	0	0	1	1	3	2	2	2
Cap，veh／h	11	1981		344	2696	26	262	2		9	0	17
Arrive On Green	0.01	0.55	0.00	0.39	1.00	1.00	0.15	0.15	0.00	0.02	0.00	0.02
Sat Flow，veh／h	1810	3610	1472	1781	3663	36	1781	15	1572	495	0	990
Grp Volume（v），veh／h	6	670	0	326	302	316	242	0	0	3	0	0
Grp Sat Flow（s），veh／h／n	1810	1805	1472	1781	1805	1894	1796	0	1572	1485	0	0
Q Serve（g＿s），s	0.5	15.4	0.0	26.6	0.0	0.0	19.9	0.0	0.0	0.3	0.0	0.0
Cycle Q Clear（g＿c），s	0.5	15.4	0.0	26.6	0.0	0.0	19.9	0.0	0.0	0.3	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.02	0.99		1.00	0.33		0.67
Lane Grp Cap（c），veh／h	11	1981		344	1328	1394	264	0		26	0	0
V／C Ratio（X）	0.56	0.34		0.95	0.23	0.23	0.92	0.00		0.11	0.00	0.00
Avail Cap（c＿a），veh／h	48	1981		487	1328	1394	281	0		218	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	0.77	0.77	0.00	1.00	1.00	1.00	0.54	0.00	0.00	1.00	0.00	0.00
Uniform Delay（d），s／veh	74.4	18.7	0.0	45.3	0.0	0.0	63.0	0.0	0.0	72.5	0.0	0.0
Incr Delay（d2），s／veh	12.6	0.4	0.0	20.1	0.4	0.4	19.6	0.0	0.0	1.4	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.3	6.5	0.0	11.9	0.1	0.1	10.6	0.0	0.0	0.1	0.0	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	86.9	19.1	0.0	65.4	0.4	0.4	82.6	0.0	0.0	74.0	0.0	0.0
LnGrp LOS	F	B		E	A	A	F	A		E	A	A
Approach Vol，veh／h		676	A		944			242	A		3	
Approach Delay，s／veh		19.7			22.8			82.6			74.0	
Approach LOS		B			C			F			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	32.0	86.3	6.1	3.9	114.4	25.6
Change Period（Y＋Rc），s	3.0	4.0	3.5	3.0	4.0	3.5
Max Green Setting（Gmax），s	41.0	49.5	22.0	4.0	86.5	23.5
Max Q Clear Time（g＿c＋｜1），s	28.6	17.4	2.3	2.5	2.0	21.9
Green Ext Time（p＿c），s	0.4	7.1	0.0	0.0	6.3	0.2

Intersection Summary

HCM 6th Ctrl Delay	29.5
HCM 6th LOS	C

Notes
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中4	P＇	\％	紡		\％	4	「	${ }^{7}$	\hat{F}	
Traffic Volume（veh／h）	155	832	593	4	1075	27	391	84	35	65	82	51
Future Volume（veh／h）	155	832	593	4	1075	27	391	84	35	65	82	51
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h	161	867	0	4	1120	28	470	0	0	68	85	53
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	2	，	4	0	4	4	6	2	3	2	0	0
Cap，veh／h	101	2198		9	1992	50	539	0		169	104	65
Arrive On Green	0.06	0.62	0.00	0.01	0.57	0.57	0.16	0.00	0.00	0.10	0.10	0.10
Sat Flow，veh／h	1781	3526	1560	1810	3483	87	3450	0	1572	1781	1090	680
Grp Volume（v），veh／h	161	867	0	4	562	586	470	0	0	68	0	138
Grp Sat Flow（s），veh／h／n	1781	1763	1560	1810	1749	1821	1725	0	1572	1781	0	1770
Q Serve（g＿s），s	8.5	18.4	0.0	0.3	30.4	30.4	20.0	0.0	0.0	5.4	0.0	11.5
Cycle Q Clear（g＿c），s	8.5	18.4	0.0	0.3	30.4	30.4	20.0	0.0	0.0	5.4	0.0	11.5
Prop In Lane	1.00		1.00	1.00		0.05	1.00		1.00	1.00		0.38
Lane Grp Cap（c），veh／h	101	2198		9	1000	1042	539	0		169	0	168
V／C Ratio（X）	1.60	0.39		0.43	0.56	0.56	0.87	0.00		0.40	0.00	0.82
Avail Cap（c＿a），veh／h	101	2198		62	1000	1042	793	0		338	0	336
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	70.7	14.1	0.0	74.4	20.2	20.2	61.8	0.0	0.0	63.9	0.0	66.6
Incr Delay（d2），s／veh	309.2	0.5	0.0	28.7	2.3	2.2	7.3	0.0	0.0	1.5	0.0	9.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	12.6	7.5	0.0	0.2	12.8	13.3	9.4	0.0	0.0	2.5	0.0	5.7
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	379.9	14.6	0.0	103.1	22.5	22.4	69.1	0.0	0.0	65.4	0.0	76.0
LnGrp LOS	F	B		F	C	C	E	A		E	A	E
Approach Vol，veh／h		1028	A		1152			470	A		206	
Approach Delay，s／veh		71.8			22.8			69.1			72.5	
Approach LOS		E			C			E			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	5.3	98.0	27.9	13.0	90.3	18.8
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	5.1	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋11），s	2.3	20.4	22.0	10.5	32.4	13.5
Green Ext Time（p＿c），s	0.0	7.6	1.5	0.0	8.6	0.8

Intersection Summary

HCM 6th Ctrl Delay	51.6
HCM 6th LOS	D

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

\rightarrow	7	7		4	1
Movement EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations 中	「	${ }^{4}$	中	年植	
Traffic Volume（veh／h） 224	264	42	296	412	34
Future Volume（veh／h） 224	264	42	296	412	34
Initial Q $(Q b)$ ，veh 0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	0.97	1.00		1.00	1.00
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach No			No	No	
Adj Sat Flow，veh／h／ln 1885	1885	1900	1900	1885	1900
Adj Flow Rate，veh／h 238	281	45	315	472	0
Peak Hour Factor 0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh，\％ 1	1	0	0	1	0
Cap，veh／h 606	498	57	912	892	400
Arrive On Green 0.32	0.32	0.03	0.48	0.25	0.00
Sat Flow，veh／h 1885	1549	1810	1900	3591	1610
Grp Volume（v），veh／h 238	281	45	315	472	0
Grp Sat Flow（s），veh／h／ln1885	1549	1810	1900	1795	1610
Q Serve（g＿s），s 2.7	4.2	0.7	2.9	3.1	0.0
Cycle Q Clear（g＿c），s 2.7	4.2	0.7	2.9	3.1	0.0
Prop In Lane	1.00	1.00		1.00	1.00
Lane Grp Cap（c），veh／h 606	498	57	912	892	400
V／C Ratio（X） 0.39	0.56	0.78	0.35	0.53	0.00
Avail Cap（c＿a），veh／h 2047	1681	1965	2063	3898	1748
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）$\quad 1.00$	1.00	1.00	1.00	1.00	0.00
Uniform Delay（d），s／veh 7.3	7.8	13.3	4.5	9.0	0.0
Incr Delay（d2），s／veh 0.4	1.0	20.4	0.2	0.5	0.0
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（ 50% ），veh／110．8	1.0	0.5	0.4	0.8	0.0
Unsig．Movement Delay，s／veh					
LnGrp Delay（d），s／veh 7.7	8.8	33.7	4.7	9.5	0.0
LnGrp LOS A	A	C	A	A	A
Approach Vol，veh／h 519			360	472	
Approach Delay，s／veh 8.3			8.3	9.5	
Approach LOS A			A	A	
Timer－Assigned Phs 1	2		4		6
Phs Duration（ $G+Y+R \mathrm{c}$ ），s4．4	12.9		10.4		17.3
Change Period（Y＋Rc），s 3.5	4.0		3.5		4.0
Max Green Setting（Gmax）．，\＄	30.0		30.0		30.0
Max Q Clear Time（g＿c＋1退，\％	6.2		5.1		4.9
Green Ext Time（p＿c），s 0.1	2.5		1.7		1.8
Intersection Summary					
HCM 6th Ctrl Delay 8．7					
HCM 6th LOS		A			

Notes
User approved volume balancing among the lanes for turning movement．

Intersection	
Intersection Delay, s/veh	10.9
Intersection LOS	B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			4	「'		¢			*	
Traffic Vol, veh/h	6	92	0	5	26	332	0	1	7	247	0	4
Future Vol, veh/h	6	92	0	5	26	332	0	1	7	247	0	4
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, \%	2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow	6	96	0	5	27	346	0	1	7	257	0	4
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	9.2			11				8.3		11.5		
HCM LOS	A			B				A		B		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	6%	16%	0%	98%
Vol Thru, \%	12%	94%	84%	0%	0%
Vol Right, \%	88%	0%	0%	100%	2%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	8	98	31	332	251
LT Vol	0	6	5	0	247
Through Vol	1	92	26	0	0
RT Vol	7	0	0	332	4
Lane Flow Rate	8	102	32	346	261
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.012	0.148	0.049	0.449	0.378
Departure Headway (Hd)	5.219	5.212	5.464	4.677	5.21
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	690	682	653	764	685
Service Time	3.219	3.291	3.22	2.433	3.282
HCM Lane V/C Ratio	0.012	0.15	0.049	0.453	0.381
HCM Control Delay	8.3	9.2	8.5	11.2	11.5
HCM Lane LOS	A	A	A	B	B
HCM 95th-tile Q	0	0.5	0.2	2.3	1.8

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SB	SBR
Lane Configurations	${ }^{*}$	中 ${ }^{\text {a }}$		${ }^{4}$	中t		\％	\uparrow	「		\dagger	
Traffic Volume（veh／h）	1	339	372	135	543	5	608	5	86	0	9	3
Future Volume（veh／h）	1	339	372	135	543	5	608	5	86	0	9	3
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.97	1.00		0.96	1.00		0.98	1.00		0.92
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1700	1687	1687	1634	1687	1687	1856	1900	1856	1900	1900	1900
Adj Flow Rate，veh／h	1	365	400	145	584	5	658	0	92	0	10	3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％	0		1	5	1	1	3	0	3	0	0	0
Cap，veh／h	2	597	517	178	1582	14	874	0	380	0	22	7
Arrive On Green	0.00	0.37	0.37	0.11	0.49	0.49	0.25	0.00	0.25	0.00	0.02	0.02
Sat Flow，veh／h	1619	1602	1386	1556	3255	28	3534	0	1536	0	1370	411
Grp Volume（v），veh／h	1	365	400	145	287	302	658	0	92	0	0	13
Grp Sat Flow（s），veh／h／n1	1619	1602	1386	1556	1602	1681	1767	0	1536	0	0	1781
Q Serve（g＿s），s	0.0	13.7	18.9	6.7	8.3	8.3	12.8	0.0	3.6	0.0	0.0	0.5
Cycle Q Clear（g＿c），s	0.0	13.7	18.9	6.7	8.3	8.3	12.8	0.0	3.6	0.0	0.0	0.5
Prop In Lane	1.00		1.00	1.00		0.02	1.00		1.00	0.00		0.23
Lane Grp Cap（c），veh／h	2	597	517	178	779	817	874	0	380	－	0	28
V／C Ratio（X）	0.46	0.61	0.77	0.82	0.37	0.37	0.75	0.00	0.24	0.00	0.00	0.46
Avail Cap（c＿a），veh／h	699	692	599	672	779	817	1908	0	830	0	0	481
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00	1.00
Uniform Delay（d），s／veh	37.0	18.9	20.5	32.0	11.9	11.9	25.8	0.0	22.3	0.0	0.0	36.1
Incr Delay（d2），s／veh	46.8	3.7	9.4	3.4	1.1	1.0	1.3	0.0	0.3	0.0	0.0	13.5
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（ 50% ），veh／／10．0		5.2	6.9	2.6	2.8	3.0	5.3	0.0	1.3	0.0	0.0	0.3
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh LnGrp LOS	83.7	22.6	29.9	35.5	13.0	12.9	27.1	0.0	22.6	0.0	0.0	49.6
	F	C	C	D	B	B	C	A	C	A	A	D
Approach Vol，veh／h		766			734			750			13	
Approach Delay，s／veh		26.5			17.4			26.6			49.6	
Approach LOS		C			B			C			D	

Timer－Assigned Phs	1	2	4	5	6

Intersection Summary

HCM 6th Ctrl Delay	23.7
HCM 6th LOS	C

Notes
User approved volume balancing among the lanes for turning movement．

Notes
User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	F			\uparrow	「	${ }^{7}$	浐		\％	中蚛	F
Traffic Volume（veh／h）	217	37	18	22	80	168	37	663	21	128	672	335
Future Volume（veh／h）	217	37	18	22	80	168	37	663	21	128	672	335
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.93	1.00		0.93	1.00		0.96	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h	228	39	19	23	84	177	39	698	22	135	707	353
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	1	1	1	0	0	0	1	1	1	1	1	1
Cap，veh／h	553	185	90	63	229	232	53	1904	60	179	2277	691
Arrive On Green	0.16	0.16	0.16	0.16	0.16	0.16	0.03	0.37	0.37	0.10	0.44	0.44
Sat Flow，veh／h	3483	1165	568	404	1476	1496	1795	5118	161	1795	5147	1563
Grp Volume（v），veh／h	228	0	58	107	0	177	39	467	253	135	707	353
Grp Sat Flow（s），veh／h／n	1742	0	1733	1880	0	1496	1795	1716	1848	1795	1716	1563
Q Serve（g＿s），s	4.6	0.0	2.3	3.9	0.0	8.8	1.7	7.7	7.7	5.7	6.9	12.6
Cycle Q Clear（g＿c），s	4.6	0.0	2.3	3.9	0.0	8.8	1.7	7.7	7.7	5.7	6.9	12.6
Prop In Lane	1.00		0.33	0.21		1.00	1.00		0.09	1.00		1.00
Lane Grp Cap（c），veh／h	553	0	275	292	0	232	53	1277	688	179	2277	691
V／C Ratio（X）	0.41	0.00	0.21	0.37	0.00	0.76	0.74	0.37	0.37	0.75	0.31	0.51
Avail Cap（c＿a），veh／h	945	0	470	510	0	406	371	2012	1084	603	3018	917
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	29.3	0.0	28.3	29.3	0.0	31.3	37.3	17.7	17.7	33.9	14.0	15.5
Incr Delay（d2），s／veh	1.8	0.0	1.4	1.1	0.0	7.2	24.8	0.8	1.5	8.8	0.4	2.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	2.0	0.0	1.0	1.8	0.0	3.6	1.1	3.0	3.3	2.8	2.5	4.6
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	31.1	0.0	29.7	30.4	0.0	38.5	62.1	18.5	19.2	42.7	14.3	18.2
LnGrp LOS	C	A	C	C	A	D	E	B	B	D	B	B
Approach Vol，veh／h		286			284			759			1195	
Approach Delay，s／veh		30.8			35.4			21.0			18.7	
Approach LOS		C			D			C			B	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	6.3	38.8	16.0	11.7	33.4	16.3
Change Period（Y＋Rc），s	4.0	4.6	4.0	4.0	4.6	4.0
Max Green Setting（Gmax），s	16.0	45.4	21.0	26.0	45.4	21.0
Max Q Clear Time（g＿c＋11），s	3.7	14.6	10.8	7.7	9.7	6.6
Green Ext Time（p＿c），s	0.1	19.6	1.3	0.5	15.5	2.5

Intersection Summary

HCM 6th Ctrl Delay	22.6
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SB	SBT	SBR
Lane Configurations	\%	* ${ }^{\text {¢ }}$		7	* 1			蚛t		${ }^{17}$	4	${ }^{7}$
Traffic Volume (veh/h)	191	123	44	124	240	110	49	448	36	110	413	60
Future Volume (veh/h)	191	123	44	124	240	110	49	448	36	110	413	60
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.97	1.00		0.97	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/n	1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	123	231	45	128	247	113	51	462	37	113	426	62
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	1	1	1	0	0	0	1	1	1	1	1	1
Cap, veh/h	331	564	107	381	521	229	66	1321	104	266	1117	484
rrive On Green	0.18	0.18	0.18	0.21	0.21	0.21	0.04	0.27	0.27	0.0	0.31	0.31
Sat Flow, veh/h	1795	3056	582	1810	2472	1087	1795	4848	383	3483	3582	1552
Grp Volume(v), veh/h	123	140	136	128	188	172	51	325	174	113	426	62
Grp Sat Flow(s),veh/h/n1	1795	1885	1753	1810	1900	1659	1795	1716	1800	1742	1791	1552
Q Serve(g_s), s	4.2	4.6	4.8	4.2	6.0	6.4	2.0	5.3	5.4	2.2	6.5	2.0
Cycle Q Clear(g_c), s	4.2	4.6	4.8	4.2	6.0	6.4	2.0	5.3	5.4	2.2	6.5	2.0
Prop In Lane	1.00		0.33	1.00		0.66	1.00		0.21	1.00		1.00
Lane Grp Cap(c), veh/h	331	348	323	381	400	350	66	935	490	266	1117	484
VIC Ratio(X)	0.37	0.40	0.42	0.34	0.47	0.49	0.77	0.35	0.35	0.42	0.38	0.13
Avail Cap(c_a), veh/h	655	688	640	660	693	605	671	2238	1174	1301	2337	1012
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	1.0	1.00	1.00
Uniform Delay (d), s/veh	24.8	25.0	25.1	23.3	24.0	24.2	33.2	20.4	20.4	30.7	18.7	17.2
Incr Delay (d2), s/veh	1.0	1.1	1.2	0.7	1.2	1.5	22.7	0.8	1.6	1.5	0.8	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In. 8		2.1	2.0	1.8	2.8	2.6	1.2	2.1	2.3	0.9	2.6	0.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh 25LnGrp LOS		26.1	26.3	24.1	25.3	25.7	55.9	21.2	22.0	32.2	19.5	17.6
		C	C	C	C	C	E	C	C	C	B	B
LnGrp LOS		399			488			550			601	
Approach Delay, s/veh		26.1			25.1			24.6			21.7	
Approach LOS		C			C			C			C	

Timer - Assigned Phs 1	2	4	5	6	8
Phs Duration (G+Y+Rc), s9.3	23.6	19.3	6.6	26.3	17.4
Change Period (Y+Rc), s 4.0	4.6	4.6	4.0	4.6	4.6
Max Green Setting (Gmaz¢., $¢$	45.4	25.4	26.0	45.4	25.4
Max Q Clear Time (g_c+\|14,2s	7.4	8.4	4.0	8.5	6.8
Green Ext Time (p_c), s 0.5	8.6	3.4	0.1	8.2	2.7

Intersection Summary

HCM 6th Ctrl Delay	24.2
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

Synchro 9 Report

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations ${ }^{\text {\％}}$	中 4	「	${ }^{4}$	性		9	4	F＇	\％	F	
Traffic Volume（veh／h）	284	138	40	491	106	183	256	48	74	179	30
Future Volume（veh／h）	284	138	40	491	106	183	256	48	74	179	30
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		0.96	1.00		0.97	1.00		0.98	1.00		0.97
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h	305	148	43	528	114	197	275	52	80	192	32
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	1	1
Cap，veh／h 19	948	406	79	869	187	258	560	464	116	313	52
Arrive On Green 0.01	0.26	0.26	0.04	0.30	0.30	0.14	0.30	0.30	0.06	0.20	0.20
Sat Flow，veh／h 1795	3582	1534	1795	2916	626	1795	1885	1560	1795	1568	261
Grp Volume（v），veh／h	305	148	43	323	319	197	275	52	80	0	224
Grp Sat Flow（s），veh／h／ln1795	1791	1534	1795	1791	1751	1795	1885	1560	1795	0	1830
Q Serve（g＿s），s 0.2	3.7	2.4	1.3	8.4	8.5	5.8	6.5	1.3	2.4	0.0	6.1
Cycle Q Clear（g＿c），s 0.2	3.7	2.4	1.3	8.4	8.5	5.8	6.5	1.3	2.4	0.0	6.1
Prop In Lane 1.00		1.00	1.00		0.36	1.00		1.00	1.00		0.14
Lane Grp Cap（c），veh／h 19	948	406	79	534	522	258	560	464	116	0	365
V／C Ratio（X） 0.43	0.32	0.36	0.55	0.61	0.61	0.76	0.49	0.11	0.69	0.00	0.61
Avail Cap（c＿a），veh／h 856	2954	1265	856	1477	1444	856	1037	858	856	0	1006
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l） 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh 26.8	16.1	5.0	25.6	16.4	16.4	22.5	15.8	13.9	25.0	0.0	19.9
Incr Delay（d2），s／veh 14.5	0.2	0.7	5.8	1.3	1.4	1.8	0.2	0.0	8.6	0.0	2.0
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／／10． 2	1.4	1.4	0.6	3.3	3.2	2.4	2.6	0.4	1.2	0.0	2.6
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 41.4	16.4	5.7	31.3	17.7	17.8	24.2	16.0	14.0	33.6	0.0	21.9
LnGrp LOS	B	A	C	B	B	C	B	B	C	A	C
Approach Vol，veh／h	461			685			524			304	
Approach Delay，s／veh	13.4			18.6			18.9			25.0	
Approach LOS	B			B			B			C	

Timer－Assigned Phs	2	3	4	5	6	7	8
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s4．6	21.3	7.5	21.2	6.4	19.4	12.8	15.9
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s 4.0	5.0	4.0	5.0	4.0	5.0	5.0	＊5
Max Green Setting（Gmadt．， C	45.0	26.0	30.0	26.0	45.0	26.0	＊ 30
Max Q Clear Time（ g c $\mathrm{C} \mid 12, \mathrm{~L}_{5}$	10.5	4.4	8.5	3.3	5.7	7.8	8.1
Green Ext Time（p＿c），s 0.0	5.5	0.2	0.6	0.1	3.2	0.1	1.6

Intersection Summary
HCM 6th Ctrl Delay 18.5
HCM 6th LOS B
Notes
＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SB	SBR
Lane Configurations	${ }^{4}$	中 ${ }^{\text {c }}$		\%	中t		\%	F		${ }^{4}$	F	
Traffic Volume (veh/h)	31	250	88	52	392	48	146	355	47	66	236	57
Future Volume (veh/h)	31	250	88	52	392	48	146	355	47	66	236	57
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.94	1.00		0.94	1.00		0.98	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	33	263	93	55	413	51	154	374	49	69	248	60
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	53	616	211	76	804	98	205	537	70	90	387	94
Arrive On Green	0.03	0.24	0.24	0.04	0.25	0.25	0.11	0.33	0.33	0.05	0.26	0.26
Sat Flow, veh/h	1810	2596	888	1810	3212	393	1810	1640	215	1810	1469	355
Grp Volume(v), veh/h	33	180	176	55	231	233	154	0	423	69	0	308
Grp Sat Flow(s),veh/h/n1	1810	1805	1679	1810	1805	1801	1810	0	1855	1810	0	1824
Q Serve(g_s), s	0.9	4.4	4.7	1.6	5.8	5.9	4.3	0.0	10.4	2.0	0.0	7.8
Cycle Q Clear(g_c), s	0.9	4.4	4.7	1.6	5.8	5.9	4.3	0.0	10.4	2.0	0.0	7.8
Prop In Lane	1.00		0.53	1.00		0.22	1.00		0.12	1.00		0.19
Lane Grp Cap(c), veh/h	53	428	398	76	452	451	205	0	608	90	0	481
V/C Ratio(X)	0.63	0.42	0.44	0.72	0.51	0.52	0.75	0.00	0.70	0.77	0.00	0.64
Avail Cap(c_a), veh/h	708	1223	1137	708	1223	1220	708	0	902	708	0	887
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	25.2	16.9	17.0	24.8	16.9	16.9	22.5	0.0	15.3	24.6	0.0	17.1
Incr Delay (d2), s/veh	8.7	0.2	0.3	9.2	1.1	1.1	5.4	0.0	1.1	13.0	0.0	1.7
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50%),veh/110.5		1.7	1.6	0.8	2.3	2.3	2.0	0.0	4.0	1.1	0.0	3.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh LnGrp LOS	33.9	17.2	17.3	34.0	18.0	18.0	28.0	0.0	16.4	37.6	0.0	18.8
	C	B	B	C	B	B	C	A	B	D	A	B
Approach Vol, veh/h		389			519			577			377	
Approach Delay, s/veh		18.7			19.7			19.5			22.2	
Approach LOS		B			B			B			C	

Timer - Assigned Phs	2	3	4	5	6	7	8
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s6.7	16.9	7.1	21.7	6.0	17.6	10.4	18.3
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmaz),5	35.5	20.5	25.5	20.5	35.5	20.5	25.5
	6.7	4.0	12.4	2.9	7.9	6.3	9.8
Green Ext Time (p_c), s 0.1	1.4	0.1	1.8	0.0	3.5	0.3	1.9

Intersection Summary
HCM 6th Ctrl Delay 19.9

HCM 6th LOS B
Notes
User approved pedestrian interval to be less than phase max green.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	中 ${ }^{\text {a }}$		${ }^{7}$	中 ${ }^{\text {P }}$		\%	F		${ }^{7}$	F	
Traffic Volume (veh/h) 13	256	54	63	418	119	42	117	53	66	87	42
Future Volume (veh/h) 13	256	54	63	418	119	42	117	53	66	87	42
Initial Q $(Q b)$, veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.91	1.00		0.92	1.00		0.94	1.00		0.97
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h 14	269	57	66	440	125	44	123	56	69	92	44
Peak Hour Factor 0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \% 0	0	0	0	0	0	1	1	1	0	0	0
Cap, veh/h 26	926	191	89	958	269	67	287	131	92	303	145
Arrive On Green 0.01	0.32	0.32	0.05	0.35	0.35	0.04	0.24	0.24	0.05	0.25	0.25
Sat Flow, veh/h 1810	2920	603	1810	2722	763	1795	1200	546	1810	1199	574
Grp Volume(v), veh/h 14	164	162	66	290	275	44	0	179	69	0	136
Grp Sat Flow(s),veh/h/ln1810	1805	1718	1810	1805	1679	1795	0	1747	1810	0	1773
Q Serve(g_s), s 0.4	3.2	3.3	1.7	5.8	5.9	1.1	0.0	4.0	1.8	0.0	2.9
Cycle Q Clear(g_c), s 0.4	3.2	3.3	1.7	5.8	5.9	1.1	0.0	4.0	1.8	0.0	2.9
Prop In Lane 1.00		0.35	1.00		0.45	1.00		0.31	1.00		0.32
Lane Grp Cap(c), veh/h 26	572	545	89	636	591	67	0	418	92	0	448
V/C Ratio(X) 0.54	0.29	0.30	0.74	0.46	0.47	0.66	0.00	0.43	0.75	0.00	0.30
Avail Cap(c_a), veh/h 622	1783	1697	622	1783	1659	810	0	600	816	0	609
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) $\quad 1.00$	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 22.8	11.9	12.0	21.8	11.6	11.7	22.1	0.0	15.0	21.8	0.0	14.1
Incr Delay (d2), s/veh 16.7	0.3	0.3	11.3	0.5	0.6	10.4	0.0	0.7	11.6	0.0	0.4
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/1r0.3	1.1	1.1	0.9	2.0	1.9	0.6	0.0	1.5	1.0	0.0	1.1
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 39.5	12.2	12.3	33.1	12.2	12.3	32.6	0.0	15.7	33.4	0.0	14.5
LnGrp LOS D	B	B	C	B	B	C	A	B	C	A	B
Approach Vol, veh/h	340			631			223			205	
Approach Delay, s/veh	13.4			14.4			19.0			20.8	
Approach LOS	B			B			B			C	
Timer - Assigned Phs 1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s6.4	15.1	6.3	18.8	5.7	15.8	4.7	20.4				
Change Period (Y+Rc), s 4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0				
Max Green Setting (Gmaz),.	16.0	16.0	46.0	21.0	16.0	16.0	46.0				
	6.0	3.7	5.3	3.1	4.9	2.4	7.9				
Green Ext Time (p_c), s 0.1	0.7	0.1	2.1	0.1	0.5	0.0	4.0				
Intersection Summary											
HCM 6th Ctrl Delay 15.8											
HCM 6th LOS		B									

Notes
User approved pedestrian interval to be less than phase max green.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NB	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	中 ${ }^{\text {P }}$		\%	\uparrow	「		${ }_{*}$	F'		\uparrow	7
Traffic Volume (veh/h)	14	353	73	84	405	11	118	3	89	19	3	36
Future Volume (veh/h)	14	353	73	84	405	11	118	3	89	19	3	36
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	1.00		0.96	1.00		0.97	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	. 00
Work Zone On Approac		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	14	364	75	87	418	11	122	3	92	20	3	37
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	0	0	0	0	0	0	1	1	1	0	0	0
Cap, veh/h	26	687	139	115	556	450	149	2	651	141	12	672
Arrive On Green	0.01	0.23	0.23	0.06	0.29	0.29	0.42	0.42	0.42	0.42	0.42	0.42
Sat Flow, veh/h	1810	2956	600	1810	1900	1540	0	5	1553	0	29	1603
Grp Volume(v), veh/h	14	220	219	87	418	11	125	0	92	23	0	37
Grp Sat Flow(s),veh/h/lı	1810	1805	1751	1810	1900	1540	5	0	1553	29	0	1603
Q Serve(g_s), s	0.4	5.1	5.2	2.3	9.5	0.2	0.0	0.0	1.7	0.0	0.0	0.7
Cycle Q Clear(g_c), s	0.4	5.1	5.2	2.3	9.5	0.2	20.0	0.0	1.7	20.0	0.0	0.7
Prop In Lane	1.00		0.34	1.00		1.00	0.98		1.00	0.87		1.00
Lane Grp Cap(c), veh/h	26	419	407	115	556	450	151	0	651	153	0	672
V/C Ratio(X)	0.54	0.52	0.54	0.75	0.75	0.02	0.83	0.00	0.14	0.15	0.00	0.06
Avail Cap(c_a), veh/h	986	1698	1647	967	1787	1448	151	0	651	153	0	672
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
		16.0	16.1	22.0	15.3	12.0	23.6	0.0	8.6	13.6	0.0	8.2
Uniform Delay (d), s/veh 23.4 Incr Delay (d2), s/veh 16.8		0.4	0.4	9.5	0.8	0.0	28.7	0.0	0.0	0.2	0.0	0.0
Initial Q Delay(d3),s/veh 0.0 \%ile BackOfQ(50\%), veh//10. 3		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		1.9	1.9	1.2	3.7	0.1	2.5	0.0	0.5	0.1	0.0	0.2
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	40.1	16.4	16.5	31.5	16.1	12.0	52.2	0.0	8.6	13.7	0.0	8.3
LnGrp LOS	D	B	B	C	B	B	D	A	A	B	A	A
Approach Vol, veh/h		453			516			217			60	
Approach Delay, s/veh		17.2			18.6			33.7			10.4	
Approach LOS		B			B			C			B	

Timer - Assigned Phs	1	2	4	5	6
Phs Duration (G+Y+Rc), s7.5	16.2	24.0	4.7	19.1	24.0
Change Period (Y+Rc), s 4.5	5.1	4.0	4.0	5.1	4.0
Max Green Setting (Gmaž5,.s	44.9	20.0	26.0	44.9	20.0
Max Q Clear Time (g_c+\|14,3s	7.2	22.0	2.4	11.5	22.0
Green Ext Time (p_c), s 0.2	1.8	0.0	0.0	1.9	0.0

Intersection Summary

HCM 6th Ctrl Delay	20.3
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F		${ }^{4}$	F		${ }^{7}$	F		${ }^{7}$	p	
Traffic Volume (veh/h) 28	122	92	94	176	37	91	461	79	26	300	39
Future Volume (veh/h) 28	122	92	94	176	37	91	461	79	26	300	39
Initial Q $(Q b)$, veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.92	1.00		0.94	1.00		0.95	1.00		0.96
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1885	1885	1885	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h 29	127	96	98	183	39	95	480	82	27	312	41
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \% 1	1	1	0	0	0	1	1	1	0	0	0
Cap, veh/h 57	213	161	131	395	84	127	603	103	55	568	75
Arrive On Green 0.03	0.22	0.22	0.07	0.26	0.26	0.07	0.39	0.39	0.03	0.35	0.35
Sat Flow, veh/h 1795	956	723	1810	1498	319	1795	1556	266	1810	1635	215
Grp Volume(v), veh/h 29	0	223	98	0	222	95	0	562	27	0	353
Grp Sat Flow(s),veh/h/ln1795	0	1679	1810	0	1817	1795	0	1822	1810	0	1850
Q Serve(g_s), s 0.9	0.0	7.1	3.2	0.0	6.1	3.1	0.0	16.2	0.9	0.0	9.1
Cycle Q Clear(g_c), s 0.9	0.0	7.1	3.2	0.0	6.1	3.1	0.0	16.2	0.9	0.0	9.1
Prop In Lane 1.00		0.43	1.00		0.18	1.00		0.15	1.00		0.12
Lane Grp Cap(c), veh/h 57	0	375	131	0	479	127	0	706	55	0	643
V/C Ratio(X) 0.50	0.00	0.60	0.75	0.00	0.46	0.75	0.00	0.80	0.49	0.00	0.55
Avail Cap(c_a), veh/h 802	0	991	808	0	1072	802	0	1075	808	0	1091
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) $\quad 1.00$	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 28.3	0.0	20.7	27.0	0.0	18.3	27.1	0.0	16.1	28.3	0.0	15.6
Incr Delay (d2), s/veh 6.7	0.0	1.5	8.1	0.0	0.7	8.6	0.0	3.3	6.7	0.0	1.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/10.5	0.0	2.8	1.6	0.0	2.5	1.5	0.0	6.5	0.5	0.0	3.6
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 34.9	0.0	22.2	35.1	0.0	19.0	35.6	0.0	19.3	35.0	0.0	16.7
LnGrp LOS C	A	C	D	A	B	D	A	B	D	A	B
Approach Vol, veh/h	252			320			657			380	
Approach Delay, s/veh	23.6			24.0			21.7			18.0	
Approach LOS	C			C			C			B	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s7.8	18.2	7.7	25.6	5.4	20.6	5.3	28.0	
Change Period (Y+Rc), s 3.5	5.0	3.5	5.0	3.5	5.0	3.5	5.0	
Max Green Setting (Gma\&Q, 5	35.0	26.5	35.0	26.5	35.0	26.5	35.0	
Max Q Clear Time (g_c+\|155,2s	9.1	5.1	11.1	2.9	8.1	2.9	18.2	
Green Ext Time (p_c), s	0.2	1.5	0.2	3.1	0.0	1.4	0.0	4.8

Intersection Summary
HCM 6th Ctrl Delay 21.6
HCM 6th LOS

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	T'		4	${ }^{7}$		\pm			¢	
Traffic Vol, veh/h 26	178	35	29	175	41	49	153	37	30	75	47
Future Vol, veh/h 26	178	35	29	175	41	49	153	37	30	75	47
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \% 0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow 28	191	38	31	188	44	53	165	40	32	81	51
Number of Lanes 0	1	1	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			2			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			2			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			2		
HCM Control Delay 12.1			12			12.5			10.8		
HCM LOS B			B			B			B		

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	中	T'	\%	+	${ }^{1}$	${ }^{7}$	p		${ }^{7}$	p	
Traffic Volume (veh/h) 76	149	105	25	338	105	110	57	12	107	66	95
Future Volume (veh/h) 76	149	105	25	338	105	110	57	12	107	66	95
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00		0.91	1.00		0.91
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1885	1885	1885	1885	1885	1885	1900	1900	1900	1885	1885	1885
Adj Flow Rate, veh/h 84	166	0	28	376	0	122	63	13	119	73	106
Peak Hour Factor 0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, \% 1	1	1	1	1	1	0	0	0	1	1	1
Cap, veh/h 124	601		58	532		160	347	72	155	150	218
Arrive On Green 0.07	0.32	0.00	0.03	0.28	0.00	0.09	0.23	0.23	0.09	0.23	0.23
Sat Flow, veh/h 1795	1885	1598	1795	1885	1598	1810	1499	309	1795	655	951
Grp Volume(v), veh/h 84	166	0	28	376	0	122	0	76	119	0	179
Grp Sat Flow(s),veh/h/ln1795	1885	1598	1795	1885	1598	1810	0	1808	1795	0	1605
Q Serve(g_s), s 2.3	3.3	0.0	0.8	8.9	0.0	3.3	0.0	1.7	3.2	0.0	4.8
Cycle Q Clear(g_c), s 2.3	3.3	0.0	0.8	8.9	0.0	3.3	0.0	1.7	3.2	0.0	4.8
Prop In Lane 1.00		1.00	1.00		1.00	1.00		0.17	1.00		0.59
Lane Grp Cap(c), veh/h 124	601		58	532		160	0	419	155	0	369
V/C Ratio(X) 0.68	0.28		0.48	0.71		0.76	0.00	0.18	0.77	0.00	0.49
Avail Cap(c_a), veh/h 576	1341		576	1341		580	0	761	576	0	676
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 22.7	12.7	0.0	23.7	16.1	0.0	22.2	0.0	15.4	22.3	0.0	16.7
Incr Delay (d2), s/veh 4.8	0.2	0.0	4.6	1.7	0.0	2.9	0.0	0.2	3.0	0.0	0.7
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lı1. 1	1.3	0.0	0.4	3.6	0.0	1.4	0.0	0.7	1.4	0.0	1.6
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 27.5	12.9	0.0	28.3	17.8	0.0	25.1	0.0	15.5	25.3	0.0	17.4
LnGrp LOS C	B		C	B		C	A	B	C	A	B
Approach Vol, veh/h	250	A		404	A		198			298	
Approach Delay, s/veh	17.8			18.5			21.4			20.5	
Approach LOS	B			B			C			C	

Timer - Assigned Phs 1	2	3	4	5	6	7	
Phs Duration (G+Y+Rc), s5.6	20.4	8.4	15.5	7.4	18.6	8.3	15.6
Change Period (Y+Rc), s 4.0	4.5	4.0	4.0	4.0	4.5	4.0	4.0
Max Green Setting (Gmakis, $\mathrm{S}_{\text {S }}$	35.5	16.0	21.0	16.0	35.5	16.0	21.0
Max Q Clear Time (g_c+\| $12, \infty$	5.3	5.3	6.8	4.3	10.9	5.2	3.7
Green Ext Time (p_c), s 0.0	1.0	0.1	0.7	0.1	2.3	0.1	0.2

Intersection Summary
HCM 6th Ctrl Delay 19.4

```
HCM 6th LOS B
```

Notes
Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	中4	「	7	中 ${ }^{\text {c }}$		\％	\uparrow	F		\uparrow	F
Traffic Volume（veh／h）	12	964	1085	72	408	35	485	19	31	53	31	25
Future Volume（veh／h）	12	964	1085	72	408	35	485	19	31	53	31	25
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	12	994	0	74	421	36	514	0	0	55	32	26
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	0	0	0
Cap，veh／h	25	2060		88	2032	173	577	0		84	49	113
Arrive On Green	0.01	0.58	0.00	0.05	0.61	0.61	0.16	0.00	0.00	0.07	0.07	0.07
Sat Flow，veh／h	1795	3582	1598	1795	3331	283	3591	0	1598	1164	677	1562
Grp Volume（v），veh／h	12	994	0	74	225	232	514	0	0	87	0	26
Grp Sat Flow（s），veh／h／n	1795	1791	1598	1795	1791	1823	1795	0	1598	1842	0	1562
Q Serve（g＿s），s	0.7	18.3	0.0	4.6	6.3	6.4	15.7	0.0	0.0	5.2	0.0	1.8
Cycle Q Clear（g＿c），s	0.7	18.3	0.0	4.6	6.3	6.4	15.7	0.0	0.0	5.2	0.0	1.8
Prop In Lane	1.00		1.00	1.00		0.16	1.00		1.00	0.63		1.00
Lane Grp Cap（c），veh／h	25	2060		88	1093	1112	577	0		133	0	113
V／C Ratio（X）	0.48	0.48		0.84	0.21	0.21	0.89	0.00		0.65	0.00	0.23
Avail Cap（c＿a），veh／h	88	2060		88	1093	1112	625	0		370	0	314
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	0.98	0.98	0.98	0.92	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	54.8	14.0	0.0	52.8	9.7	9.7	46.0	0.0	0.0	50.6	0.0	49.0
Incr Delay（d2），s／veh	5.2	0.8	0.0	45.3	0.4	0.4	12.5	0.0	0.0	2.0	0.0	0.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	0.4	7.5	0.0	3.2	2.6	2.6	7.9	0.0	0.0	2.5	0.0	0.7
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	60.0	14.8	0.0	98.1	10.2	10.2	58.5	0.0	0.0	52.6	0.0	49.4
LnGrp LOS	E	B		F	B	B	E	A		D	A	D
Approach Vol，veh／h		1006	A		531			514	A		113	
Approach Delay，s／veh		15.4			22.4			58.5			51.9	
Approach LOS		B			C			E			D	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	9.5	68.4	12.1	5.6	72.3	22.0
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting（Gmax），s	5.5	48.5	22.5	5.5	48.5	19.5
Max Q Clear Time（g＿c＋｜1），s	6.6	20.3	7.2	2.7	8.4	17.7
Green Ext Time（p＿c），s	0.0	8.7	0.3	0.0	3.2	0.3

Intersection Summary
HCM 6th Ctrl Delay 29.2

HCM 6th LOS
C
Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

	4	\rightarrow	7	7	-		4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	种	F	\%	中 ${ }^{\text {a }}$			\uparrow	${ }^{7}$		\uparrow	
Traffic Volume (veh/h)	8	726	442	388	639	2	198	1	684	5	5	9
Future Volume (veh/h)	8	726	442	388	639	2	198	1	684	5	5	9
Initial $\mathrm{Q}(\mathrm{Qb})$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.87
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1737	1870	1900	1900	1885	1885	1856	1870	1870	1870
Adj Flow Rate, veh/h	8	756	0	404	666	2	206	1	0	5	5	9
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	0	0	11	2	0	0	1		3	2	2	2
Cap, veh/h	14	1857		419	2741	8	230	1		12	12	21
Arrive On Green	0.01	0.51	0.00	0.47	1.00	1.00	0.13	0.13	0.00	0.03	0.03	0.03
Sat Flow, veh/h	1810	3610	1472	1781	3692	11	1787	,	1572	416	416	750
Grp Volume(v), veh/h	8	756	0	404	326	342	207	0	0	19	0	0
Grp Sat Flow(s),veh/h/n	1810	1805	1472	1781	1805	1898	1796	0	1572	1582	0	0
Q Serve(g_s), s	0.7	19.3	0.0	32.9	0.0	0.0	17.0	0.0	0.0	1.8	0.0	0.0
Cycle Q Clear(g_c), s	0.7	19.3	0.0	32.9	0.0	0.0	17.0	0.0	0.0	1.8	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.26		0.47
Lane Grp Cap (c), veh/h	14	1857		419	1340	1409	231	0		44	0	0
V/C Ratio(X)	0.58	0.41		0.96	0.24	0.24	0.89	0.00		0.43	0.00	0.00
Avail Cap(c_a), veh/h	48	1857		487	1340	1409	281	0		232	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	0.65	0.65	0.00	1.00	1.00	1.00	0.68	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	74.2	22.4	0.0	39.1	0.0	0.0	64.3	0.0	0.0	71.7	0.0	0.0
Incr Delay (d2), s/veh	9.2	0.4	0.0	28.4	0.4	0.4	17.0	0.0	0.0	4.8	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	0.3	8.3	0.0	15.0	0.2	0.2	9.0	0.0	0.0	0.8	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	83.4	22.8	0.0	67.5	0.4	0.4	81.3	0.0	0.0	76.6	0.0	0.0
LnGrp LOS	F	C		E	A	A	F	A		E	A	A
Approach Vol, veh/h		764	A		1072			207	A		19	
Approach Delay, s/veh		23.4			25.7			81.3			76.6	
Approach LOS		C			C			F			E	

Timer - Assigned Phs	1	2	4	5	6	8
Phs Duration (G+Y+Rc), s	38.3	81.2	7.7	4.1	115.4	22.8
Change Period (Y+Rc), s	3.0	4.0	3.5	3.0	4.0	3.5
Max Green Setting (Gmax), s	41.0	49.5	22.0	4.0	86.5	23.5
Max Q Clear Time (g_c+\|1), s	34.9	21.3	3.8	2.7	2.0	19.0
Green Ext Time (p_c), s	0.4	7.9	0.0	0.0	6.9	0.3

Intersection Summary

HCM 6th Ctrl Delay	30.9
HCM 6th LOS	C

Notes
Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	中4	F	\％	中t		\％	\uparrow	「	\％	F	
Traffic Volume（veh／h）	49	972	402		1042	13	483	14	48	114	145	92
Future Volume（veh／h）	49	972	402	3	1042	13	483	14	48	114	145	92
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h	51	1012	0	3	1085	14	514	0	0	119	151	96
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	2	3	4	0	4	4	6	2	3	2	0	0
Cap，veh／h	65	1942		7	1831	24	583	0		278	169	108
Arrive On Green	0.05	0.73	0.00	0.00	0.52	0.52	0.17	0.00	0.00	0.16	0.16	0.16
Sat Flow，veh／h	1781	3526	1560	1810	3534	46	3450	0	1572	1781	1083	688
Grp Volume（v），veh／h	51	1012	0	3	537	562	514	0	0	119	0	247
Grp Sat Flow（s），veh／h／n	1781	1763	1560	1810	1749	1830	1725	0	1572	1781	0	1771
Q Serve（g＿s），s	4.2	18.6	0.0	0.2	32.0	32.0	21.8	0.0	0.0	9.1	0.0	20.5
Cycle Q Clear（g＿c），s	4.2	18.6	0.0	0.2	32.0	32.0	21.8	0.0	0.0	9.1	0.0	20.5
Prop In Lane	1.00		1.00	1.00		0.02	1.00		1.00	1.00		0.39
Lane Grp Cap（c），veh／h	65	1942		7	906	948	583	0		278	0	277
V／C Ratio（X）	0.78	0.52		0.42	0.59	0.59	0.88	0.00		0.43	0.00	0.89
Avail Cap（c＿a），veh／h	101	1942		62	906	948	793	0		338	0	337
HCM Platoon Ratio	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	70.7	11.5	0.0	74.5	25.1	25.1	60.9	0.0	0.0	57.2	0.0	62.0
Incr Delay（d2），s／veh	18.4	1.0	0.0	35.4	2.8	2.7	8.8	0.0	0.0	1.0	0.0	21.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	2.3	6.2	0.0	0.2	13.9	14.5	10.4	0.0	0.0	4.2	0.0	10.9
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	89.1	12.5	0.0	110.0	28.0	27.9	69.7	0.0	0.0	58.3	0.0	83.8
LnGrp LOS	F	B		F	C	C	E	A		E	A	F
Approach Vol，veh／h		1063	A		1102			514	A		366	
Approach Delay，s／veh		16.2			28.1			69.7			75.5	
Approach LOS		B			C			E			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	5.1	87.1	29.8	10.0	82.2	27.9
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	5.1	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋11），s	2.2	20.6	23.8	6.2	34.0	22.5
Green Ext Time（p＿c），s	0.0	9.4	1.5	0.0	8.0	0.9

Intersection Summary
HCM 6th Ctrl Delay 36.7
HCM 6th LOS
D
Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

4			4	，	$+$
Movement EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	¢中	中4	T＇	\％	「
Traffic Volume（veh／h） 332	518	445	53	612	406
Future Volume（veh／h） 332	518	445	53	612	406
Initial Q $(Q b)$ ，veh 0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00			0.98	1.00	1.00
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	No		No	
Adj Sat Flow，veh／h／ln 1885	1885	1870	1870	1885	1885
Adj Flow Rate，veh／h 342	534	459	55	631	0
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％ 1	1	2	2	1	1
Cap，veh／h 531	894	795	347	745	
Arrive On Green 0.39	0.39	0.22	0.22	0.21	0.00
Sat Flow，veh／h 1346	2357	3647	1551	3483	1598
Grp Volume（v），veh／h 462	414	459	55	631	0
Grp Sat Flow（s），veh／h／ln1818	1791	1777	1551	1742	1598
Q Serve（g＿s），s 16.5	14.6	9.2	2.3	13.9	0.0
Cycle Q Clear（g＿c），s 16.5	14.6	9.2	2.3	13.9	0.0
Prop In Lane 0.74			1.00	1.00	1.00
Lane Grp Cap（c），veh／h 718	707	795	347	745	
V／C Ratio（X） 0.64	0.59	0.58	0.16	0.85	
Avail Cap（c＿a），veh／h 718	707	795	347	906	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I） 0.10	0.10	1.00	1.00	1.00	0.00
Uniform Delay（d），s／veh 19.6	19.0	27.7	25.0	30.2	0.0
Incr Delay（d2），s／veh 0.5	0.4	3.0	1.0	6.4	0.0
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ı6．8	5.9	4.2	0.9	6.4	0.0
Unsig．Movement Delay，s／veh					
LnGrp Delay（d），s／veh 20.1	19.4	30.7	26.0	36.6	0.0
LnGrp LOS C	B	C	C	D	
Approach Vol，veh／h	876	514		631	A
Approach Delay，s／veh	19.8	30.2		36.6	
Approach LOS	B	C		D	
Timer－Assigned Phs	2		4		6
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	36.2		21.3		22.5
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	4.6		＊ 4.2		4.6
Max Green Setting（Gmax），s	27.9		＊ 21		17.9
Max Q Clear Time（g＿c＋｜1），s	18.5		15.9		11.2
Green Ext Time（p＿c），s	4.0		1.2		1.8
Intersection Summary					
HCM 6th Ctrl DelayHCM 6th LOS		27.7			
		C			

Notes
＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．
Unsignalized Delay for［SBR］is excluded from calculations of the approach delay and intersection delay．

	\rightarrow	7		4	7
Movement EB	EBT EBR	WBL	WBT	NBL	NBR
Lane Configurations	4 ${ }^{\text {T}}$	${ }^{1}$	中	- ${ }^{1}$	
Traffic Volume (veh/h) 61	611465	60	221	267	28
Future Volume (veh/h) 61	611465	60	221	267	28
Initial $Q(Q b)$, veh	00	0	0	0	0
Ped-Bike Adj(A_pbT)	0.97	1.00		1.00	1.00
Parking Bus, Adj 1.0	1.001 .00	1.00	1.00	1.00	1.00
Work Zone On Approach N	No		No	No	
Adj Sat Flow, veh/h/ln 188	18851885	1900	1900	1885	1900
Adj Flow Rate, veh/h 65	650495	64	235	312	0
Peak Hour Factor 0.9	0.940 .94	0.94	0.94	0.94	0.94
Percent Heavy Veh, \%	11	0	0	1	0
Cap, veh/h 93	936772	81	1207	584	262
Arrive On Green 0.5	$0.50 \quad 0.50$	0.04	0.64	0.16	0.00
Sat Flow, veh/h 188	18851555	1810	1900	3591	1610
Grp Volume(v), veh/h 65	650495	64	235	312	0
Grp Sat Flow(s), veh/h/ln188	18851555	1810	1900	1795	1610
Q Serve(g_s), s 9.	9.888	1.3	1.9	3.0	0.0
Cycle Q Clear(g_c), s 9.	$9.8 \quad 8.7$	1.3	1.9	3.0	0.0
Prop In Lane	1.00	1.00		1.00	1.00
Lane Grp Cap(c), veh/h 93	936772	81	1207	584	262
V/C Ratio(X) 0.6	0.690 .64	0.79	0.19	0.53	0.00
Avail Cap(c_a), veh/h 152	15231256	1462	1535	2901	1301
HCM Platoon Ratio 1.00	1.001 .00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.001 .00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh 7	7.26 .9	17.6	2.8	14.3	0.0
Incr Delay (d2), s/veh 0	0.90 .9	15.6	0.1	0.8	0.0
Initial Q Delay(d3),s/veh 0.0	0.00 .0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ı2.	//12.8 2.0	0.8	0.2	1.0	0.0
Unsig. Movement Delay, s/v	, s/veh				
LnGrp Delay(d),s/veh 8	8.17 .8	33.2	2.9	15.0	0.0
LnGrp LOS	A A	C	A	B	A
Approach Vol, veh/h 114	1145		299	312	
Approach Delay, s/veh 8.	8.0		9.4	15.0	
Approach LOS	A		A	B	
Timer - Assigned Phs	12		4		6
Phs Duration ($G+Y+R \mathrm{c}$), s5	, s5.2 22.4		9.5		27.6
Change Period (Y+Rc), s 3.5	s 3.54 .0		3.5		4.0
Max Green Setting (Gmax),	axp, © 30.0		30.0		30.0
Max Q Clear Time (g_c+\| 1 ,	+13,3 11.8		5.0		3.9
Green Ext Time (p_c), s 0.	0.16 .6		1.1		1.3
Intersection Summary					
HCM 6th Ctrl DelayHCM 6th LOS		9.5			
		A			

Notes
User approved volume balancing among the lanes for turning movement.

Intersection		
Intersection Delay, s/veh	36.5	
Intersection LOS	E	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\pm			\dagger	「		\$			\$	
Traffic Vol, veh/h	3	341	3	3	37	231	2	1	4	500	3	2
Future Vol, veh/h	3	341	3	3	37	231	2	1	4	500	3	2
Peak Hour Factor	0.89	0.89	0.89	0.92	0.92	0.92	0.58	0.58	0.58	0.90	0.90	0.90
Heavy Vehicles, \%	2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow	3	383	3	3	40	251	3	2	7	556	3	2
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	24.7			14.5			10.9			56.8		
HCM LOS	C			B			B			F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	29%	1%	7%	0%	99%
Vol Thru, \%	14%	98%	93%	0%	1%
Vol Right, \%	$5 \% \%$	1%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	7	347	40	231	505
LT Vol	2	3	3	0	500
Through Vol	1	341	37	0	3
RT Vol	4	3	0	231	2
Lane Flow Rate	12	390	43	251	561
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.025	0.716	0.089	0.464	0.976
Departure Headway (Hd)	7.595	6.607	7.407	6.649	6.261
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	469	5546	483	540	578
Service Time	5.685	4.566	5.165	4.407	4.3
HCM Lane V/C Ratio	0.026	0.714	0.089	0.465	0.971
HCM Control Delay	10.9	24.7	10.9	15.1	56.8
HCM Lane LOS	B	C	B	C	F
HCM 95th-tile Q	0.1	5.8	0.3	2.4	13.6

Notes
User approved volume balancing among the lanes for turning movement.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			${ }^{7}$	4	${ }^{7}$		中4	${ }^{1}$		中t	
Traffic Volume (veh/h) 0	0	0	806	0	253	0	522	488	0	750	143
Future Volume (veh/h) 0	0	0	806	0	253	0	522	488	0	750	143
Initial Q $(Q b)$, veh			0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)			1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus, Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach				No			No			No	
Adj Sat Flow, veh/h/ln			1885	1900	1826	0	1870	1900	0	1870	1870
Adj Flow Rate, veh/h			886	0	278	0	574	0	0	824	157
Peak Hour Factor			0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, \%			1	0	5	0	2	0	0	2	2
Cap, veh/h			1062	0	458	0	1888		0	1573	300
Arrive On Green			0.30	0.00	0.30	0.00	0.53	0.00	0.00	0.53	0.53
Sat Flow, veh/h			3591	0	1547	0	3647	1610	0	3054	564
Grp Volume(v), veh/h			886	0	278	0	574	0	0	495	486
Grp Sat Flow(s),veh/h/ln			1795	0	1547	0	1777	1610	0	1777	1748
Q Serve(g_s), s			12.7	0.0	8.5	0.0	5.0	0.0	0.0	9.9	9.9
Cycle Q Clear(g_c), s			12.7	0.0	8.5	0.0	5.0	0.0	0.0	9.9	9.9
Prop In Lane			1.00		1.00	0.00		1.00	0.00		0.32
Lane Grp Cap(c), veh/h			1062	0	458	0	1888		0	944	929
V/C Ratio(X)			0.83	0.00	0.61	0.00	0.30		0.00	0.52	0.52
Avail Cap(c_a), veh/h			1143	0	492	0	1888		0	944	929
HCM Platoon Ratio			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)			1.00	0.00	1.00	0.00	0.90	0.00	0.00	0.92	0.92
Uniform Delay (d), s/veh			18.1	0.0	16.6	0.0	7.2	0.0	0.0	8.4	8.4
Incr Delay (d2), s/veh			5.3	0.0	2.1	0.0	0.4	0.0	0.0	1.9	1.9
Initial Q Delay(d3),s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In			5.3	0.0	2.9	0.0	1.5	0.0	0.0	3.6	3.5
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh			23.4	0.0	18.8	0.0	7.6	0.0	0.0	10.3	10.3
LnGrp LOS			C	A	B	A	A		A	B	B
Approach Vol, veh/h				1164			574	A		981	
Approach Delay, s/veh				22.3			7.6			10.3	
Approach LOS				C			A			B	
Timer - Assigned Phs	2				6		8				
Phs Duration (G+Y+Rc), s	34.5				34.5		20.5				
Change Period ($Y+R \mathrm{R}$), s	5.3				5.3		4.2				
Max Green Setting (Gmax), s	28.0				28.0		17.5				
Max Q Clear Time (g_c+11), s	7.0				11.9		14.7				
Green Ext Time (p_c), s	4.4				7.2		1.6				
Intersection Summary											
HCM 6th Ctrl Delay 14.9											
HCM 6th LOS B											

Notes
User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％${ }^{\text {\％}}$	F			\uparrow	F	\％	中蚛		\％	中蚛	F
Traffic Volume（veh／h）	475	159	34	28	86	111	46	847	67	138	683	313
Future Volume（veh／h）	475	159	34	28	86	111	46	847	67	138	683	313
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.94	1.00		0.91	1.00		0.96	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h	500	167	36	29	91	117	48	892	71	145	719	329
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	1	1	1	0	0	0	1	1	1	1	1	1
Cap，veh／h	738	315	68	51	161	165	62	1850	147	187	2324	706
Arrive On Green	0.21	0.21	0.21	0.11	0.11	0.11	0.03	0.38	0.38	0.10	0.45	0.45
Sat Flow，veh／h	3483	1485	320	454	1424	1461	1795	4844	384	1795	5147	1563
Grp Volume（v），veh／h	500	0	203	120	0	117	48	631	332	145	719	329
Grp Sat Flow（s），veh／h／n	1742	0	1805	1877	0	1461	1795	1716	1797	1795	1716	1563
Q Serve（g＿s），s	11.6	0.0	8.8	5.3	0.0	6.8	2.3	12.2	12.3	6.9	7.8	12.9
Cycle Q Clear（g＿c），s	11.6	0.0	8.8	5.3	0.0	6.8	2.3	12.2	12.3	6.9	7.8	12.9
Prop In Lane	1.00		0.18	0.24		1.00	1.00		0.21	1.00		1.00
Lane Grp Cap（c），veh／h	738	0	382	212	0	165	62	1311	686	187	2324	706
V／C Ratio（X）	0.68	0.00	0.53	0.57	0.00	0.71	0.77	0.48	0.48	0.77	0.31	0.47
Avail Cap（c＿a），veh／h	832	0	431	448	0	349	327	1772	928	531	2657	807
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	31.9	0.0	30.8	36.9	0.0	37.6	42.1	20.6	20.6	38.4	15.4	16.7
Incr Delay（d2），s／veh	4.1	0.0	4.1	3.3	0.0	7.7	24.3	1.3	2.4	9.3	0.3	2.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	5.3	0.0	4.2	2.6	0.0	2.8	1.4	4.9	5.3	3.4	2.9	4.7

Unsig．Movement Delay，s／veh

LnGrp Delay（d），s／veh	36.0	0.0	34.9	40.3	0.0	45.3	66.3	21.8	23.0	47.7	15.7	19.0
LnGrp LOS	D	A	C	D	A	D	E	C	C	D	B	B
Approach Vol，veh／h		703			237			1011		1193		
Approach Delay，slveh		35.7			42.7			24.3		20.5		
Approach LOS		D			D			C		C		

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，	7.0	44.3	13.9	13.2	38.2	22.6
Change Period（Y＋Rc），s	4.0	4.6	4.0	4.0	4.6	4.0
Max Green Setting（Gmax），s	16.0	45.4	21.0	26.0	45.4	21.0
Max Q Clear Time（g＿c＋11），s	4.3	14.9	8.8	8.9	14.3	13.6
Green Ext Time（p＿C），s	0.1	19.4	1.2	0.5	19.3	4.0

Intersection Summary

HCM 6th Ctrl Delay	26.8
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green．

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	中4	7	${ }^{4}$	中t		${ }^{4}$	中	${ }^{7}$	${ }^{1}$	F	
Traffic Volume（veh／h） 19	884	310	36	390	54	142	156	54	106	243	17
Future Volume（veh／h） 19	884	310	36	390	54	142	156	54	106	243	17
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		0.97	1.00		0.97	1.00		0.97	1.00		0.97
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h 20	951	333	39	419	58	153	168	58	114	261	18
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％ 1	1	1	1	1	1	1	1	1	1	1	1
Cap，veh／h 41	1405	606	67	1282	176	199	457	377	152	353	24
Arrive On Green 0.02	0.39	0.39	0.04	0.41	0.41	0.11	0.24	0.24	0.08	0.20	0.20
Sat Flow，veh／h 1795	3582	1544	1795	3152	433	1795	1885	1556	1795	1740	120
Grp Volume（v），veh／h 20	951	333	39	237	240	153	168	58	114	0	279
Grp Sat Flow（s），veh／h／ln1795	1791	1544	1795	1791	1794	1795	1885	1556	1795	0	1860
Q Serve（g＿s），s 0.8	16.3	7.4	1.6	6.7	6.8	6.1	5.5	2.2	4.6	0.0	10.4
Cycle Q Clear（g＿c），s 0.8	16.3	7.4	1.6	6.7	6.8	6.1	5.5	2.2	4.6	0.0	10.4
Prop In Lane 1.00		1.00	1.00		0.24	1.00		1.00	1.00		0.06
Lane Grp Cap（c），veh／h 41	1405	606	67	728	730	199	457	377	152	0	378
V／C Ratio（X） 0.49	0.68	0.55	0.58	0.33	0.33	0.77	0.37	0.15	0.75	0.00	0.74
Avail Cap（c＿a），veh／h 631	2178	939	631	1089	1091	631	764	631	631	0	754
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I） 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh 35.7	18.6	6.2	35.1	15.0	15.0	32.0	23.3	22.0	33.1	0.0	27.6
Incr Delay（d2），s／veh 8.8	0.7	0.9	7.8	0.3	0.3	2.4	0.2	0.1	8.6	0.0	3.4
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／Ir0．4	6.2	3.9	0.8	2.6	2.6	2.7	2.4	0.8	2.3	0.0	4.9
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 44.5	19.3	7.1	42.9	15.3	15.4	34.4	23.5	22.1	41.7	0.0	31.1
LnGrp LOS D	B	A	D	B	B	C	C	C	D	A	C
Approach Vol，veh／h	1304			516			379			393	
Approach Delay，s／veh	16.6			17.4			27.7			34.2	
Approach LOS	B			B			C			C	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），s5．7	35.1	10.3	22.9	6.8	34.0	13.2	20.0	
Change Period（Y＋Rc），s 4．0	5.0	4.0	5.0	4.0	5.0	5.0	$* 5$	
Max Green Setting（Gma\＆6，©	45.0	26.0	30.0	26.0	45.0	26.0	${ }^{*} 30$	
Max Q Clear Time（g＿c＋｜12，\＆	8.8	6.6	7.5	3.6	18.3	8.1	12.4	
Green Ext Time（p＿c），s	0.0	3.8	0.3	0.4	0.1	10.8	0.1	1.8

Intersection Summary

HCM 6th Ctrl Delay	21.0
HCM 6th LOS	C

Notes
＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SB	SBR
Lane Configurations	${ }^{4}$	中 ${ }^{\text {a }}$		${ }^{4}$	中 ${ }^{\text {P }}$		\%	F		\%	¢	
Traffic Volume (veh/h)	33	821	83	88	372	49	98	190	78	202	359	33
Future Volume (veh/h)	33	821	83	88	372	49	98	190	78	202	359	33
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	1.00		0.95	1.00		0.97	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	35	864	87	93	392	52	103	200	82	213	378	35
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	50	1057	106	122	1149	151	136	280	115	263	497	46
Arrive On Green	0.03	0.32	0.32	0.07	0.36	0.36	0.08	0.22	0.22	0.15	0.29	0.29
Sat Flow, veh/h	1810	3295	332	1810	3187	419	1810	1267	520	1810	1708	158
Grp Volume(v), veh/h	35	473	478	93	221	223	103	0	282	213	0	413
Grp Sat Flow(s),veh/h/n	1810	1805	1821	1810	1805	1801	1810	0	1787	1810	0	1866
Q Serve(g_s), s	1.4	17.7	17.7	3.7	6.5	6.6	4.1	0.0	10.7	8.4	0.0	14.8
Cycle Q Clear(g_c), s	1.4	17.7	17.7	3.7	6.5	6.6	4.1	0.0	10.7	8.4	0.0	14.8
Prop In Lane	1.00		0.18	1.00		0.23	1.00		0.29	1.00		0.08
Lane Grp Cap(c), veh/h	50	579	584	122	651	649	136	0	395	263	0	543
V/C Ratio(X)	0.70	0.82	0.82	0.76	0.34	0.34	0.76	0.00	0.71	0.81	0.00	0.76
Avail Cap(c_a), veh/h	506	875	882	506	875	872	506	0	622	506	0	650
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	35.3	22.9	22.9	33.6	17.1	17.1	33.2	0.0	26.4	30.3	0.0	23.7
Incr Delay (d2), s/veh	12.0	2.1	2.1	7.1	0.4	0.4	8.3	0.0	1.8	5.9	0.0	4.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh//10.8		7.4	7.4	1.8	2.6	2.7	2.1	0.0	4.5	3.9	0.0	6.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh LnGrp LOS	47.3	25.0	25.0	40.6	17.4	17.5	41.5	0.0	28.2	36.3	0.0	28.3
	D	C	C	D	B	B	D	A	C	D	A	C
Approach Vol, veh/h		986			537			385			626	
Approach Delay, s/veh		25.8			21.5			31.8			31.0	
Approach LOS		C			C			C			C	

Timer - Assigned Phs	2	3	4	5	6	7	8
Phs Duration ($G+Y+R \mathrm{C}$), 59.4	28.0	15.1	20.7	6.5	30.9	10.0	25.8
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmaz0, 5	35.5	20.5	25.5	20.5	35.5	20.5	25.5
Max Q Clear Time (g_c+19, 76	19.7	10.4	12.7	3.4	8.6	6.1	16.8
Green Ext Time (p_c), s 0.1	3.8	0.4	1.1	0.0	3.4	0.2	1.9

Intersection Summary
HCM 6th Ctrl Delay 27.1
HCM 6th LOS C
Notes
User approved pedestrian interval to be less than phase max green.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	性		\%	性		${ }^{*}$	\uparrow		7	\uparrow	
Traffic Volume (veh/h)	28	1023	56	52	440	75	22	58	64	260	136	37
Future Volume (veh/h)	28	1023	56	52	440	75	22	58	64	260	136	37
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.92	1.00		0.93	1.00		0.92	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	29	1077	59	55	463	79	23	61	67	274	143	39
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	0	0	0	0	0	1	1	1	0	0	0
Cap, veh/h	44	1414	77	71	1291	218	37	123	136	325	452	123
Arrive On Green	0.02	0.41	0.41	0.04	0.42	0.42	0.02	0.16	0.16	0.18	0.32	0.32
Sat Flow, veh/h	1810	3462	190	1810	3048	516	1795	783	860	1810	1427	389
Grp Volume(v), veh/h	29	561	575	55	273	269	23	0	128	274	0	182
Grp Sat Flow(s),veh/h/n	1810	1805	1847	1810	1805	1759	1795	0	1644	1810	0	1816
Q Serve(g_s), s	1.2	19.9	19.9	2.2	7.6	7.8	0.9	0.0	5.3	10.9	0.0	5.7
Cycle Q Clear(g_c), s	1.2	19.9	19.9	2.2	7.6	7.8	0.9	0.0	5.3	10.9	0.0	5.7
Prop In Lane	1.00		0.10	1.00		0.29	1.00		0.52	1.00		0.21
Lane Grp Cap(c), veh/h	44	737	754	71	764	745	37	0	259	325	0	575
V/C Ratio(X)	0.66	0.76	0.76	0.77	0.36	0.36	0.63	0.00	0.49	0.84	0.00	0.32
Avail Cap(c_a), veh/h	389	1116	1142	389	1116	1088	507	0	354	511	0	575
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	36.0	18.9	18.9	35.4	14.6	14.6	36.2	0.0	28.6	29.5	0.0	19.3
Incr Delay (d2), s/veh	15.7	1.7	1.7	16.1	0.3	0.3	16.5	0.0	1.5	7.3	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh	//10. 7	8.0	8.2	1.3	3.0	2.9	0.6	0.0	2.1	5.3	0.0	2.4
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	51.7	20.6	20.6	51.5	14.8	14.9	52.6	0.0	30.1	36.8	0.0	19.6
LnGrp LOS	D	C	C	D	B	B	D	A	C	D	A	B
Approach Vol, veh/h		1165			597			151			456	
Approach Delay, s/veh		21.3			18.2			33.5			30.0	
Approach LOS		C			B			C			C	

Timer - Assigned Phs 1	2	3	4	5	6	7	8
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), $\mathrm{s7} 7.4$	15.7	6.9	34.4	5.5	27.6	5.8	35.5
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting (Gmaz), ${ }^{\text {B }}$	16.0	16.0	46.0	21.0	16.0	16.0	46.0
Max Q Clear Time (g c + M12, ${ }^{\text {s }}$	7.3	4.2	21.9	2.9	7.7	3.2	9.8
Green Ext Time (p_c), s 0.5	0.4	0.1	8.5	0.0	0.6	0.0	3.7

Intersection Summary
HCM 6th Ctrl Delay 23.0
HCM 6th LOS
C
Notes
User approved pedestrian interval to be less than phase max green.

Movement EBL	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	性		\%	\uparrow	「		\uparrow	F'		\uparrow	7
Traffic Volume (veh/h)	30	1217	102	142	531	21	86	10	114	19	9	15
Future Volume (veh/h)	30	1217	102	142	531	21	86	10	114	19	9	15
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00	1.00		0.96	1.00		0.97	1.00		0.97	1.00		0.99
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/n 19	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	31	1255	105	146	547	22	89	10	118	20	9	15
Peak Hour Factor 0.07	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	0	0	0	0	0	0	1	1	1	0	0	0
Cap, veh/h	46	1494	125	189	1008	826	92	6	415	82	23	429
Arrive On Green 0.03	0.03	0.44	0.44	0.10	0.53	0.53	0.27	0.27	0.27	0.27	0.27	0.27
Sat Flow, veh/h 18	1810	3361	280	1810	1900	1557	0	21	1546	0	86	1599
Grp Volume(v), veh/h	31	672	688	146	547	22	99	0	118	29	0	15
Grp Sat Flow(s), veh/h/n18	1810	1805	1836	1810	1900	1557	21	0	1546	86	0	1599
Q Serve(g_s), s	1.3	24.6	24.8	5.9	14.1	0.5	0.0	0.0	4.5	0.0	0.0	0.5
Cycle Q Clear(g_c), s	1.3	24.6	24.8	5.9	14.1	0.5	20.0	0.0	4.5	20.0	0.0	0.5
Prop In Lane 1.00	1.00		0.15	1.00		1.00	0.90		1.00	0.69		1.00
Lane Grp Cap(c), veh/h	46	803	817	189	1008	826	97	0	415	105	0	429
V/C Ratio(X) 0.67	0.67	0.84	0.84	0.77	0.54	0.03	1.02	0.00	0.28	0.28	0.00	0.03
Avail Cap(c_a), veh/h 631	631	1087	1106	619	1144	938	97	0	415	105	0	429
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 36	36.0	18.3	18.4	32.5	11.5	8.3	36.1	0.0	21.6	22.7	0.0	20.1
Incr Delay (d2), s/veh 15.8	15.8	3.3	3.4	6.5	0.2	0.0	95.8	0.0	0.1	0.5	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/1r0.7	110.7	10.0	10.3	2.9	5.5	0.2	4.3	0.0	1.6	0.4	0.0	0.2
Unsig. Movement Delay, s/	s/veh											
LnGrp Delay(d),s/veh 51	51.8	21.6	21.8	39.0	11.7	8.3	131.9	0.0	21.7	23.2	0.0	20.2
LnGrp LOS	D	C	C	D	B	A	F	A	C	C	A	C
Approach Vol, veh/h		1391			715			217			44	
Approach Delay, s/veh		22.4			17.2			72.0			22.2	
Approach LOS		C			B			E			C	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s 2.	\$2.3	38.2		24.0	5.9	44.7		24.0				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 4.5	s 4.5	5.1		4.0	4.0	5.1		4.0				
Max Green Setting (Gmaz)	25, 5	44.9		20.0	26.0	44.9		20.0				
Max Q Clear Time (g_c+11	1710,5	26.8		22.0	3.3	16.1		22.0				
Green Ext Time (p_c), s	0.3	6.4		0.0	0.0	2.6		0.0				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			25.4									
			C									

Notes
User approved pedestrian interval to be less than phase max green.

Timer - Assigned Phs 1	2	3	4	5	6	7	8
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), 80.1	25.3	7.0	25.5	6.4	29.1	7.0	25.5
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 3.5	5.0	3.5	5.0	3.5	5.0	3.5	5.0
Max Green Setting (Gmad). ${ }^{\text {F }}$ S	35.0	26.5	35.0	26.5	35.0	26.5	35.0
Max Q Clear Time (g _ $\mathrm{c}+1 \mathrm{l}$ ¢, , 5	17.5	4.4	16.8	3.7	8.5	4.4	16.2
Green Ext Time (p_c), s 0.3	2.8	0.1	3.7	0.1	1.5	0.1	3.5

Intersection Summary

HCM 6th Ctrl Delay 26.3
HCM 6th LOS

Intersection
Intersection Delay, s/veh38.4
Intersection LOS \quad E

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	${ }^{1}$		4	F'		\pm			4	
Traffic Vol, veh/h 74	424	86	49	250	49	31	88	36	39	123	64
Future Vol, veh/h 74	424	86	49	250	49	31	88	36	39	123	64
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \% 0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow 80	456	92	53	269	53	33	95	39	42	132	69
Number of Lanes 0	1	1	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			2			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			2			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			2		
HCM Control Delay 63.6			20.6			14.8			17.1		
HCM LOS F			C			B			C		

Lane	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, $\%$	20%	15%	0%	16%	0%	17%
Vol Thru, $\%$	57%	85%	0%	84%	0%	54%
Vol Right, \%	23%	0%	100%	0%	100%	28%
Sign Control	Sttop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	155	498	86	299	49	226
LT Vol	31	74	0	49	0	39
Through Vol	88	424	0	250	0	123
RT Vol	36	0	86	0	49	64
Lane Flow Rate	167	535	92	322	53	243
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.348	1.028	0.157	0.639	0.094	0.486
Departure Headway (Hd)	7.72	6.912	6.118	7.412	6.607	7.371
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	468	525	587	492	546	491
Service Time	5.72	4.639	3.845	5.112	4.307	5.371
HCM Lane V/C Ratio	0.357	1.019	0.157	0.654	0.097	0.495
HCM Control Delay	14.8	72.9	10	22.3	10	17.1
HCM Lane LOS	B	F	A	C	A	C
HCM 95th-tile Q	1.5	15.1	0.6	4.4	0.3	2.6

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	\uparrow	F'	\%	\uparrow	7	${ }^{7}$	F		7	\bigcirc	
Traffic Volume (veh/h)	56	508	242	15	273	101	87	44	7	157	97	91
Future Volume (veh/h)	56	508	242	15	273	101	87	44	7	157	97	91
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.90	1.00		0.92
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/n 1	1885	1885	1885	1885	1885	1885	1900	1900	1900	1885	1885	1885
Adj Flow Rate, veh/h	62	564	0	17	303	0	97	49	8	174	108	101
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, \%	1	1	1	1	1	1	0	0	0	1	1	1
Cap, veh/h	99	701		37	636		127	302	49	222	211	197
Arrive On Green	0.05	0.37	0.00	0.02	0.34	0.00	0.07	0.19	0.19	0.12	0.25	0.25
Sat Flow, veh/h	1795	1885	1598	1795	1885	1598	1810	1564	255	1795	855	800
Grp Volume(v), veh/h	62	564	0	17	303	0	97	0	57	174	0	209
Grp Sat Flow(s),veh/h/n1	1795	1885	1598	1795	1885	1598	1810	0	1819	1795	0	1655
Q Serve(g_s), s	1.9	15.2	0.0	0.5	7.2	0.0	3.0	0.0	1.5	5.3	0.0	6.2
Cycle Q Clear(g_c), s	1.9	15.2	0.0	0.5	7.2	0.0	3.0	0.0	1.5	5.3	0.0	6.2
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.14	1.00		0.48
Lane Grp Cap(c), veh/h	99	701		37	636		127	0	352	222	0	408
V/C Ratio(X)	0.63	0.80		0.46	0.48		0.77	0.00	0.16	0.78	0.00	0.51
Avail Cap(c_a), veh/h	506	1180		506	1180		510	0	674	506	0	613
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	26.2	16.0	0.0	27.5	14.8	0.0	25.9	0.0	19.1	24.1	0.0	18.4
Incr Delay (d2), s/veh	4.8	2.2	0.0	6.4	0.6	0.0	3.6	0.0	0.2	2.3	0.0	0.7
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh//10.9		6.3	0.0	0.3	2.8	0.0	1.4	0.0	0.6	2.3	0.0	2.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh LnGrp LOS	31.0	18.2	0.0	33.8	15.4	0.0	29.5	0.0	19.2	26.5	0.0	19.2
	C	B		C	B		C	A	B	C	A	B
Approach Vol, veh/h		626	A		320	A		154			383	
Approach Delay, s/veh		19.5			16.4			25.7			22.5	
Approach LOS		B			B			C			C	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s5.2	25.6	8.0	18.0	7.1	23.6	11.0	15.0	
Change Period (Y+Rc), s 4.0	4.5	4.0	4.0	4.0	4.5	4.0	4.0	
Max Green Setting (Gmakक.,	35.5	16.0	21.0	16.0	35.5	16.0	21.0	
Max Q Clear Time (g_c+\|24,5s	17.2	5.0	8.2	3.9	9.2	7.3	3.5	
Green Ext Time (p_c), \mathbf{s}	0.0	3.8	0.1	0.8	0.1	1.8	0.1	0.2

Intersection Summary

HCM 6th Ctrl Delay	20.2
HCM 6th LOS	C

Notes
Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Kimley»)Horn

APPENDIX C. EXISTING PLUS PROJECT CONDITIONS SYNCHRO OUTPUT SHEETS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	¢ \uparrow	「	7	个t		${ }^{7}$	\uparrow	「		\uparrow	F
Traffic Volume（veh／h）	28	585	370	63	530	65	557	24	88	27	23	12
Future Volume（veh／h）	28	585	370	63	530	65	557	24	88	27	23	12
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.96
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	29	603	0	65	546	67	592	0	0	28	24	12
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	0	0	0
Cap，veh／h	48	2088		84	1929	236	625	0		53	46	83
Arrive On Green	0.03	0.58	0.00	0.05	0.60	0.60	0.17	0.00	0.00	0.05	0.05	0.05
Sat Flow，veh／h	1795	3582	1598	1795	3199	391	3591	0	1598	996	854	1551
Grp Volume（v），veh／h	29	603	0	65	305	308	592	0	0	52	0	12
Grp Sat Flow（s），veh／h／n	1795	1791	1598	1795	1791	1800	1795	0	1598	1850	0	1551
Q Serve（g＿s），s	1.8	9.5	0.0	4.0	9.1	9.2	18.3	0.0	0.0	3.1	0.0	0.8
Cycle Q Clear（g＿c），s	1.8	9.5	0.0	4.0	9.1	9.2	18.3	0.0	0.0	3.1	0.0	0.8
Prop In Lane	1.00		1.00	1.00		0.22	1.00		1.00	0.54		1.00
Lane Grp Cap（c），veh／h	48	2088		84	1080	1085	625	0		99	0	83
V／C Ratio（X）	0.61	0.29		0.78	0.28	0.28	0.95	0.00		0.53	0.00	0.14
Avail Cap（c＿a），veh／h	88	2088		88	1080	1085	625	0		372	0	312
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	0.97	0.97	0.97	0.72	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	53.9	11.7	0.0	52.8	10.6	10.6	45.7	0.0	0.0	51.6	0.0	50.6
Incr Delay（d2），s／veh	4.6	0.3	0.0	29.2	0.6	0.6	18.7	0.0	0.0	1.6	0.0	0.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.9	3.8	0.0	2.5	3.7	3.8	9.6	0.0	0.0	1.5	0.0	0.3
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	58.5	12.1	0.0	82.0	11.3	11.3	64.4	0.0	0.0	53.2	0.0	50.9
LnGrp LOS	E	B		F	B	B	E	A		D	A	D
Approach Vol，veh／h		632	A		678			592	A		64	
Approach Delay，s／veh		14.2			18.1			64.4			52.8	
Approach LOS		B			B			E			D	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	9.2	69.3	10.0	7.0	71.5	23.5
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting（Gmax），s	5.5	48.5	22.5	5.5	48.5	19.5
Max Q Clear Time（g＿c＋11），s	6.0	11.5	5.1	3.8	11.2	20.3
Green Ext Time（p＿c），s	0.0	4.9	0.1	0.0	4.5	0.0

Intersection Summary

HCM 6th Ctrl Delay	31.9
HCM 6th LOS	C

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

	4	\rightarrow	\cdots	7	4	4	4	\dagger	p		1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	44	T	${ }^{1}$	中 ${ }^{\text {a }}$			\uparrow	「		\&	
Traffic Volume (veh/h)	6	643	410	317	588	6	246	2	959	1	0	2
Future Volume (veh/h)	6	643	410	317	588	6	246	2	959	1	0	2
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.86
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1737	1870	1900	1900	1885	1885	1856	1870	1870	1870
Adj Flow Rate, veh/h	6	670	0	330	612	6	256	2	0	1	0	2
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	0	0	11	2	0	0	1	1	3	2	2	2
Cap, veh/h	11	1944		348	2666	26	277	2		9	0	17
Arrive On Green	0.01	0.54	0.00	0.39	1.00	1.00	0.16	0.16	0.00	0.02	0.00	0.02
Sat Flow, veh/h	1810	3610	1472	1781	3663	36	1782	14	1572	495	0	990
Grp Volume(v), veh/h	6	670	0	330	302	316	258	0	0	3	0	0
Grp Sat Flow(s),veh/h/ln	1810	1805	1472	1781	1805	1894	1796	0	1572	1485	0	0
Q Serve(g_s), s	0.5	15.8	0.0	26.9	0.0	0.0	21.3	0.0	0.0	0.3	0.0	0.0
Cycle Q Clear(g_c), s	0.5	15.8	0.0	26.9	0.0	0.0	21.3	0.0	0.0	0.3	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.02	0.99		1.00	0.33		0.67
Lane Grp Cap(c), veh/h	11	1944		348	1314	1378	279	0		26	0	0
V/C Ratio(X)	0.56	0.34		0.95	0.23	0.23	0.93	0.00		0.11	0.00	0.00
Avail Cap(c_a), veh/h	48	1944		487	1314	1378	281	0		218	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	0.75	0.75	0.00	1.00	1.00	1.00	0.46	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	74.4	19.6	0.0	45.0	0.0	0.0	62.5	0.0	0.0	72.5	0.0	0.0
Incr Delay (d2), s/veh	12.3	0.4	0.0	20.6	0.4	0.4	19.7	0.0	0.0	1.4	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.3	6.7	0.0	12.0	0.1	0.1	11.3	0.0	0.0	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	86.6	20.0	0.0	65.5	0.4	0.4	82.2	0.0	0.0	74.0	0.0	0.0
LnGrp LOS	F	B		E	A	A	F	A		E	A	A
Approach Vol, veh/h		676	A		948			258	A		3	
Approach Delay, s/veh		20.6			23.1			82.2			74.0	
Approach LOS		C			C			F			E	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	32.3	84.8		6.1	3.9	113.2		26.8				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	3.0	4.0		3.5	3.0	4.0		3.5				
Max Green Setting (Gmax), s	41.0	49.5		22.0	4.0	86.5		23.5				
Max Q Clear Time (g_c+11), s	28.9	17.8		2.3	2.5	2.0		23.3				
Green Ext Time (p_c), s	0.4	7.0		0.0	0.0	6.3		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			30.3									
HCM 6th LOS			C									

Notes
Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个个	「	\％	中 ${ }_{\text {c }}$		${ }^{7}$	\uparrow	F	7	$\hat{\beta}$	
Traffic Volume（veh／h）	155	833	615	4	1079	27	391	84	35	65	82	51
Future Volume（veh／h）	155	833	615	4	1079	27	391	84	35	65	82	51
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h	161	868	0	4	1124	28	470	0	0	68	85	53
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	2	3	4	0	4	4	6	2	3	2	0	0
Cap，veh／h	101	2198		9	1993	50	539	0		169	104	65
Arrive On Green	0.06	0.62	0.00	0.01	0.57	0.57	0.16	0.00	0.00	0.10	0.10	0.10
Sat Flow，veh／h	1781	3526	1560	1810	3483	87	3450	0	1572	1781	1090	680
Grp Volume（v），veh／h	161	868	0	4	564	588	470	0	0	68	0	138
Grp Sat Flow（s），veh／h／n	1781	1763	1560	1810	1749	1821	1725	0	1572	1781	0	1770
Q Serve（g＿s），s	8.5	18.4	0.0	0.3	30.6	30.6	20.0	0.0	0.0	5.4	0.0	11.5
Cycle Q Clear（g＿c），s	8.5	18.4	0.0	0.3	30.6	30.6	20.0	0.0	0.0	5.4	0.0	11.5
Prop In Lane	1.00		1.00	1.00		0.05	1.00		1.00	1.00		0.38
Lane Grp Cap（c），veh／h	101	2198		9	1000	1042	539	0		169	0	168
V／C Ratio（X）	1.60	0.39		0.43	0.56	0.56	0.87	0.00		0.40	0.00	0.82
Avail Cap（c＿a），veh／h	101	2198		62	1000	1042	793	0		338	0	336
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	70.7	14.1	0.0	74.4	20.3	20.3	61.8	0.0	0.0	63.9	0.0	66.6
Incr Delay（d2），s／veh	309.2	0.5	0.0	28.7	2.3	2.2	7.3	0.0	0.0	1.5	0.0	9.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	12.6	7.5	0.0	0.2	12.9	13.4	9.4	0.0	0.0	2.5	0.0	5.7
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	379.9	14.6	0.0	103.1	22.6	22.5	69.1	0.0	0.0	65.4	0.0	76.0
LnGrp LOS	F	B		F	C	C	E	A		E	A	E
Approach Vol，veh／h		1029	A		1156			470	A		206	
Approach Delay，s／veh		71.8			22.8			69.1			72.5	
Approach LOS		E			C			E			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	5.3	98.0	27.9	13.0	90.3	18.8
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	5.1	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋11），s	2.3	20.4	22.0	10.5	32.6	13.5
Green Ext Time（p＿c），s	0.0	7.6	1.5	0.0	8.7	0.8

Intersection Summary

HCM 6th Ctrl Delay	51.6
HCM 6th LOS	D

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		＊\uparrow	性	「	${ }^{1 *}$	「
Traffic Volume（veh／h）	364	289	604	167	393	88
Future Volume（veh／h）	364	289	604	167	393	588
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00			0.98	1.00	1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow，veh／h／ln	1885	1885	1870	1870	1885	1885
Adj Flow Rate，veh／h	375	298	623	172	405	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	2	2	1	
Cap，veh／h	823	821	795	347	524	
Arrive On Green	0.46	0.46	0.22	0.22	0.15	0.00
Sat Flow，veh／h	1795	1885	3647	1551	3483	1598
Grp Volume（v），veh／h	375	298	623	172	405	0
Grp Sat Flow（s），veh／h／n	1795	1791	1777	1551	1742	159
Q Serve（g＿s），s	11.4	8.6	13.2	7.7	8.9	0.0
Cycle Q Clear（g＿c），s	11.4	8.6	13.2	7.7	8.9	0.0
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap（c），veh／h	823	821	795	347	524	
V／C Ratio（X）	0.46	0.36	0.78	0.50	0.77	
Avail Cap（c＿a），veh／h	823	821	795	347	906	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	0.29	0.29	1.00	1.00	1.00	0.00
Uniform Delay（d），s／veh	14.8	14.1	29.2	27.1	32.7	0.0
Incr Delay（d2），s／veh	0.5	0.4	7.6	5.0	2.5	0.0
Initial Q Delay（d3），s／veh		0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh	h／1r4． 6	3.4	6.3	3.3	3.9	0.0
Unsig．Movement Delay，s／veh						
LnGrp Delay（d），s／veh 15.4		14.4	36.8	32.1	35.1	0.0
LnGrp LOS	B	B	D	C	D	
Approach Vol，veh／h		673	795		405	
Approach Delay，s／veh		15.0	35.8		35.1	
Approach LOS		B	D		D	
Timer－Assigned Phs		2		4		6
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s		41.3		16.2		22.5
Change Period（ $Y+\mathrm{Rc}$ ），s		4.6		＊ 4.2		4.6
Max Green Setting（Gmax），s		27.9		＊21		17.9
Max Q Clear Time（g＿c＋11），s		13.4		10.9		15.2
Green Ext Time（p＿c），s		3.8		1.1		1.3

Intersection Summary

HCM 6th Ctrl Delay 28.2

HCM 6th LOS C
Notes
＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．
Unsignalized Delay for［SBR］is excluded from calculations of the approach delay and intersection delay．

Notes
User approved volume balancing among the lanes for turning movement.

Intersection						
Int Delay, s/veh	7.1					
Movement E	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	「	*	4	${ }^{7}$	「
Traffic Vol, veh/h 37	375	83	99	241	162	181
Future Vol, veh/h 37	375	83	99	241	162	181
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control Fr	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	25	170	-	145	0
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	0	0	0	0
Mvmt Flow 3	391	86	103	251	169	189

Intersection
Intersection Delay, s/veh14.8
Intersection LOS \quad B

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*			\uparrow	「		\&			\$	
Traffic Vol, veh/h 13	92	0	5	26	467	0	1	7	283	0	5
Future Vol, veh/h 13	92	0	5	26	467	0	1	7	283	0	5
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, \% 2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow 14	96	0	5	27	486	0	1	7	295	0	5
Number of Lanes 0	1	0	0	1	1	0	1	0	0	1	0
Approach EB			WB				NB		SB		
Opposing Approach WB			EB				SB		NB		
Opposing Lanes 2			1				1		1		
Conflicting Approach Left SB			NB				EB		WB		
Conflicting Lanes Left 1			1				1		2		
Conflicting Approach RighNB			SB				WB		EB		
Conflicting Lanes Right 1			1				2		1		
HCM Control Delay 9.9			16.6				8.9		13.7		
HCM LOS A			C				A		B		

Lane	NBLn1 EBLn1WBLn1WBLn2 SBLn1				
Vol Left, \%	0%	12%	16%	0%	98%
Vol Thru, \%	12%	88%	84%	0%	0%
Vol Right, \%	88%	0%	0%	100%	2%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	8	105	31	467	288
LT Vol	0	13	5	0	283
Through Vol	1	92	26	0	0
RT Vol	7	0	0	467	5
Lane Flow Rate	8	109	32	486	300
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.013	0.173	0.052	0.669	0.473
Departure Headway (Hd)	5.773	5.695	5.742	4.953	5.676
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	618	630	627	735	636
Service Time	3.826	3.733	3.442	2.653	3.709
HCM Lane V/C Ratio	0.013	0.173	0.051	0.661	0.472
HCM Control Delay	8.9	9.9	8.8	17.1	13.7
HCM Lane LOS	A	A	A	C	B
HCM 95th-tile Q	0	0.6	0.2	5.2	2.5

Notes
User approved volume balancing among the lanes for turning movement.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			${ }^{7}$	\uparrow	「		个4	「		性	
Traffic Volume（veh／h）	0	0	662	5	428	0	547	374	0	593	166
Future Volume（veh／h） 0	0	0	662	5	428	0	547	374	0	593	166
Initial $Q(Q b)$ ，veh			0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）			1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus，Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach				No			No			No	
Adj Sat Flow，veh／h／n			1885	1900	1826	0	1870	1900	0	1870	1870
Adj Flow Rate，veh／h			731	0	470	0	601	0	0	652	182
Peak Hour Factor			0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh，\％			1	0	5	0	2	0	0	2	2
Cap，veh／h			1143	0	492	0	1809		0	1386	386
Arrive On Green			0.32	0.00	0.32	0.00	0.51	0.00	0.00	0.51	0.51
Sat Flow，veh／h			3591	0	1547	0	3647	1610	0	2816	759
Grp Volume（v），veh／h			731	0	470	0	601	0	0	425	409
Grp Sat Flow（s），veh／h／ln			1795	0	1547	0	1777	1610	0	1777	1705
Q Serve（g＿s），s			9.6	0.0	16.4	0.0	5.5	0.0	0.0	8.5	8.5
Cycle Q Clear（g＿c），s			9.6	0.0	16.4	0.0	5.5	0.0	0.0	8.5	8.5
Prop In Lane			1.00		1.00	0.00		1.00	0.00		0.45
Lane Grp Cap（c），veh／h			1143	0	492	0	1809		0	905	868
VIC Ratio（X）			0.64	0.00	0.95	0.00	0.33		0.00	0.47	0.47
Avail Cap（c＿a），veh／h			1143	0	492	0	1809		0	905	868
HCM Platoon Ratio			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）			1.00	0.00	1.00	0.00	0.96	0.00	0.00	0.74	0.74
Uniform Delay（d），s／veh			16.1	0.0	18.4	0.0	8.0	0.0	0.0	8.7	8.7
Incr Delay（d2），s／veh			1.3	0.0	29.4	0.0	0.5	0.0	0.0	1.3	1.4
Initial Q Delay（d3），s／veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln			3.6	0.0	8.9	0.0	1.7	0.0	0.0	3.0	2.9
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh			17.3	0.0	47.8	0.0	8.5	0.0	0.0	10.0	10.1
LnGrp LOS			B	A	D	A	A		A	B	B
Approach Vol，veh／h				1201			601	A		834	
Approach Delay，s／veh				29.3			8.5			10.0	
Approach LOS				C			A			B	

Timer－Assigned Phs	2	6	8
Phs Duration（G＋Y＋Rc），s	33.3	33.3	21.7
Change Period（Y＋Rc），s	5.3	5.3	4.2
Max Green Setting（Gmax），s	28.0	28.0	17.5
Max Q Clear Time（g＿c＋11），s	7.5	10.5	18.4
Green Ext Time（p＿c），s	4.6	6.3	0.0

Intersection Summary

HCM 6th Ctrl Delay	18.4
HCM 6th LOS	B

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow	「		\uparrow	「	7	快		\％	快	
Traffic Volume（vph）	272	16	101	14	7	26	136	975	21	91	1066	342
Future Volume（vph）	272	16	101	14	7	26	136	975	21	91	1066	342
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	4.2	4.2	4.2		4.2	4.2	3.7	4.9		4.6	4.9	
Lane Util．Factor	0.95	0.95	1.00		1.00	1.00	1.00	0.91		1.00	0.91	
Frpb，ped／bikes	1.00	1.00	0.97		1.00	1.00	1.00	1.00		1.00	0.98	
Flpb，ped／bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.96	
Flt Protected	0.95	0.96	1.00		0.98	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1625	1646	1509		1792	1561	1745	4939		1745	4675	
FIt Permitted	0.95	0.96	1.00		0.98	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（perm）	1625	1646	1509		1792	1561	1745	4939		1745	4675	
Peak－hour factor，PHF	0.86	0.61	0.80	0.85	0.44	0.79	0.66	0.86	0.61	0.67	0.94	0.85
Adj．Flow（vph）	316	26	126	16	16	33	206	1134	34	136	1134	402
RTOR Reduction（vph）	0	0	95	0	0	28	0	3	0	0	53	0
Lane Group Flow（vph）	171	171	31	0	32	5	206	1165	0	136	1483	0
Confl．Peds．（\＃／hr）			18	18			12		8	8		12
Confl．Bikes（\＃／hr）												5

Heavy Vehicles（\％）	2%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%	1%
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Prot	NA		
Protected Phases	4	4		3	3		5	1	2	6		

Permitted Phases			4		3				
Actuated Green，G（s）	29.5	29.5	29.5	16.5	16.5	15.7	40.0	16.0	41.2

Effective Green， $\mathrm{g}(\mathrm{s})$	29.5	29.5	29.5	16.5	16.5	15.7	40.0	16.0	41.2
Actuated g／C Ratio	0.25	0.25	0.25	0.14	0.14	0.13	0.33	0.13	0.34
Clearance Time (s)	4.2	4.2	4.2	4.2	4.2	3.7	4.9	4.6	4.9
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.2
Lane Grp Cap（vph）	399	404	371	246	214	228	1647	232	1606
v／s Ratio Prot	$\mathrm{co.11}$	0.10		co			0.12	0.24	0.08
c0．32									

v／s Ratio Perm			0.02		0.00				
V／c Ratio	0.43	0.42	0.08	0.13	0.02	0.90	0.71	0.59	0.92
Uniform Delay，d1	38.1	38.0	34.8	45.4	44.7	51.4	34.8	48.8	37.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.08	0.88
Incremental Delay，d2	0.7	0.7	0.1	0.2	0.0	34.6	2.6	3.1	8.8
Delay（s）	38.8	38.8	34.9	45.6	44.8	85.9	37.4	55.7	42.0
Level of Service	D	D	C	D	D	F	D	E	D
Approach Delay（s）		37.7		45.2			44.7		
Approach LOS		D		D			D	43.1	

Intersection Summary			
HCM 2000 Control Delay	43.1	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.66		17.9
Actuated Cycle Length（s）	119.9	Sum of lost time（s）	C
Intersection Capacity Utilization	66.3%	ICU Level of Service	
Analysis Period（min）	15		
c Critical Lane Group			

	4	\rightarrow	7	7	\checkmark	4	4	\uparrow	p	，	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow			\uparrow	「	${ }^{7}$	蚛		\％	个种	F
Traffic Volume（veh／h）	219	37	18	22	80	172	37	730	21	129	689	336
Future Volume（veh／h）	219	37	18	22	80	172	37	730	21	129	689	336
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.93	1.00		0.93	1.00		0.96	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h	231	39	19	23	84	181	39	768	22	136	725	354
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	1	1	1	0	0	0	1	1	1	1	1	1
Cap，veh／h	552	185	90	64	232	235	52	1910	55	180	2279	692
Arrive On Green	0.16	0.16	0.16	0.16	0.16	0.16	0.03	0.37	0.37	0.10	0.44	0.44
Sat Flow，veh／h	3483	1165	568	404	1476	1497	1795	5136	147	1795	5147	1563
Grp Volume（v），veh／h	231	0	58	107	0	181	39	512	278	136	725	354
Grp Sat Flow（s），veh／h／n	1742	0	1733	1880	0	1497	1795	1716	1851	1795	1716	1563
Q Serve（g＿s），s	4.7	0.0	2.3	4.0	0.0	9.1	1.7	8.6	8.7	5.8	7.1	12.8
Cycle Q Clear（g＿c），s	4.7	0.0	2.3	4.0	0.0	9.1	1.7	8.6	8.7	5.8	7.1	12.8
Prop In Lane	1.00		0.33	0.21		1.00	1.00		0.08	1.00		1.00
Lane Grp Cap（c），veh／h	552	0	275	296	0	235	52	1276	689	180	2279	692
V／C Ratio（X）	0.42	0.00	0.21	0.36	0.00	0.77	0.74	0.40	0.40	0.76	0.32	0.51
Avail Cap（c＿a），veh／h	935	0	465	504	0	402	367	1990	1074	596	2985	907
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	29.7	0.0	28.7	29.5	0.0	31.6	37.7	18.1	18.2	34.3	14.1	15.7
Incr Delay（d2），s／veh	1.8	0.0	1.4	1.1	0.0	7.3	25.1	0.9	1.8	8.8	0.4	2.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	2.1	0.0	1.0	1.9	0.0	3.7	1.1	3.3	3.8	2.9	2.6	4.6
LnGrp Delay（d），s／veh	31.5	0.0	30.0	30.5	0.0	38.9	62.8	19.1	19.9	43.1	14.5	18.4
LnGrp LOS	C	A	C	C	A	D	E	B	B	D	B	B
Approach Vol，veh／h		289			288			829			1215	
Approach Delay，s／veh		31.2			35.8			21.4			18.8	
Approach LOS		C			D			C			B	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	6.3	39.3	16.3	11.8	33.7	16.4
Change Period（Y＋Rc），s	4.0	4.6	4.0	4.0	4.6	4.0
Max Green Setting（Gmax），s	16.0	45.4	21.0	26.0	45.4	21.0
Max Q Clear Time（g＿c＋11），s	3.7	14.8	11.1	7.8	10.7	6.7
Green Ext Time（p＿c），s	0.1	19.9	1.3	0.5	16.9	2.5

Intersection Summary

HCM 6th Ctrl Delay	22.9
HCM 6th LOS	C

Notes

User approved pedestrian interval to be less than phase max green．

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations ${ }^{\text {\% }}$	$\hat{\wedge}^{\text {¢ }}$		\%	¢ ${ }^{\text {d }}$		${ }^{7}$	性		${ }^{7 *}$	个 \uparrow	
Traffic Volume (veh/h) 192	126	44	124	260	130	49	493	36	118	421	61
Future Volume (veh/h) 192	126	44	124	260	130	49	493	36	118	421	61
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.96	1.00		0.97	1.00		0.97	1.00		0.97
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	. 00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h 124	233	45	128	268	134	51	508	37	122	434	63
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	1	1	0	0	0	1	1	1	1	1	1
Cap, veh/h 326	556	105	395	523	252	67	1362	98	264	1136	493
Arrive On Green 0.18	0.18	0.18	0.22	0.22	0.22	0.04	0.28	0.28	0.08	0.32	0.32
Sat Flow, veh/h 1795	3060	578	1810	2393	1153	1795	4887	352	3483	3582	1553
Grp Volume(v), veh/h 124	142	136	128	211	191	51	355	190	122	434	63
Grp Sat Flow(s),veh/h/ln1795	1885	1753	1810	1900	1646	1795	1716	1807	1742	1791	1553
Q Serve(g_s), s 4.4	4.8	5.0	4.3	7.1	7.5	2.0	6.0	6.1	2.4	6.8	2.1
Cycle Q Clear(g_c), s 4.4	4.8	5.0	4.3	7.1	7.5	2.0	6.0	6.1	2.4	6.8	2.1
Prop In Lane 1.00		0.33	1.00		0.70	1.00		0.19	1.00		1.00
Lane Grp Cap(c), veh/h 326	343	319	395	415	359	67	956	504	264	1136	493
V/C Ratio(X) 0.38	0.41	0.43	0.32	0.51	0.53	0.77	0.37	0.38	0.46	0.38	0.13
Avail Cap(c_a), veh/h 629	661	614	634	666	577	644	2149	1132	1249	2244	973
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 26.1	26.2	26.3	23.8	24.9	25.1	34.6	21.0	21.1	32.1	19.2	17.6
Incr Delay (d2), s/veh 1.0	1.1	1.3	0.7	1.4	1.7	22.5	0.9	1.7	1.8	0.8	0.4
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/IIT. 9	2.2	2.2	1.9	3.3	3.0	1.3	2.4	2.7	10	2.7	08
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 27.1	27.4	27.6	24.5	26.3	26.8	57.1	21.9	22.8	33.9	20.0	18.0
LnGrp LOS C	C	C	C	C	C	E	C	C	C	B	B
Approach Vol, veh/h	402			530			596			619	
Approach Delay, s/veh	27.4			26.0			25.2			22.5	
Approach LOS	C			C			,			C	

Timer - Assigned Phs	1	2	4	5	6
Phs Duration (G+Y+Rc), s9.5	24.8	20.4	6.7	27.6	17.8
Change Period (Y+Rc), s 4.0	4.6	4.6	4.0	4.6	4.6
Max Green Setting (Gma\&ís,s	45.4	25.4	26.0	45.4	25.4
Max Q Clear Time (g_c+IA),4s	8.1	9.5	4.0	8.8	7.0
Green Ext Time (p_c), s 0.5	9.4	3.7	0.1	8.3	2.8

Intersection Summary

HCM 6th Ctrl Delay	25.0
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	\rangle											\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个t		${ }^{7}$	性		${ }^{*}$	F		${ }^{7}$	F	
Traffic Volume (veh/h)	43	252	88	54	395	48	146	371	56	66	239	60
Future Volume (veh/h)	43	252	88	54	395	48	146	371	56	66	239	60
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	1.00		0.94	1.00		0.98	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	45	265	93	57	416	51	154	391	59	69	252	63
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	66	631	214	77	799	97	205	529	80	90	387	97
Arrive On Green	0.04	0.24	0.24	0.04	0.25	0.25	0.11	0.33	0.33	0.05	0.27	0.27
Sat Flow, veh/h	1810	2602	884	1810	3215	391	1810	1607	242	1810	1458	364
Grp Volume(v), veh/h	45	181	177	57	232	235	154	0	450	69	0	315
Grp Sat Flow(s),veh/h/ln	n1810	1805	1680	1810	1805	1801	1810	0	1849	1810	0	1822
Q Serve(g_s), s	1.3	4.5	4.8	1.7	5.9	6.0	4.4	0.0	11.6	2.0	0.0	8.2
Cycle Q Clear(g_c), s	1.3	4.5	4.8	1.7	5.9	6.0	4.4	0.0	11.6	2.0	0.0	8.2
Prop In Lane	1.00		0.53	1.00		0.22	1.00		0.13	1.00		0.20
Lane Grp Cap(c), veh/h	66	438	407	77	449	448	205	0	609	90	0	484
V/C Ratio(X)	0.68	0.41	0.43	0.74	0.52	0.52	0.75	0.00	0.74	0.77	0.00	0.65
Avail Cap(c_a), veh/h	693	1197	1114	693	1197	1194	693	0	881	693	0	868
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	h 25.5	17.1	17.2	25.3	17.3	17.4	23.0	0.0	15.9	25.1	0.0	17.5
Incr Delay (d2), s/veh	8.8	0.2	0.3	9.7	1.1	1.2	5.5	0.0	1.5	12.9	0.0	1.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh	h/If0. 7	1.7	1.7	0.9	2.4	2.4	2.0	0.0	4.5	1.1	0.0	3.3
Unsig. Movement Delay,	, s/veh											
LnGrp Delay(d),s/veh	34.3	17.3	17.4	35.0	18.5	18.5	28.5	0.0	17.4	38.0	0.0	19.2
LnGrp LOS	C	B	B	D	B	B	C	A	B	D	A	B
Approach Vol, veh/h		403			524			604			384	
Approach Delay, s/veh		19.3			20.3			20.2			22.6	
Approach LOS		B			C			C			C	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$),	, 56.8	17.5	7.2	22.1	6.5	17.8	10.6	18.7				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gma	ma20.5	35.5	20.5	25.5	20.5	35.5	20.5	25.5				
Max Q Clear Time (g_c+	+19,75	6.8	4.0	13.6	3.3	8.0	6.4	10.2				
Green Ext Time (p_c), s	s 0.1	1.4	0.1	1.9	0.0	3.6	0.3	1.9				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			20.5									
			C									

Notes
User approved pedestrian interval to be less than phase max green.

								4				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }^{\text {a }}$		${ }^{7}$	中t		${ }^{7}$	F		${ }^{7}$	F	
Traffic Volume (veh/h)	24	256	54	63	418	148	42	117	53	71	89	47
Future Volume (veh/h)	24	256	54	63	418	148	42	117	53	71	89	47
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.91	1.00		0.91	1.00		0.94	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	25	269	57	66	440	156	44	123	56	75	94	49
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	0	0	0	0	0	1	1	1	0	0	0
Cap, veh/h	43	940	194	89	886	310	67	284	129	98	294	153
Arrive On Green	0.02	0.32	0.32	0.05	0.35	0.35	0.04	0.24	0.24	0.05	0.25	0.25
Sat Flow, veh/h	1810	2921	603	1810	2553	892	1795	1200	546	1810	1161	605
Grp Volume(v), veh/h	25	163	163	66	309	287	44	0	179	75	0	143
Grp Sat Flow(s),veh/h/ln	1810	1805	1719	1810	1805	1641	1795	0	1746	1810	0	1766
Q Serve(g_s), s	0.6	3.2	3.3	1.7	6.4	6.5	1.1	0.0	4.1	1.9	0.0	3.1
Cycle Q Clear (g_c), s	0.6	3.2	3.3	1.7	6.4	6.5	1.1	0.0	4.1	1.9	0.0	3.1
Prop In Lane	1.00		0.35	1.00		0.54	1.00		0.31	1.00		0.34
Lane Grp Cap(c), veh/h	43	581	553	89	627	570	67	0	413	98	0	447
V/C Ratio(X)	0.58	0.28	0.29	0.74	0.49	0.50	0.66	0.00	0.43	0.77	0.00	0.32
Avail Cap(c_a), veh/h	613	1759	1675	613	1759	1599	799	0	592	805	0	599
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	22.8	11.9	12.0	22.2	12.1	12.2	22.4	0.0	15.3	22.0	0.0	14.3
Incr Delay (d2), s/veh	11.9	0.3	0.3	11.5	0.6	0.7	10.6	0.0	0.7	11.8	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/	$1 / 10.4$	1.1	1.1	0.9	2.2	2.1	0.6	0.0	1.5	1.1	0.0	1.2
Unsig. Movement Delay,	, s/veh											
LnGrp Delay(d),s/veh	34.8	12.2	12.3	33.7	12.7	12.9	33.0	0.0	16.1	33.9	0.0	14.7
LnGrp LOS	C	B	B	C	B	B	C	A	B	C	A	B
Approach Vol, veh/h		351			662			223			218	
Approach Delay, s/veh		13.8			14.9			19.4			21.3	
Approach LOS		B			B			B			C	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($G+Y+R \mathrm{C})$,	, 66.5	15.2	6.3	19.2	5.8	16.0	5.1	20.4				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	s 4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0				
Max Green Setting (Gmaz)	2X), 6	16.0	16.0	46.0	21.0	16.0	16.0	46.0				
Max Q Clear Time (g_c+	+17, 9	6.1	3.7	5.3	3.1	5.1	2.6	8.5				
Green Ext Time (p_c), s	0.1	0.7	0.1	2.1	0.1	0.5	0.0	4.3				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			16.3									
			B									

Notes
User approved pedestrian interval to be less than phase max green.

Notes
User approved pedestrian interval to be less than phase max green.

Intersection
Intersection Delay, s/veh12.1
Intersection LOS \quad B

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	「		\uparrow	「		\$			\$	
Traffic Vol, veh/h 26	178	35	29	175	41	49	157	37	30	76	47
Future Vol, veh/h 26	178	35	29	175	41	49	157	37	30	76	47
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \% 0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow 28	191	38	31	188	44	53	169	40	32	82	51
Number of Lanes 0	1	1	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			2			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			2			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			2		
HCM Control Delay 12.2			12.1			12.6			10.9		
HCM LOS B			B			B			B		

Lane	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, \%	20%	13%	0%	14%	0%	20%
Vol Thru, \%	65%	87%	0%	86%	0%	50%
Vol Right, \%	15%	0%	100%	0%	100%	31%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	243	204	35	204	41	153
LT Vol	49	26	0	29	0	30
Through Vol	157	178	0	175	0	76
RT Vol	37	0	35	0	41	47
Lane Flow Rate	261	219	38	219	44	165
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.409	0.379	0.057	0.379	0.067	0.262
Departure Headway (Hd)	5.64	6.22	5.443	6.22	5.435	5.74
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	635	577	655	577	656	622
Service Time	3.7	3.979	3.201	3.977	3.192	3.808
HCM Lane V/C Ratio	0.411	0.38	0.058	0.38	0.067	0.265
HCM Control Delay	12.6	12.8	8.5	12.8	8.6	10.9
HCM Lane LOS	B	B	A	B	A	B
HCM 95th-tile Q	2	1.8	0.2	1.8	0.2	1

Notes
Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个个	「	\％	性		\％	\uparrow	「		\uparrow	「
Traffic Volume（veh／h）	12	983	1104	72	453	35	530	19	31	53	31	25
Future Volume（veh／h）	12	983	1104	72	453	35	530	19	31	53	31	25
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	12	1013	0	74	467	36	560	0	0	55	32	26
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	0	0	0
Cap，veh／h	25	2021		88	2015	155	616	0		84	49	113
Arrive On Green	0.01	0.56	0.00	0.05	0.60	0.60	0.17	0.00	0.00	0.07	0.07	0.07
Sat Flow，veh／h	1795	3582	1598	1795	3361	258	3591	0	1598	1164	677	1562
Grp Volume（v），veh／h	12	1013	0	74	248	255	560	0	0	87	0	26
Grp Sat Flow（s），veh／h／ln	1795	1791	1598	1795	1791	1829	1795	0	1598	1842	0	1562
Q Serve（g＿s），s	0.7	19.2	0.0	4.6	7.2	7.3	17.1	0.0	0.0	5.2	0.0	1.8
Cycle Q Clear（g＿c），s	0.7	19.2	0.0	4.6	7.2	7.3	17.1	0.0	0.0	5.2	0.0	1.8
Prop In Lane	1.00		1.00	1.00		0.14	1.00		1.00	0.63		1.00
Lane Grp Cap（c），veh／h	25	2021		88	1074	1096	616	0		133	0	113
V／C Ratio（X）	0.48	0.50		0.84	0.23	0.23	0.91	0.00		0.65	0.00	0.23
Avail Cap（c＿a），veh／h	88	2021		88	1074	1096	625	0		370	0	314
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	0.98	0.98	0.98	0.91	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	54.8	14.8	0.0	52.8	10.4	10.4	45.5	0.0	0.0	50.6	0.0	49.0
Incr Delay（d2），s／veh	5.2	0.9	0.0	45.3	0.5	0.5	15.6	0.0	0.0	2.0	0.0	0.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.4	7.9	0.0	3.2	3.0	3.1	8.8	0.0	0.0	2.5	0.0	0.7
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	60.0	15.7	0.0	98.1	10.9	10.9	61.1	0.0	0.0	52.6	0.0	49.4
LnGrp LOS	E	B		F	B	B	E	A		D	A	D
Approach Vol，veh／h		1025	A		577			560	A		113	
Approach Delay，s／veh		16.2			22.1			61.1			51.9	
Approach LOS		B			C			E			D	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	9.5	67.2	12.1	5.6	71.1	23.2
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting（Gmax），s	5.5	48.5	22.5	5.5	48.5	19.5
Max Q Clear Time（g＿c＋11），s	6.6	21.2	7.2	2.7	9.3	19.1
Green Ext Time（p＿c），s	0.0	8.8	0.3	0.0	3.6	0.1

Intersection Summary

HCM 6th Ctrl Delay	30.5
HCM 6th LOS	C

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

	4		\checkmark	7		4	4	\dagger	p		\downarrow	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	44	7	${ }^{7}$	中 ${ }^{\text {a }}$			\uparrow	F'		\$	
Traffic Volume (veh/h)	8	726	461	389	639	2	243	1	758	5	5	9
Future Volume (veh/h)	8	726	461	389	639	2	243	1	758	5	5	9
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.87
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1737	1870	1900	1900	1885	1885	1856	1870	1870	1870
Adj Flow Rate, veh/h	8	756	0	405	666	2	253	1	0	5	5	9
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	0	0	11	2	0	0	1	1	3	2	2	2
Cap, veh/h	14	1767		420	2651	8	274	1		12	12	21
Arrive On Green	0.01	0.49	0.00	0.47	1.00	1.00	0.15	0.15	0.00	0.03	0.03	0.03
Sat Flow, veh/h	1810	3610	1472	1781	3692	11	1789	7	1572	416	416	750
Grp Volume(v), veh/h	8	756	0	405	326	342	254	0	0	19	0	0
Grp Sat Flow(s), veh/h/ln	1810	1805	1472	1781	1805	1898	1796	0	1572	1582	0	0
Q Serve(g_s), s	0.7	20.3	0.0	33.0	0.0	0.0	20.9	0.0	0.0	1.8	0.0	0.0
Cycle Q Clear(g_c), s	0.7	20.3	0.0	33.0	0.0	0.0	20.9	0.0	0.0	1.8	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.26		0.47
Lane Grp Cap(c), veh/h	14	1767		420	1296	1363	275	0		44	0	0
V/C Ratio(X)	0.58	0.43		0.96	0.25	0.25	0.92	0.00		0.43	0.00	0.00
Avail Cap(c_a), veh/h	48	1767		487	1296	1363	281	0		232	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.64	0.64	0.00	1.00	1.00	1.00	0.56	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	74.2	24.7	0.0	39.0	0.0	0.0	62.6	0.0	0.0	71.7	0.0	0.0
Incr Delay (d2), s/veh	9.1	0.5	0.0	28.5	0.5	0.4	22.0	0.0	0.0	4.8	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.3	8.8	0.0	15.1	0.2	0.2	11.3	0.0	0.0	0.8	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	83.3	25.2	0.0	67.5	0.5	0.4	84.7	0.0	0.0	76.6	0.0	0.0
LnGrp LOS	F	C		E	A	A	F	A		E	A	A
Approach Vol, veh/h		764	A		1073			254	A		19	
Approach Delay, s/veh		25.8			25.8			84.7			76.6	
Approach LOS		C			C			F			E	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	38.4	77.4		7.7	4.1	111.7		26.5				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	3.0	4.0		3.5	3.0	4.0		3.5				
Max Green Setting (Gmax), s	41.0	49.5		22.0	4.0	86.5		23.5				
Max Q Clear Time (g_c+11), s	35.0	22.3		3.8	2.7	2.0		22.9				
Green Ext Time (p_c), s	0.4	7.8		0.0	0.0	6.9		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			33.3									
HCM 6th LOS			C									

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个个	「	\％	性		\％	\uparrow	「	＊	$\hat{\dagger}$	
Traffic Volume（veh／h）	49	976	472	，	1043	13	483	14	48	114	145	92
Future Volume（veh／h）	49	976	472	3	1043	13	483	14	48	114	145	92
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h	51	1017	0	3	1086	14	514	0	0	119	151	96
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	2	3	4	0	4	4	6	2	3	2	0	0
Cap，veh／h	65	1942		7	1831	24	583	0		278	169	108
Arrive On Green	0.05	0.73	0.00	0.00	0.52	0.52	0.17	0.00	0.00	0.16	0.16	0.16
Sat Flow，veh／h	1781	3526	1560	1810	3534	46	3450	0	1572	1781	1083	688
Grp Volume（v），veh／h	51	1017	0	3	537	563	514	0	0	119	0	247
Grp Sat Flow（s），veh／h／n	1781	1763	1560	1810	1749	1830	1725	0	1572	1781	0	1771
Q Serve（g＿s），s	4.2	18.8	0.0	0.2	32.1	32.1	21.8	0.0	0.0	9.1	0.0	20.5
Cycle Q Clear（g＿c），s	4.2	18.8	0.0	0.2	32.1	32.1	21.8	0.0	0.0	9.1	0.0	20.5
Prop In Lane	1.00		1.00	1.00		0.02	1.00		1.00	1.00		0.39
Lane Grp Cap（c），veh／h	65	1942		7	906	948	583	0		278	0	277
V／C Ratio（X）	0.78	0.52		0.42	0.59	0.59	0.88	0.00		0.43	0.00	0.89
Avail Cap（c＿a），veh／h	101	1942		62	906	948	793	0		338	0	337
HCM Platoon Ratio	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	70.7	11.5	0.0	74.5	25.2	25.2	60.9	0.0	0.0	57.2	0.0	62.0
Incr Delay（d2），s／veh	18.4	1.0	0.0	35.4	2.9	2.7	8.8	0.0	0.0	1.0	0.0	21.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	2.3	6.3	0.0	0.2	13.9	14.5	10.4	0.0	0.0	4.2	0.0	10.9
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	89.1	12.5	0.0	110.0	28.0	27.9	69.7	0.0	0.0	58.3	0.0	83.8
LnGrp LOS	F	B		F	C	C	E	A		E	A	F
Approach Vol，veh／h		1068	A		1103			514	A		366	
Approach Delay，s／veh		16.2			28.2			69.7			75.5	
Approach LOS		B			C			E			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	5.1	87.1	29.8	10.0	82.2	27.9
Change Period（Y＋Rc），s	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	5.1	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋11），s	2.2	20.8	23.8	6.2	34.1	22.5
Green Ext Time（p＿c），s	0.0	9.5	1.5	0.0	8.0	0.9

Intersection Summary

HCM 6th Ctrl Delay	36.6
HCM 6th LOS	D

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

2					
Movement EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	* 4	44	「	\% 1	「'
Traffic Volume (veh/h) 332	538	564	53	640	406
Future Volume (veh/h) 332	538	564	53	640	406
Initial Q (Qb), veh 0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00			0.98	1.00	1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	No		No	
Adj Sat Flow, veh/h/ln 1885	1885	1870	1870	1885	1885
Adj Flow Rate, veh/h 342	555	581	55	660	0
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \% 1	1	2	2	1	1
Cap, veh/h 510	890	795	347	771	
Arrive On Green 0.39	0.39	0.22	0.22	0.22	0.00
Sat Flow, veh/h 1315	2390	3647	1551	3483	1598
Grp Volume(v), veh/h 473	424	581	55	660	0
Grp Sat Flow(s),veh/h/ln1819	1791	1777	1551	1742	1598
Q Serve(g_s), s 17.2	15.2	12.1	2.3	14.6	0.0
Cycle Q Clear(g_c), s 17.2	15.2	12.1	2.3	14.6	0.0
Prop In Lane 0.72			1.00	1.00	1.00
Lane Grp Cap(c), veh/h 705	694	795	347	771	
V/C Ratio(X) 0.67	0.61	0.73	0.16	0.86	
Avail Cap(c_a), veh/h 705	694	795	347	906	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 0.09	0.09	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh 20.3	19.7	28.8	25.0	29.9	0.0
Incr Delay (d2), s/veh 0.5	0.4	5.9	1.0	7.2	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lı. 1	6.1	5.7	0.9	6.7	0.0
Unsig. Movement Delay, s/veh					
LnGrp Delay(d),s/veh 20.7	20.0	34.7	26.0	37.1	0.0
LnGrp LOS C	C	C	C	D	
Approach Vol, veh/h	897	636		660	A
Approach Delay, s/veh	20.4	33.9		37.1	
Approach LOS	C	C		D	
Timer - Assigned Phs	2		4		6
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	35.6		21.9		22.5
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	4.6		* 4.2		4.6
Max Green Setting (Gmax), s	27.9		* 21		17.9
Max Q Clear Time (g_c+l1), s	19.2		16.6		14.1
Green Ext Time (p_c), s	3.9		1.1		1.5

Intersection Summary

HCM 6th Ctrl Delay 29.4

HCM 6th LOS C
Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes
User approved volume balancing among the lanes for turning movement.

Intersection						
Int Delay, s/veh	4.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	\mathbf{r}	$\mathbf{1}$	个	$\mathbf{7}$	$\mathbf{7}$
Traffic Vol, veh/h	510	204	156	379	72	76
Future Vol, veh/h	510	204	156	379	72	76
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	25	170	-	145	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	0	0	0	0
Mvmt Flow	531	213	163	395	75	79

Intersection
Intersection Delay, s/veh78.4
Intersection LOS F

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\&			\uparrow	「		\ddagger			\$	
Traffic Vol, veh/h 5	341	3	3	37	276	2	1	4	612	3	6
Future Vol, veh/h 5	341	3	3	37	276	2	1	4	612	3	6
Peak Hour Factor 0.89	0.89	0.89	0.92	0.92	0.92	0.58	0.58	0.58	0.90	0.90	0.90
Heavy Vehicles, \% 2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow 6	383	3	3	40	300	3	2	7	680	3	7
Number of Lanes 0	1	0	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			1			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			1			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			1		
HCM Control Delay 27.4			17.9			11.6			138.6		
HCM LOS D			C			B			F		

	NBLn1 EBLn1WBLn1WBLn2 SBLn1				
Vol Left, \%	29%	1%	7%	0%	99%
Vol Thru, $\%$	14%	98%	93%	0%	0%
Vol Right, \%	57%	1%	0%	100%	1%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	7	349	40	276	621
LT Vol	2	5	3	0	612
Through Vol	1	341	37	0	3
RT Vol	4	3	0	276	6
Lane Flow Rate	12	392	43	300	690
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.026	0.726	0.089	0.554	1.226
Departure Headway (Hd)	8.38	7.326	8.104	7.341	6.395
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	430	498	445	495	573
Service Time	6.38	5.326	5.804	5.041	4.437
HCM Lane V/C Ratio	0.028	0.787	0.097	0.606	1.204
HCM Control Delay	11.6	27.4	11.6	18.8	138.6
HCM Lane LOS	B	D	B	C	F
HCM 95th-tile Q	0.1	5.9	0.3	3.3	25.8

Notes
User approved volume balancing among the lanes for turning movement.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			${ }_{1}$	\uparrow	F＇		个1	「		性	
Traffic Volume（veh／h）	0	0	821	0	253	0	537	488	0	755	143
Future Volume（veh／h） 0	0	0	821	0	253	0	537	488	0	755	143
Initial $Q(Q b)$ ，veh			0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）			1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus，Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach				No			No			No	
Adj Sat Flow，veh／h／n			1885	1900	1826	0	1870	1900	0	1870	1870
Adj Flow Rate，veh／h			902	0	278	0	590	0	0	830	157
Peak Hour Factor			0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh，\％			1	0	5	0	2	0	0	2	2
Cap，veh／h			1072	0	462	0	1879		0	1567	296
Arrive On Green			0.30	0.00	0.30	0.00	0.53	0.00	0.00	0.53	0.53
Sat Flow，veh／h			3591	0	1547	0	3647	1610	0	3058	561
Grp Volume（v），veh／h			902	0	278	0	590	0	0	497	490
Grp Sat Flow（s），veh／h／ln			1795	0	1547	0	1777	1610	0	1777	1748
Q Serve（g＿s），s			12.9	0.0	8.4	0.0	5.2	0.0	0.0	10.1	10.1
Cycle Q Clear（g＿c），s			12.9	0.0	8.4	0.0	5.2	0.0	0.0	10.1	10.1
Prop In Lane			1.00		1.00	0.00		1.00	0.00		0.32
Lane Grp Cap（c），veh／h			1072	0	462	0	1879		0	940	924
VIC Ratio（X）			0.84	0.00	0.60	0.00	0.31		0.00	0.53	0.53
Avail Cap（c＿a），veh／h			1143	0	492	0	1879		0	940	924
HCM Platoon Ratio			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）			1.00	0.00	1.00	0.00	0.89	0.00	0.00	0.92	0.92
Uniform Delay（d），s／veh			18.1	0.0	16.5	0.0	7.3	0.0	0.0	8.5	8.5
Incr Delay（d2），s／veh			5.7	0.0	2.1	0.0	0.4	0.0	0.0	2.0	2.0
Initial Q Delay（d3），s／veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln			5.4	0.0	2.8	0.0	1.6	0.0	0.0	3.6	3.6
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh			23.8	0.0	18.6	0.0	7.7	0.0	0.0	10.4	10.5
LnGrp LOS			C	A	B	A	A		A	B	B
Approach Vol，veh／h				1180			590	A		987	
Approach Delay，s／veh				22.5			7.7			10.5	
Approach LOS				C			A			B	

Timer－Assigned Phs	2	6	8
Phs Duration $(G+Y+R c), ~ s$	34.4	34.4	20.6
Change Period（Y＋Rc），s	5.3	5.3	4.2
Max Green Setting（Gmax），s	28.0	28.0	17.5
Max Q Clear Time（g＿c＋11），s	7.2	12.1	14.9
Green Ext Time（p＿c），s	4.5	7.2	1.5

Intersection Summary

HCM 6th Ctrl Delay	15.0
HCM 6th LOS	B

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow	「		\uparrow	「	7	惺		7	快	
Traffic Volume（vph）	679	26	274	44	16	107	83	1405	17	46	1013	240
Future Volume（vph）	679	26	274	44	16	107	83	1405	17	46	1013	240
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	4.2	4.2	4.2		4.2	4.2	3.7	4.9		4.6	4.9	
Lane Util．Factor	0.95	0.95	1.00		1.00	1.00	1.00	0.91		1.00	0.91	
Frpb，ped／bikes	1.00	1.00	0.97		1.00	1.00	1.00	1.00		1.00	0.98	
Flpb，ped／bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.97	
Flt Protected	0.95	0.96	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1625	1641	1509		1784	1561	1745	4949		1745	4735	
FIt Permitted	0.95	0.96	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（perm）	1625	1641	1509		1784	1561	1745	4949		1745	4735	
Peak－hour factor，PHF	0.86	0.61	0.80	0.85	0.44	0.79	0.66	0.86	0.61	0.67	0.94	0.85
Adj．Flow（vph）	790	43	342	52	36	135	126	1634	28	69	1078	282
RTOR Reduction（vph）	0	0	124	0	0	117	0	1	0	0	38	0
Lane Group Flow（vph）	419	414	219	0	88	18	126	1661	0	69	1322	0
Confl．Peds．（\＃／hr）			18	18			12		8	8		12
Confl．Bikes（\＃／hr）												5

Heavy Vehicles（\％）	2%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%	1%
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	4	4		3	3		5	1		2	6	

Permitted Phases			4		3				
Actuated Green，G（s）	30.0	30.0	30.0	16.0	16.0	13.3	43.6	12.4	43.6
Effective Green， g （s）	30.0	30.0	30.0	16.0	16.0	13.3	43.6	12.4	43.6
Actuated g／C Ratio	0.25	0.25	0.25	0.13	0.13	0.11	0.36	0.10	0.36
Clearance Time（s）	4.2	4.2	4.2	4.2	4.2	3.7	4.9	4.6	4.9
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.2
Lane Grp Cap（vph）	406	410	377	238	208	193	1799	180	1721
v／s Ratio Prot	c0．26	0.25		c0．05		c0．07	c0．34	0.04	0.28
v／s Ratio Perm			0.14		0.01				
v／c Ratio	1.03	1.01	0.58	0.37	0.09	0.65	0.92	0.38	0.77
Uniform Delay，d1	45.0	45.0	39.4	47.4	45.5	51.1	36.5	50.2	33.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.18	0.92
Incremental Delay，d2	53.1	46.9	2.2	1.0	0.2	7.7	9.4	1.3	3.3
Delay（s）	98.1	91.9	41.6	48.3	45.7	58.8	46.0	60.5	34.4
Level of Service	F	F	D	D	D	E	D	E	C
Approach Delay（s）		79.4		46.8			46.9		35.6
Approach LOS		E		D			D		D

Intersection Summary			
HCM 2000 Control Delay	51.7	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.84		17.9
Actuated Cycle Length（s）	119.9	Sum of lost time（s）	C
Intersection Capacity Utilization	70.1%	ICU Level of Service	
Analysis Period（min）	15		
c Critical Lane Group			

	\dagger	\rightarrow		7	\leftarrow		4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％ 7	$\hat{\beta}$			\uparrow	「	${ }^{7}$	恌		${ }^{7}$	个种	r
Traffic Volume（veh／h）	475	159	34	28	86	112	46	870	67	142	736	316
Future Volume（veh／h）	475	159	34	28	86	112	46	870	67	142	736	316
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.94	1.00		0.91	1.00		0.96	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h	500	167	36	29	91	118	48	916	71	149	775	333
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	1	1	1	0	0	0	1	1	1	1	1	1
Cap，veh／h	731	311	67	51	161	166	62	1866	144	191	2348	713
Arrive On Green	0.21	0.21	0.21	0.11	0.11	0.11	0.03	0.38	0.38	0.11	0.46	0.46
Sat Flow，veh／h	3483	1485	320	454	1424	1461	1795	4855	375	1795	5147	1563
Grp Volume（v），veh／h	500	0	203	120	0	118	48	646	341	149	775	333
Grp Sat Flow（s），veh／h／n	1742	0	1805	1877	0	1461	1795	1716	1799	1795	1716	1563
Q Serve（g＿s），s	11.8	0.0	8.9	5.4	0.0	7.0	2.4	12.8	12.8	7.2	8.6	13.1
Cycle Q Clear（g＿c），s	11.8	0.0	8.9	5.4	0.0	7.0	2.4	12.8	12.8	7.2	8.6	13.1
Prop In Lane	1.00		0.18	0.24		1.00	1.00		0.21	1.00		1.00
Lane Grp Cap（c），veh／h	731	0	379	213	0	166	62	1319	692	191	2348	713
V／C Ratio（X）	0.68	0.00	0.54	0.56	0.00	0.71	0.77	0.49	0.49	0.78	0.33	0.47
Avail Cap（c＿a），veh／h	820	0	425	442	0	344	322	1745	915	523	2618	795
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	32.5	0.0	31.4	37.5	0.0	38.2	42.7	20.8	20.9	38.8	15.5	16.8
Incr Delay（d2），s／veh	4.3	0.0	4.2	3.3	0.0	7.8	24.2	1.3	2.5	9.3	0.4	2.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	5.4	0.0	4.3	2.7	0.0	2.8	1.4	5.1	5.6	3.6	3.2	4.8
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	36.9	0.0	35.6	40.8	0.0	46.0	66.9	22.1	23.4	48.2	15.9	19.0
LnGrp LOS	D	A	D	D	A	D	E	C	C	D	B	B
Approach Vol，veh／h		703			238			1035			1257	
Approach Delay，s／veh		36.5			43.4			24.6			20.5	
Approach LOS		D			D			C			C	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	7.1	45.3	14.1	13.5	38.9	22.7
Change Period（Y＋Rc），s	4.0	4.6	4.0	4.0	4.6	4.0
Max Green Setting（Gmax），s	16.0	45.4	21.0	26.0	45.4	21.0
Max Q Clear Time（g＿c＋11），s	4.4	15.1	9.0	9.2	14.8	13.8
Green Ext Time（p＿c），s	0.1	20.3	1.2	0.5	19.5	3.9

Intersection Summary

HCM 6th Ctrl Delay	27.0
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green．

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations \%	* \downarrow		7	¢ \downarrow			惺		\% ${ }^{17}$	性	F
Traffic Volume (veh/h) 388	549	121	216	242	95	128	541	90	178	459	89
Future Volume (veh/h) 388	549	121	216	242	95	128	541	90	178	459	89
Initial $Q(Q b)$, veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.97	1.00		0.96	1.00		0.97	1.00		0.97
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h 364	617	125	190	295	98	132	558	93	184	473	92
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \% 1	1	1	0	0	0	1	1	1	1	1	1
Cap, veh/h 465	784	159	350	526	170	171	1207	197	284	926	400
Arrive On Green 0.26	0.26	0.26	0.19	0.19	0.19	0.10	0.27	0.27	0.08	0.26	0.26
Sat Flow, veh/h 1795	3028	612	1810	2721	880	1795	4432	724	3483	3582	1547
Grp Volume(v), veh/h 364	384	358	190	204	189	132	429	222	184	473	92
Grp Sat Flow(s),veh/h/n1795	1885	1754	1810	1900	1701	1795	1716	1725	1742	1791	1547
Q Serve(g_s), s 17.3	17.4	17.5	8.7	8.9	9.3	6.6	9.6	9.9	4.7	10.4	4.3
Cycle Q Clear(g_c), s 17.3	17.4	17.5	8.7	8.9	9.3	6.6	9.6	9.9	4.7	10.4	4.3
Prop In Lane 1.00		0.35	1.00		0.52	1.00		0.42	1.00		1.00
Lane Grp Cap(c), veh/h 465	488	455	350	367	329	171	934	470	284	926	400
V/C Ratio(X) 0.78	0.79	0.79	0.54	0.55	0.58	0.77	0.46	0.47	0.65	0.51	0.23
Avail Cap(c_a), veh/h 496	521	485	500	525	470	508	1696	853	986	1770	765
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) $\quad 1.00$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 31.6	31.7	31.7	33.4	33.5	33.6	40.6	27.8	27.9	40.9	29.1	26.8
Incr Delay (d2), s/veh 8.1	7.9	8.6	1.9	1.9	2.3	10.0	1.3	2.7	3.5	1.6	1.1
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/Ir8.5	8.9	8.4	4.0	4.3	4.0	3.3	4.0	4.3	2.1	4.5	1.7
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 39.7	39.6	40.3	35.3	35.3	35.9	50.6	29.1	30.6	44.4	30.7	27.9
LnGrp LOS D	D	D	D	D	D	D	C	C	D	C	C
Approach Vol, veh/h	1106			583			783			749	
Approach Delay, s/veh	39.9			35.5			33.1			33.7	
Approach LOS	D			D			C			C	

Timer - Assigned Phs 1	2	4	5	6	8
Phs Duration (G+Y+Rc), \$1.5	29.6	22.4	12.8	28.3	28.4
Change Period (Y+Rc), s 4.0	4.6	4.6	4.0	4.6	4.6
Max Green Setting (Gmaz¢.¢	45.4	25.4	26.0	45.4	25.4
Max Q Clear Time (g_c $+119,7$ \%	11.9	11.3	8.6	12.4	19.5
Green Ext Time (p_c), s 0.8	11.2	3.7	0.5	9.2	3.7

Intersection Summary

HCM 6th Ctrl Delay	36.0
HCM 6th LOS	D

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

User approved pedestrian interval to be less than phase max green.

Timer - Assigned Phs	2	3	4	5	6	7	8
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), 88.4	15.7	7.0	34.8	5.5	28.6	6.2	35.6
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting (Gmaz), ${ }^{\text {B }}$	16.0	16.0	46.0	21.0	16.0	16.0	46.0
Max Q Clear Time (g_c + MII, ${ }^{\text {S }}$	7.4	4.3	22.4	3.0	8.7	3.6	10.2
Green Ext Time (p_c), s 0.5	0.4	0.1	8.4	0.0	0.6	0.0	3.8

Intersection Summary

HCM 6th Ctrl Delay	24.1
HCM 6th LOS	

Notes
User approved pedestrian interval to be less than phase max green.

								4				\downarrow
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	性		${ }^{*}$	\uparrow	F		\uparrow	「		\uparrow	$\stackrel{7}{7}$
Traffic Volume (veh/h)	34	1228	106	142	538	21	87	10	114	19	9	16
Future Volume (veh/h)	34	1228	106	142	538	21	87	10	114	19	9	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1	1.00		0.96	1.00		0.97	1.00		0.97	1.00		0.99
Parking Bus, Adj 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln 19	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	35	1266	109	146	555	22	90	10	118	20	9	16
Peak Hour Factor 0	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	0	0	0	0	0	0	1	1	1	0	0	0
Cap, veh/h	50	1502	129	189	1010	828	91	6	412	81	23	426
Arrive On Green 0	0.03	0.45	0.45	0.10	0.53	0.53	0.27	0.27	0.27	0.27	0.27	0.27
Sat Flow, veh/h 18	1810	3352	288	1810	1900	1557	0	21	1546	0	86	1599
Grp Volume(v), veh/h	35	680	695	146	555	22	100	0	118	29	0	16
Grp Sat Flow(s),veh/h/n18	1810	1805	1835	1810	1900	1557	21	0	1546	86	0	1599
Q Serve(g_s), s	1.4	25.0	25.3	5.9	14.5	0.5	0.0	0.0	4.6	0.0	0.0	0.6
Cycle Q Clear(g_c), s	1.4	25.0	25.3	5.9	14.5	0.5	20.0	0.0	4.6	20.0	0.0	0.6
Prop In Lane $\quad 1$	1.00		0.16	1.00		1.00	0.90		1.00	0.69		1.00
Lane Grp Cap(c), veh/h	50	809	822	189	1010	828	97	0	412	104	0	426
V/C Ratio(X) 0	0.70	0.84	0.85	0.77	0.55	0.03	1.04	0.00	0.29	0.28	0.00	0.04
Avail Cap(c_a), veh/h 6	626	1079	1097	614	1135	930	97	0	412	104	0	426
HCM Platoon Ratio 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 3	36.2	18.3	18.4	32.8	11.6	8.4	36.4	0.0	21.9	23.0	0.0	20.4
Incr Delay (d2), s/veh 1	16.3	3.6	3.7	6.5	0.2	0.0	101.4	0.0	0.1	0.5	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/Ir.	$1 / 10.8$	10.2	10.5	2.9	5.6	0.2	4.5	0.0	1.6	0.4	0.0	0.2
Unsig. Movement Delay, s	, s/veh											
LnGrp Delay(d),s/veh 5	52.5	21.9	22.1	39.3	11.8	8.4	137.8	0.0	22.0	23.5	0.0	20.4
LnGrp LOS	D	C	C	D	B	A	F	A	C	C	A	C
Approach Vol, veh/h		1410			723			218			45	
Approach Delay, s/veh		22.8			17.3			75.1			22.4	
Approach LOS		C			B			E			C	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	, 22.4	38.8		24.0	6.1	45.1		24.0				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	s 4.5	5.1		4.0	4.0	5.1		4.0				
Max Green Setting (Gmaz	225	44.9		20.0	26.0	44.9		20.0				
Max Q Clear Time (g_c+11	-17,93	27.3		22.0	3.4	16.5		22.0				
Green Ext Time (p_c), s	0.3	6.4		0.0	0.1	2.7		0.0				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			25.9									
			C									

Notes
User approved pedestrian interval to be less than phase max green.

								\uparrow				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	F		\%	\uparrow		7	F		\%	F	
Traffic Volume (veh/h)	49	309	108	129	196	31	62	294	100	61	406	38
Future Volume (veh/h)	49	309	108	129	196	31	62	294	100	61	406	38
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.93	1.00		0.95	1.00		0.95	1.00		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	51	322	112	134	204	32	65	306	104	64	423	40
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	1	1	1	0	0	0	1	1	1	0	0	0
Cap, veh/h	81	389	135	177	556	87	92	412	140	92	529	50
Arrive On Green	0.04	0.30	0.30	0.10	0.35	0.35	0.05	0.31	0.31	0.05	0.31	0.31
Sat Flow, veh/h	1795	1310	455	1810	1590	249	1795	1325	450	1810	1701	161
Grp Volume(v), veh/h	51	0	434	134	0	236	65	0	410	64	0	463
Grp Sat Flow(s),veh/h/n	n1795	0	1765	1810	0	1839	1795	0	1775	1810	0	1862
Q Serve(g_s), s	2.0	0.0	16.0	5.0	0.0	6.7	2.5	0.0	14.5	2.4	0.0	15.9
Cycle Q Clear (g_c), s	2.0	0.0	16.0	5.0	0.0	6.7	2.5	0.0	14.5	2.4	0.0	15.9
Prop In Lane	1.00		0.26	1.00		0.14	1.00		0.25	1.00		0.09
Lane Grp Cap(c), veh/h	81	0	524	177	0	643	92	0	552	92	0	579
V/C Ratio(X)	0.63	0.00	0.83	0.76	0.00	0.37	0.71	0.00	0.74	0.69	0.00	0.80
Avail Cap(c_a), veh/h	681	0	884	686	0	921	681	0	889	686	0	932
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	32.8	0.0	22.9	30.7	0.0	17.0	32.6	0.0	21.6	32.6	0.0	22.1
Incr Delay (d2), s/veh	7.9	0.0	3.4	6.5	0.0	0.4	9.5	0.0	2.8	9.0	0.0	3.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh	h/lı1. 0	0.0	6.8	2.5	0.0	2.8	1.3	0.0	6.0	1.3	0.0	7.1
Unsig. Movement Delay	, s/veh											
LnGrp Delay (d),s/veh	40.7	0.0	26.3	37.3	0.0	17.3	42.1	0.0	24.4	41.7	0.0	25.8
LnGrp LOS	D	A	C	D	A	B	D	A	C	D	A	C
Approach Vol, veh/h		485			370			475			527	
Approach Delay, s/veh		27.8			24.5			26.8			27.7	
Approach LOS		C			C			C			C	
Timer - Assigned Phs	,	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$),	, 30.3	25.8	7.1	26.7	6.6	29.4	7.1	26.7				
Change Period ($\mathrm{Y}+\mathrm{Rc}$),	s 3.5	5.0	3.5	5.0	3.5	5.0	3.5	5.0				
Max Green Setting (Gma	240,s	35.0	26.5	35.0	26.5	35.0	26.5	35.0				
Max Q Clear Time (g_c+	+17, 0_{5}	18.0	4.5	17.9	4.0	8.7	4.4	16.5				
Green Ext Time (p_c), s	S 0.3	2.7	0.1	3.8	0.1	1.5	0.1	3.5				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			26.9									
			C									

Intersection
Intersection Delay, s/veh39.1
Intersection LOS \quad E

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow	「		\$			\uparrow	
Traffic Vol, veh/h	74	424	86	49	250	49	31	89	36	39	127	64
Future Vol, veh/h	74	424	86	49	250	49	31	89	36	39	127	64
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \%	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	80	456	92	53	269	53	33	96	39	42	137	69
Number of Lanes	0	1	1	0	1	1	0	1	0	0	1	0

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	2	2	1	1
Conflicting Approach Left SB	NB	EB	WB	
Conflicting Lanes Left	1	1	2	2
Conflicting Approach RighNB	SB	WB	EB	
Conflicting Lanes Right	1	1	2	2
HCM Control Delay	65	20.8	14.9	17.5
HCM LOS	F	C	B	

Lane	NBLn1 EBLn1	EBLn2WBLn1WBLn2 SBLn1				
Vol Left, \%	20%	15%	0%	16%	0%	17%
Vol Thru, \%	57%	85%	0%	84%	0%	55%
Vol Right, \%	23%	0%	100%	0%	00%	28%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	156	498	86	299	49	230
LT Vol	31	74	0	49	0	39
Through Vol	89	424	0	250	0	127
RT Vol	36	0	86	0	49	64
Lane Flow Rate	168	535	92	322	53	247
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.352	1.033	0.158	0.642	0.095	0.496
Departure Headway (Hd)	7.758	6.946	6.152	7.452	6.647	7.396
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	466	525	584	489	542	490
Service Time	5.758	4.674	3.88	5.152	4.347	5.39
HCM Lane V/C Ratio	0.361	1.019	0.158	0.658	0.098	0.504
HCM Control Delay	14.9	74.5	10	22.6	10	17.5
HCM Lane LOS	B	F	A	C	A	C
HCM 95th-tile Q	1.6	15.2	0.6	4.5	0.3	2.7

	\rangle							4				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	F	\%	\uparrow	F	7	F		${ }^{7}$	\uparrow	
Traffic Volume (veh/h)	57	508	242	15	273	102	87	44	7	161	97	95
Future Volume (veh/h)	57	508	242	15	273	102	87	44	7	161	97	95
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.90	1.00		0.92
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1900	1900	1900	1885	1885	1885
Adj Flow Rate, veh/h	63	564	0	17	303	0	97	49	8	179	108	106
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, \%	1	1	1	1	1	1	0	0	0	1	1	1
Cap, veh/h	99	699		37	634		127	301	49	227	208	204
Arrive On Green	0.06	0.37	0.00	0.02	0.34	0.00	0.07	0.19	0.19	0.13	0.25	0.25
Sat Flow, veh/h	1795	1885	1598	1795	1885	1598	1810	1564	255	1795	833	818
Grp Volume(v), veh/h	63	564	0	17	303	0	97	0	57	179	0	214
Grp Sat Flow(s),veh/h/n1	1795	1885	1598	1795	1885	1598	1810	0	1819	1795	0	1650
Q Serve(g_s), s	2.0	15.3	0.0	0.5	7.3	0.0	3.0	0.0	1.5	5.5	0.0	6.4
Cycle Q Clear(g_c), s	2.0	15.3	0.0	0.5	7.3	0.0	3.0	0.0	1.5	5.5	0.0	6.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.14	1.00		0.50
Lane Grp Cap(c), veh/h	99	699		37	634		127	0	350	227	0	411
V/C Ratio(X)	0.63	0.81		0.46	0.48		0.77	0.00	0.16	0.79	0.00	0.52
Avail Cap(c_a), veh/h	503	1173		503	1173		507	0	670	503	0	607
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(1)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	26.4	16.1	0.0	27.6	15.0	0.0	26.1	0.0	19.2	24.2	0.0	18.5
Incr Delay (d2), s/veh	4.9	2.3	0.0	6.4	0.6	0.0	3.6	0.0	0.2	2.3	0.0	0.8
Initial Q Delay(d3),S/veh 0.0\%ile BackOfQ(50\%),veh/110.9		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		6.3	0.0	0.3	2.9	0.0	1.4	0.0	0.6	2.3	0.0	2.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh LnGrp LOS	31.3	18.4	0.0	34.0	15.5	0.0	29.7	0.0	19.4	26.5	0.0	19.2
	C	B		C	B		C	A	B	C	A	B
Approach Vol, veh/h		627	A		320	A		154			393	
Approach Delay, s/veh		19.7			16.5			25.9			22.5	
Approach LOS		B			B			C			C	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s5.2	25.7	8.0	18.2	7.2	23.7	11.2	15.0	
Change Period (Y+Rc), s 4.0	4.5	4.0	4.0	4.0	4.5	4.0	4.0	
Max Green Setting (Gmaxक,.	35.5	16.0	21.0	16.0	35.5	16.0	21.0	
Max Q Clear Time (g_c $+124,5$	17.3	5.0	8.4	4.0	9.3	7.5	3.5	
Green Ext Time (p_c), \mathbf{s}	0.0	3.7	0.1	0.8	0.1	1.8	0.2	0.2

Intersection Summary

HCM 6th Ctrl Delay	20.4
HCM 6th LOS	C

Notes
Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Kimley»)Horn

APPENDIX D.
 NEAR TERM CONDITIONS SYNCHRO OUTPUT SHEETS

	\dagger	\rightarrow			4		4	4	p	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个4	「	\％	性		\％	\uparrow	「		\uparrow	F
Traffic Volume（veh／h）	29	543	404	121	517	65	582	24	108	27	23	12
Future Volume（veh／h）	29	543	404	121	517	65	582	24	108	27	23	12
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.96
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	30	560	0	125	533	67	618	0	0	28	24	12
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	，	1	1	1	1	1	0	－	0
Cap，veh／h	49	2079		88	1922	241	625	0		53	46	83
Arrive On Green	0.03	0.58	0.00	0.05	0.60	0.60	0.17	0.00	0.00	0.05	0.05	0.05
Sat Flow，veh／h	1795	3582	1598	1795	3189	399	3591	0	1598	996	854	1551
Grp Volume（v），veh／h	30	560	0	125	298	302	618	0	0	52	0	12
Grp Sat Flow（s），veh／h／n	1795	1791	1598	1795	1791	1798	1795	0	1598	1850	0	1551
Q Serve（g＿s），s	1.9	8.7	0.0	5.5	8.9	9.0	19.2	0.0	0.0	3.1	0.0	0.8
Cycle Q Clear（g＿c），s	1.9	8.7	0.0	5.5	8.9	9.0	19.2	0.0	0.0	3.1	0.0	0.8
Prop In Lane	1.00		1.00	1.00		0.22	1.00		1.00	0.54		1.00
Lane Grp Cap（c），veh／h	49	2079		88	1079	1083	625	0		99	0	83
V／C Ratio（X）	0.62	0.27		1.42	0.28	0.28	0.99	0.00		0.53	0.00	0.14
Avail Cap（c＿a），veh／h	88	2079		88	1079	1083	625	0		372	0	312
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	0.96	0.96	0.96	0.75	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	53.9	11.7	0.0	53.3	10.6	10.6	46.1	0.0	0.0	51.6	0.0	50.6
Incr Delay（d2），s／veh	4.6	0.3	0.0	240.1	0.6	0.6	28.2	0.0	0.0	1.6	0.0	0.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.9	3.5	0.0	8.4	3.7	3.7	10.9	0.0	0.0	1.5	0.0	0.3
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	58.6	12.0	0.0	293.3	11.2	11.2	74.3	0.0	0.0	53.2	0.0	50.9
LnGrp LOS	E	B		F	B	B	E	A		D	A	D
Approach Vol，veh／h		590	A		725			618	A		64	
Approach Delay，s／veh		14.4			59.9			74.3			52.8	
Approach LOS		B			E			E			D	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s	9.5	69.0		10.0	7.0	71.5		23.5				
Change Period（ $Y+R \mathrm{R}$ ），s	4.0	4.0		4.0	4.0	4.0		4.0				
Max Green Setting（Gmax），s	5.5	48.5		22.5	5.5	48.5		19.5				
Max Q Clear Time（g＿c＋1），s	7.5	10.7		5.1	3.9	11.0		21.2				
Green Ext Time（p＿c），s	0.0	4.5		0.1	0.0	4.4		0.0				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			50.7									
			D									

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Timer - Assigned Phs	1	2	4	6
Phs Duration (G+Y+Rc), 86.2	23.9	26.6	40.2	
Change Period (Y+Rc), s 4.5	5.0	4.5	5.0	
Max Green Setting (Gmax9, s	33.0	28.5	33.0	
Max Q Clear Time (g_c+T11),6s	12.8	21.3	8.9	
Green Ext Time (p_c), s	0.2	5.5	0.8	6.1

Intersection Summary

HCM 6th Ctrl Delay 21.7

HCM 6th LOS C

	4	\rightarrow		7		4	4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	个个	「	\％	个 ${ }^{2}$			\uparrow	「		\＄	
Traffic Volume（veh／h）	6	678	370	324	621	6	232	2	936	1	0	2
Future Volume（veh／h）	6	678	370	324	621	6	232	2	936	1	0	2
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.86
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1737	1870	1900	1900	1885	1885	1856	1870	1870	1870
Adj Flow Rate，veh／h	6	706	0	338	647	6	242	2	0	1	0	2
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	0	0	11	2	0	0	1	1	3	2	2	2
Cap，veh／h	11	1954		356	2694	25	264	2		9	0	17
Arrive On Green	0.01	0.54	0.00	0.40	1.00	1.00	0.15	0.15	0.00	0.02	0.00	0.02
Sat Flow，veh／h	1810	3610	1472	1781	3665	34	1781	15	1572	495	0	990
Grp Volume（v），veh／h	6	706	0	338	319	334	244	0	0	3	0	0
Grp Sat Flow（s），veh／h／ln	1810	1805	1472	1781	1805	1894	1796	0	1572	1485	0	0
Q Serve（g＿s），s	0.5	16.7	0.0	27.6	0.0	0.0	20.1	0.0	0.0	0.3	0.0	0.0
Cycle Q Clear（g＿c），s	0.5	16.7	0.0	27.6	0.0	0.0	20.1	0.0	0.0	0.3	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.02	0.99		1.00	0.33		0.67
Lane Grp Cap（c），veh／h	11	1954		356	1327	1392	266	0		26	0	0
V／C Ratio（X）	0.56	0.36		0.95	0.24	0.24	0.92	0.00		0.11	0.00	0.00
Avail Cap（c＿a），veh／h	48	1954		487	1327	1392	281	0		218	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	0.72	0.72	0.00	1.00	1.00	1.00	0.54	0.00	0.00	1.00	0.00	0.00
Uniform Delay（d），s／veh	74.4	19.6	0.0	44.3	0.0	0.0	63.0	0.0	0.0	72.5	0.0	0.0
Incr Delay（d2），s／veh	11.8	0.4	0.0	21.6	0.4	0.4	19.9	0.0	0.0	1.4	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.3	7.1	0.0	12.4	0.2	0.2	10.7	0.0	0.0	0.1	0.0	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	86.2	20.0	0.0	65.9	0.4	0.4	82.8	0.0	0.0	74.0	0.0	0.0
LnGrp LOS	F	B		E	A	A	F	A		E	A	A
Approach Vol，veh／h		712	A		991			244	A		3	
Approach Delay，s／veh		20.6			22.7			82.8			74.0	
Approach LOS		C			C			F			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	33.0	85.2	6.1	3.9	114.2	25.7
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	3.0	4.0	3.5	3.0	4.0	3.5
Max Green Setting（Gmax），s	41.0	49.5	22.0	4.0	86.5	23.5
Max Q Clear Time（g＿c＋11），s	29.6	18.7	2.3	2.5	2.0	22.1
Green Ext Time（p＿c），s	0.4	7.4	0.0	0.0	6.7	0.1

Intersection Summary

HCM 6th Ctrl Delay	29.5
HCM 6th LOS	C

Notes
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	¢ 4	「	\％	个 ${ }^{\text {a }}$		\％	\uparrow	「	\％	$\hat{\beta}$	
Traffic Volume（veh／h）	167	850	593	4	1081	27	424	92	36	68	83	56
Future Volume（veh／h）	167	850	593	4	1081	27	424	92	36	68	83	56
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h	174	885	0	4	1126	28	511	0	0	71	86	58
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	2	3	4	0	4	4	6	2	3	2	0	0
Cap，veh／h	101	2143		9	1938	48	580	0		176	104	70
Arrive On Green	0.06	0.61	0.00	0.01	0.56	0.56	0.17	0.00	0.00	0.10	0.10	0.10
Sat Flow，veh／h	1781	3526	1560	1810	3483	87	3450	0	1572	1781	1054	711
Grp Volume（v），veh／h	174	885	0	4	565	589	511	0	0	71	0	144
Grp Sat Flow（s），veh／h／n	1781	1763	1560	1810	1749	1821	1725	0	1572	1781	0	1764
Q Serve（g＿s），s	8.5	19.7	0.0	0.3	31.8	31.8	21.7	0.0	0.0	5.6	0.0	12.0
Cycle Q Clear（g＿c），s	8.5	19.7	0.0	0.3	31.8	31.8	21.7	0.0	0.0	5.6	0.0	12.0
Prop In Lane	1.00		1.00	1.00		0.05	1.00		1.00	1.00		0.40
Lane Grp Cap（c），veh／h	101	2143		9	973	1013	580	0		176	0	174
V／C Ratio（X）	1.72	0.41		0.43	0.58	0.58	0.88	0.00		0.40	0.00	0.83
Avail Cap（c＿a），veh／h	101	2143		62	973	1013	793	0		338	0	335
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	70.7	15.4	0.0	74.4	21.8	21.8	60.9	0.0	0.0	63.4	0.0	66.3
Incr Delay（d2），s／veh	363.7	0.6	0.0	28.7	2.5	2.4	8.7	0.0	0.0	1.5	0.0	9.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	14.1	8.1	0.0	0.2	13.5	14.1	10.3	0.0	0.0	2.6	0.0	5.9
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	434.5	16.0	0.0	103.1	24.3	24.2	69.7	0.0	0.0	64.9	0.0	75.8
LnGrp LOS	F	B		F	C	C	E	A		E	A	E
Approach Vol，veh／h		1059	A		1158			511	A		215	
Approach Delay，s／veh		84.7			24.6			69.7			72.2	
Approach LOS		F			C			E			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	5.3	95.7	29.7	13.0	88.0	19.3
Change Period（Y＋Rc），s	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	5.1	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋11），s	2.3	21.7	23.7	10.5	33.8	14.0
Green Ext Time（p＿c），s	0.0	7.8	1.5	0.0	8.6	0.8

Intersection Summary

HCM 6th Ctrl Delay 57.5

HCM 6th LOS
E
Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Movement EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	**	44	F'	7	「'
Traffic Volume (veh/h) 374	240	565	167	308	589
Future Volume (veh/h) 374	240	565	167	308	589
Initial Q (Qb), veh 0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00			0.98	1.00	1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	No		No	
Adj Sat Flow, veh/h/ln 1885	1885	1870	1870	1885	1885
Adj Flow Rate, veh/h 386	247	582	172	318	0
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \% 1	1	2	2	1	1
Cap, veh/h 870	868	795	347	432	
Arrive On Green 0.48	0.48	0.22	0.22	0.12	0.00
Sat Flow, veh/h 1795	1885	3647	1551	3483	1598
Grp Volume(v), veh/h 386	247	582	172	318	0
Grp Sat Flow(s),veh/h/ln1795	1791	1777	1551	1742	1598
Q Serve(g_s), s 11.3	6.6	12.2	7.7	7.0	0.0
Cycle Q Clear(g_c), s 11.3	6.6	12.2	7.7	7.0	0.0
Prop In Lane 1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h 870	868	795	347	432	
V/C Ratio(X) 0.44	0.28	0.73	0.50	0.74	
Avail Cap(c_a), veh/h 870	868	795	347	906	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 0.41	0.41	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh 13.5	12.3	28.8	27.1	33.8	0.0
Incr Delay (d2), s/veh 0.7	0.3	5.9	5.0	2.5	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lı4.5	2.6	5.7	3.3	3.1	0.0
Unsig. Movement Delay, s/veh					
LnGrp Delay(d),s/veh 14.2	12.7	34.7	32.1	36.2	0.0
LnGrp LOS B	B	C	C	D	
Approach Vol, veh/h	633	754		318	A
Approach Delay, s/veh	13.6	34.1		36.2	
Approach LOS	B	C		D	
Timer - Assigned Phs	2		4		6
Phs Duration (G+Y+Rc), s	43.4		14.1		22.5
Change Period (Y+Rc), s	4.6		* 4.2		4.6
Max Green Setting (Gmax), s	27.9		*21		17.9
Max Q Clear Time (g_c+l1), s	13.3		9.0		14.2
Green Ext Time (p_c), s	3.6		0.9		1.6

Intersection Summary

HCM 6th Ctrl Delay 26.9

HCM 6th LOS C
Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes
User approved volume balancing among the lanes for turning movement.

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			-	Mr	
Traffic Vol, veh/h	239	8	9	315	9	7
Future Vol, veh/h	239	8	9	315	9	7
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	1	1	2	2	11	11
Mvmt Flow	266	9	10	350	10	8

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	276	0	642	272
Stage 1	-	-	-	-	272	-
Stage 2	-	-	-	-	370	-
Critical Hdwy	-	-	4.12	-	6.51	6.31
Critical Hdwy Stg 1	-	-	-	-	5.51	-
Critical Hdwy Stg 2	-	-	-	-	5.51	-
Follow-up Hdwy	-	-	2.218	-	3.599	3.399
Pot Cap-1 Maneuver	-	-	1287	-	424	746
Stage 1	-	-	-	-	753	-
Stage 2	-	-	-	-	679	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1286	-	419	745
Mov Cap-2 Maneuver	-	-	-	-	512	-
Stage 1	-	-	-	-	745	-
Stage 2	-	-	-	-	679	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		11.3	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1 EBT EBR WBL WBT				
Capacity (veh/h)		593	-	-	1286	-
HCM Lane V/C Ratio		0.03	-		0.008	-
HCM Control Delay (s)		11.3	-	-	7.8	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 10.9 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow	「		*			\&	
Traffic Vol, veh/h	6	92	0	5	26	332	0	1	7	247	0	4
Future Vol, veh/h	6	92	0	5	26	332	0	1	7	247	0	4
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, \%	2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow	6	96	0	5	27	346	0	1	7	257	0	4
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	9.2			11				8.3		11.5		
HCM LOS	A			B				A		B		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	6%	16%	0%	98%
Vol Thru, \%	12%	94%	84%	0%	0%
Vol Right, \%	88%	0%	0%	100%	2%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	8	98	31	332	251
LT Vol	0	6	5	0	247
Through Vol	1	92	26	0	0
RT Vol	7	0	0	332	4
Lane Flow Rate	8	102	32	346	261
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.012	0.148	0.049	0.449	0.378
Departure Headway (Hd)	5.219	5.212	5.464	4.677	5.21
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	690	682	653	764	685
Service Time	3.219	3.291	3.22	2.433	3.282
HCM Lane V/C Ratio	0.012	0.15	0.049	0.453	0.381
HCM Control Delay	8.3	9.2	8.5	11.2	11.5
HCM Lane LOS	A	A	A	B	B
HCM 95th-tile Q	0	0.5	0.2	2.3	1.8

											\downarrow	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	蚛		\％	性		\％	\uparrow	「		¢		
Traffic Volume（veh／h） 1	355	372	140	543	5	608	5	101	0	9	3	
Future Volume（veh／h） 1	355	372	140	543	5	608	5	101	0	9	3	
Initial $Q(Q b)$ ，veh 0	0	0	0	0	0	0	0	0	0	0	0	
Ped－Bike Adj（A＿pbT） 1.00		0.97	1.00		0.96	1.00		0.98	1.00		0.91	
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No			No			No		
Adj Sat Flow，veh／h／n 1700	1687	1687	1634	1687	1687	1856	1900	1856	1900	1900	1900	
Adj Flow Rate，veh／h 1	382	400	151	584	5	658	0	109	0	10	3	
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh，\％ 0	1	1	5	1	1	3	0	3	0	0	0	
Cap，veh／h 2	596	515	184	1593	14	873	0	379	0	22	7	
Arrive On Green 0.00	0.37	0.37	0.12	0.49	0.49	0.25	0.00	0.25	0.00	0.02	0.02	
Sat Flow，veh／h 1619	1602	1385	1556	3255	28	3534	0	1536	0	1370	411	
Grp Volume（v），veh／h 1	382	400	151	287	302	658	0	109	0	0	13	
Grp Sat Flow（s），veh／h／n1619	1602	1385	1556	1602	1681	1767	0	1536	0	0	1781	
Q Serve（g＿s），s 0．0	14.7	19.1	7.1	8.4	8.4	12.9	0.0	4.3	0.0	0.0	0.5	
Cycle Q Clear（g＿c），s 0.0	14.7	19.1	7.1	8.4	8.4	12.9	0.0	4.3	0.0	0.0	0.5	
Prop In Lane $\quad 1.00$		1.00	1.00		0.02	1.00		1.00	0.00		0.23	
Lane Grp Cap（c），veh／h 2	596	515	184	784	822	873	0	379	0	0	28	
V／C Ratio（X） 0.46	0.64	0.78	0.82	0.37	0.37	0.75	0.00	0.29	0.00	0.00	0.46	
Avail Cap（c＿a），veh／h 691	684	592	664	784	822	1887	0	820	0	0	475	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter（I）$\quad 1.00$	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00	1.00	
Uniform Delay（d），s／veh 37.4	19.4	20.8	32.2	11.9	11.9	26.1	0.0	22.9	0.0	0.0	36.6	
Incr Delay（d2），s／veh 48.0	4.3	9.6	3.4	1.0	1.0	1.3	0.0	0.4	0.0	0.0	13.5	
Initial Q Delay（d3），s／veh 0.0 \％ile BackOfQ（50\％），veh／lif． 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	5.7	7.0	2.7	2.9	3.0	5.4	0.0	1.6	0.0	0.0	0.3	
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh 85.4	23.7	30.3	35.6	13.0	12.9	27.5	0.0	23.3	0.0	0.0	50.1	
LnGrp LOS	C	C	D	B	B	C	A	C	A	A	D	
	783			740			767			13		
Approach Delay，s／veh 27	27.2			17.6			26.9			50.1		
Approach LOS	C			B			C			D		
Timer－Assigned Phs	2		4	5	6		8					
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， 83.4	32.9		5.7	4.6	41.7		23.0					
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s 4.5	5.0		4.5	4.5	5.0		4.5					
Max Green Setting（Gmax\％． 6	32.0		20.0	32.0	31.0		40.0					
Max Q Clear Time（g＿c＋19，1s	21.1		2.5	2.0	10.4		14.9					
Green Ext Time（p＿c），s 0.2	6.8		0.0	0.0	7.8		3.0					
Intersection Summary												
HCM 6th Ctrl Delay		24.1										
HCM 6th LOS		C										
Notes												

User approved volume balancing among the lanes for turning movement．

Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				${ }^{*}$	\uparrow	「		44	「		中 ${ }^{\text {a }}$	
Traffic Volume（veh／h）	0	0	0	647	9	428	0	613	374	0	576	194
Future Volume（veh／h）	0	0	0	647	9	428	0	613	374	0	576	194
Initial Q（Qb），veh				0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）				1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus，Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow，veh／h／ln				1885	1900	1826	0	1870	1900	0	1870	1870
Adj Flow Rate，veh／h				718	0	470	0	674	0	0	633	213
Peak Hour Factor				0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh，\％				1	0	5	0	2	0	0	2	2
Cap，veh／h				1143	0	492	0	1809		0	1317	443
Arrive On Green				0.32	0.00	0.32	0.00	0.51	0.00	0.00	0.51	0.51
Sat Flow，veh／h				3591	0	1547	0	3647	1610	0	2681	870
Grp Volume（v），veh／h				718	0	470	0	674	0	0	434	412
Grp Sat Flow（s），veh／h／ln				1795	0	1547	0	1777	1610	0	1777	1681
Q Serve（g＿s），s				9.4	0.0	16.4	0.0	6.3	0.0	0.0	8.7	8.8
Cycle Q Clear（g＿c），s				9.4	0.0	16.4	0.0	6.3	0.0	0.0	8.7	8.8
Prop In Lane				1.00		1.00	0.00		1.00	0.00		0.52
Lane Grp Cap（c），veh／h				1143	0	492	0	1809		0	905	856
V／C Ratio（X）				0.63	0.00	0.95	0.00	0.37		0.00	0.48	0.48
Avail Cap（c＿a），veh／h				1143	0	492	0	1809		0	905	856
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）				1.00	0.00	1.00	0.00	0.96	0.00	0.00	0.76	0.76
Uniform Delay（d），s／veh				16.0	0.0	18.4	0.0	8.2	0.0	0.0	8.8	8.8
Incr Delay（d2），s／veh				1.2	0.0	29.4	0.0	0.6	0.0	0.0	1.4	1.5
Initial Q Delay（d3），s／veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln				3.5	0.0	8.9	0.0	2.0	0.0	0.0	3.1	3.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh				17.2	0.0	47.8	0.0	8.7	0.0	0.0	10.2	10.2
LnGrp LOS				B	A	D	A	A		A	B	B
Approach Vol，veh／h					1188			674	A		846	
Approach Delay，s／veh					29.3			8.7			10.2	
Approach LOS					C			A			B	

Timer－Assigned Phs	2	6	8
Phs Duration $(G+Y+R c), ~ s$	33.3	33.3	21.7
Change Period（Y＋Rc），s	5.3	5.3	4.2
Max Green Setting（Gmax），s	28.0	28.0	17.5
Max Q Clear Time（g＿c＋11），s	8.3	10.8	18.4
Green Ext Time（p＿c），s	5.2	6.4	0.0

Intersection Summary

HCM 6th Ctrl Delay	18.2
HCM 6th LOS	B

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR］is excluded from calculations of the approach delay and intersection delay．

	4			\checkmark			4	4	p		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow			\uparrow	「	\％	惺官		${ }_{1}$	个个4	F
Traffic Volume（veh／h）	223	37	18	22	80	171	39	725	21	131	704	359
Future Volume（veh／h）	223	37	18	22	80	171	39	725	21	131	704	359
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.93	1.00		0.93	1.00		0.96	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h	235	39	19	23	84	180	41	763	22	138	741	378
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	1	1	1	，	0	0	1	1	1	1	1	
Cap，veh／h	550	184	90	63	230	233	54	1940	56	182	2312	702
Arrive On Green	0.16	0.16	0.16	0.16	0.16	0.16	0.03	0.38	0.38	0.10	0.45	0.45
Sat Flow，veh／h	3483	1165	568	404	1476	1496	1795	5135	148	1795	5147	1563
Grp Volume（v），veh／h	235	0	58	107	0	180	41	509	276	138	741	378
Grp Sat Flow（s），veh／h／n	1742	0	1733	1880	0	1496	1795	1716	1851	1795	1716	1563
Q Serve（g＿s），s	4.9	0.0	2.3	4.1	0.0	9.2	1.8	8.7	8.7	6.0	7.4	14.1
Cycle Q Clear（g＿c），s	4.9	0.0	2.3	4.1	0.0	9.2	1.8	8.7	8.7	6.0	7.4	14.1
Prop In Lane	1.00		0.33	0.21		1.00	1.00		0.08	1.00		1.00
Lane Grp Cap（c），veh／h	550	0	273	293	0	233	54	1296	700	182	2312	702
VIC Ratio（X）	0.43	0.00	0.21	0.37	0.00	0.77	0.76	0.39	0.39	0.76	0.32	0.54
Avail Cap（c＿a），veh／h	914	0	455	493	0	393	359	1947	1050	583	2920	887
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	30.4	0.0	29.4	30.2	0.0	32.4	38.5	18.2	18.2	35.0	14.2	16.0
Incr Delay（d2），s／veh	1.9	0.0	1.4	1.1	0.0	7.5	26.7	0.9	1.7	8.9	0.4	2.9
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％oile BackOfQ $(50 \%$ ），veh／ln	2.2	0.0	1.1	1.9	0.0	3.8	1.2	3.4	3.8	3.0	2.7	5.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	32.3	0.0	30.8	31.3	0.0	39.9	65.2	19.1	19.9	43.9	14.5	19.0
LnGrp LOS	C	A	C	C	A	D	E	B	B	D	B	B
Approach Vol，veh／h		293			287			826			1257	
Approach Delay，s／veh		32.0			36.7			21.6			19.1	
Approach LOS		C			D			C			B	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	6.4	40.5	16.5	12.1	34.8	16.6
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	4.0	4.6	4.0	4.0	4.6	4.0
Max Green Setting（Gmax），s	16.0	45.4	21.0	26.0	45.4	21.0
Max Q Clear Time（g＿c＋11），s	3.8	16.1	11.2	8.0	10.7	6.9
Green Ext Time（p＿C），s	0.1	19.9	1.2	0.5	16.7	2.5

Intersection Summary

HCM 6th Ctrl Delay	23.2
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green．

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	けt		${ }^{*}$	¢ ${ }^{\text {¢ }}$		${ }^{1}$	虾		7\％	中4	「＇
Traffic Volume（veh／h） 211	123	44	124	246	116	52	487	36	115	424	69
Future Volume（veh／h） 211	123	44	124	246	116	52	487	36	115	424	69
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		0.96	1.00		0.97	1.00		0.97	1.00		0.97
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h 130	250	45	128	254	120	54	502	37	119	437	71
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％ 1	1	1	0	0	0	1	1	1	1	1	1
Cap，veh／h 336	580	102	383	517	235	71	1359	99	264	1126	488
Arrive On Green 0.19	0.19	0.19	0.21	0.21	0.21	0.04	0.28	0.28	0.08	0.31	0.31
Sat Flow，veh／h 1795	3099	547	1810	2444	1110	1795	4882	356	3483	3582	1552
Grp Volume（v），veh／h 130	150	145	128	195	179	54	351	188	119	437	71
Grp Sat Flow（s），veh／h／ln1795	1885	1761	1810	1900	1654	1795	1716	1807	1742	1791	1552
Q Serve（g＿s），s 4.6	5.1	5.2	4.3	6.5	6.9	2.1	5.9	6.0	2.4	6.9	2.4
Cycle Q Clear（g＿c），s 4.6	5.1	5.2	4.3	6.5	6.9	2.1	5.9	6.0	2.4	6.9	2.4
Prop In Lane 1.00		0.31	1.00		0.67	1.00		0.20	1.00		1.00
Lane Grp Cap（c），veh／h 336	353	330	383	402	350	71	955	503	264	1126	488
V／C Ratio（X） 0.39	0.43	0.44	0.33	0.49	0.51	0.76	0.37	0.37	0.45	0.39	0.15
Avail Cap（c＿a），veh／h 634	666	622	639	671	584	649	2166	1140	1259	2261	980
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I） 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh 25.6	25.8	25.9	24.1	24.9	25.1	34.2	20.9	20.9	31.8	19.2	17.7
Incr Delay（d2），s／veh 1.0	1.2	1.3	0.7	1.3	1.6	21.0	0.9	1.7	1.7	0.8	0.5
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／IR2．0	2.3	2.3	1.9	3.0	2.8	1.3	2.3	2.6	1.0	2.8	0.9
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 26.7	27.0	27.2	24.8	26.2	26.7	55.2	21.7	22.6	33.5	20.0	18.2
LnGrp LOS C	C	C	C	C	C	E	C	C	C	C	B
Approach Vol，veh／h	425			502			593			627	
Approach Delay，s／veh	27.0			26.0			25.0			22.4	
Approach LOS	C			C			C			C	

Timer－Assigned Phs 1	2	4	5	6	8
Phs Duration（ $G+Y+R \mathrm{c}$ ），s9．4	24.6	19.8	6.8	27.2	18.1
Change Period（Y＋Rc），s 4.0	4.6	4.6	4.0	4.6	4.6
Max Green Setting（GmaX¢，©	45.4	25.4	26.0	45.4	25.4
Max Q Clear Time（g＿c＋l14，¢\％	8.0	8.9	4.1	8.9	7.2
Green Ext Time（p＿c），s 0.5	9.3	3.5	0.2	8.5	2.9

Intersection Summary

HCM 6th Ctrl Delay	24.9
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green．
User approved volume balancing among the lanes for turning movement．

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Notes
User approved pedestrian interval to be less than phase max green.

Notes
User approved pedestrian interval to be less than phase max green.

	*											\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	中 ${ }^{\text {P }}$		7	\uparrow	F		\uparrow	「		\uparrow	F
Traffic Volume (veh/h)	14	395	73	85	462	11	120	3	93	19	3	36
Future Volume (veh/h)	14	395	73	85	462	11	120	3	93	19	3	36
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	1.00		0.96	1.00		0.97	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	14	407	75	88	476	11	124	3	96	20	3	37
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	0	0	0	0	0	0	1	1	1	0	0	0
Cap, veh/h	26	777	142	117	604	490	144	2	627	136	12	647
Arrive On Green	0.01	0.26	0.26	0.06	0.32	0.32	0.40	0.40	0.40	0.40	0.40	0.40
Sat Flow, veh/h	1810	3020	551	1810	1900	1543	0	5	1553	0	29	1603
Grp Volume(v), veh/h	14	241	241	88	476	11	127	0	96	23	0	37
Grp Sat Flow(s),veh/h/n	1810	1805	1766	1810	1900	1543	5	0	1553	29	0	1603
Q Serve(g_s), s	0.4	5.7	5.8	2.4	11.3	0.2	0.0	0.0	1.9	0.0	0.0	0.7
Cycle Q Clear(g_c), s	0.4	5.7	5.8	2.4	11.3	0.2	20.0	0.0	1.9	20.0	0.0	0.7
Prop In Lane	1.00		0.31	1.00		1.00	0.98		1.00	0.87		1.00
Lane Grp Cap(c), veh/h	26	464	454	117	604	490	145	0	627	147	0	647
V/C Ratio(X)	0.55	0.52	0.53	0.75	0.79	0.02	0.87	0.00	0.15	0.16	0.00	0.06
Avail Cap(c_a), veh/h	950	1636	1600	931	1722	1398	145	0	627	147	0	647
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	24.3	15.8	15.8	22.8	15.4	11.6	24.5	0.0	9.4	14.8	0.0	9.0
Incr Delay (d2), s/veh	16.9	0.3	0.4	9.3	0.9	0.0	38.9	0.0	0.0	0.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50%),veh//10. 3		2.1	2.1	1.2	4.4	0.1	3.0	0.0	0.6	0.1	0.0	0.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh 41LnGrp LOS		16.1	16.2	32.1	16.3	11.6	63.3	0.0	9.4	15.0	0.0	9.0
		B	B	C	B	B	E	A	A	B	A	A
Approach Vol, veh/h		496			575			223			60	
Approach Delay, s/veh		16.9			18.6			40.1			11.3	
Approach LOS		B			B			D			B	

Timer - Assigned Phs 1	2	4	5	6	8
Phs Duration (G+Y+Rc), s7.7	17.8	24.0	4.7	20.8	24.0
Change Period (Y+Rc), s 4.5	5.1	4.0	4.0	5.1	4.0
Max Green Setting (Gmax5, \% ${ }^{\text {s }}$	44.9	20.0	26.0	44.9	20.0
Max Q Clear Time (g_c+l14, ¢¢	7.8	22.0	2.4	13.3	22.0
Green Ext Time (p_c), s 0.2	2.0	0.0	0.0	2.2	0.0

Intersection Summary

HCM 6th Ctrl Delay	21.2
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green.

Lane	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, \%	20%	11%	0%	11%	0%	20%
Vol Thru, \%	64%	89%	0%	89%	0%	49%
Vol Right, \%	15%	0%	100%	0%	100%	31%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	244	256	36	265	42	153
LT Vol	50	28	0	29	0	30
Through Vol	157	228	0	236	0	75
RT Vol	37	0	36	0	42	48
Lane Flow Rate	262	275	39	285	45	165
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.45	0.5	0.062	0.515	0.072	0.289
Departure Headway (Hd)	6.172	6.533	5.762	6.509	5.738	6.315
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	585	553	622	556	625	569
Service Time	4.202	4.26	3.489	4.236	3.465	4.359
HCM Lane V/C Ratio	0.448	0.497	0.063	0.513	0.072	0.29
HCM Control Delay	14.2	15.6	8.9	16	8.9	11.9
HCM Lane LOS	B	C	A	C	A	B
HCM 95th-tile Q	2.3	2.8	0.2	2.9	0.2	1.2

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

| | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Notes
User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	4	\rightarrow		7		4	4	\dagger	7		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个个	「	\％	个全			\uparrow	「		¢	
Traffic Volume（veh／h）	8	738	462	404	692	2	207	1	675	5	5	9
Future Volume（veh／h）	8	738	462	404	692	2	207	1	675	5	5	9
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.87
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1737	1870	1900	1900	1885	1885	1856	1870	1870	1870
Adj Flow Rate，veh／h	8	769	0	421	721	2	216	1	0	5	5	9
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	0	0	11	2	0	0	1	1	3	2	2	2
Cap，veh／h	14	1805		436	2722	8	240	1		12	12	21
Arrive On Green	0.01	0.50	0.00	0.49	1.00	1.00	0.13	0.13	0.00	0.03	0.03	0.03
Sat Flow，veh／h	1810	3610	1472	1781	3693	10	1788	8	1572	416	416	750
Grp Volume（v），veh／h	8	769	0	421	352	371	217	0	0	19	0	0
Grp Sat Flow（s），veh／h／ln	1810	1805	1472	1781	1805	1898	1796	0	1572	1582	0	0
Q Serve（g＿s），s	0.7	20.3	0.0	34.3	0.0	0.0	17.9	0.0	0.0	1.8	0.0	0.0
Cycle Q Clear（g＿c），s	0.7	20.3	0.0	34.3	0.0	0.0	17.9	0.0	0.0	1.8	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.26		0.47
Lane Grp Cap（c），veh／h	14	1805		436	1330	1399	241	0		44	0	0
V／C Ratio（X）	0.58	0.43		0.97	0.26	0.26	0.90	0.00		0.43	0.00	0.00
Avail Cap（c＿a），veh／h	48	1805		487	1330	1399	281	0		232	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	0.61	0.61	0.00	1.00	1.00	1.00	0.67	0.00	0.00	1.00	0.00	0.00
Uniform Delay（d），s／veh	74.2	23.8	0.0	37.7	0.0	0.0	64.0	0.0	0.0	71.7	0.0	0.0
Incr Delay（d2），s／veh	8.7	0.5	0.0	30.0	0.5	0.5	18.6	0.0	0.0	4.8	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.3	8.8	0.0	15.7	0.2	0.2	9.5	0.0	0.0	0.8	0.0	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	82.9	24.3	0.0	67.7	0.5	0.5	82.5	0.0	0.0	76.6	0.0	0.0
LnGrp LOS	F	C		E	A	A	F	A		E	A	A
Approach Vol，veh／h		777	A		1144			217	A		19	
Approach Delay，s／veh		24.9			25.2			82.5			76.6	
Approach LOS		C			C			F			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	39.7	79.0	7.7	4.1	114.6	23.6
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	3.0	4.0	3.5	3.0	4.0	3.5
Max Green Setting（Gmax），s	41.0	49.5	22.0	4.0	86.5	23.5
Max Q Clear Time（g＿c＋11），s	36.3	22.3	3.8	2.7	2.0	19.9
Green Ext Time（p＿c），s	0.3	7.9	0.0	0.0	7.7	0.3

Intersection Summary

HCM 6th Ctrl Delay 31.3

```
HCM 6th LOS
    C
```

Notes
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个4	「	\％	个t		${ }^{7}$	\uparrow	「	\％	$\hat{\beta}$	
Traffic Volume（veh／h）	49	972	401	3	1080	13	518	15	50	117	148	97
Future Volume（veh／h）	49	972	401	3	1080	13	518	15	50	117	148	97
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h	51	1012	0	3	1125	14	551	0	0	122	154	101
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	2	3	4	0	4	4	6	2	3	2	0	0
Cap，veh／h	65	1890		7	1779	22	619	0		286	172	113
Arrive On Green	0.05	0.71	0.00	0.00	0.50	0.50	0.18	0.00	0.00	0.16	0.16	0.16
Sat Flow，veh／h	1781	3526	1560	1810	3535	44	3450	0	1572	1781	1068	701
Grp Volume（v），veh／h	51	1012	0	3	556	583	551	0	0	122	0	255
Grp Sat Flow（s），veh／h／n	1781	1763	1560	1810	1749	1831	1725	0	1572	1781	0	1769
Q Serve（g＿s），s	4.2	20.0	0.0	0.2	34.8	34.8	23.4	0.0	0.0	9.3	0.0	21.2
Cycle Q Clear（g＿c），s	4.2	20.0	0.0	0.2	34.8	34.8	23.4	0.0	0.0	9.3	0.0	21.2
Prop In Lane	1.00		1.00	1.00		0.02	1.00		1.00	1.00		0.40
Lane Grp Cap（c），veh／h	65	1890		7	880	921	619	0		286	0	284
V／C Ratio（X）	0.78	0.54		0.42	0.63	0.63	0.89	0.00		0.43	0.00	0.90
Avail Cap（c＿a），veh／h	101	1890		62	880	921	793	0		338	0	336
HCM Platoon Ratio	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	70.7	12.9	0.0	74.5	27.1	27.1	60.1	0.0	0.0	56.7	0.0	61.7
Incr Delay（d2），s／veh	18.4	1.1	0.0	35.4	3.4	3.3	10.2	0.0	0.0	1.0	0.0	23.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	2.3	6.9	0.0	0.2	15.2	15.9	11.2	0.0	0.0	4.3	0.0	11.4
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	89.1	13.9	0.0	110.0	30.6	30.4	70.3	0.0	0.0	57.7	0.0	84.8
LnGrp LOS	F	B		F	C	C	E	A		E	A	F
Approach Vol，veh／h		1063	A		1142			551	A		377	
Approach Delay，s／veh		17.6			30.7			70.3			76.0	
Approach LOS		B			C			E			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	5.1	84.9	31.4	10.0	80.0	28.6
Change Period（Y＋Rc），s	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	5.1	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋11），s	2.2	22.0	25.4	6.2	36.8	23.2
Green Ext Time（p＿c），s	0.0	9.3	1.5	0.0	8.0	0.9

Intersection Summary

HCM 6th Ctrl Delay	38.7
HCM 6th LOS	D

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes
User approved volume balancing among the lanes for turning movement.

Intersection						

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			-	Mr	
Traffic Vol, veh/h	559	6	2	286	7	2
Future Vol, veh/h	559	6	2	286	7	2
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	1	1	2	2	11	11
Mvmt Flow	621	7	2	318	8	2

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 37.1 |
| Intersection LOS | E |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow	「		*			\&	
Traffic Vol, veh/h	3	341	3	3	37	232	2	1	4	500	3	2
Future Vol, veh/h	3	341	3	3	37	232	2	1	4	500	3	2
Peak Hour Factor	0.89	0.89	0.89	0.92	0.92	0.92	0.58	0.58	0.58	0.90	0.90	0.90
Heavy Vehicles, \%	2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow	3	383	3	3	40	252	3	2	7	556	3	2
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	24.7			14.5			10.9			58.2		
HCM LOS	C			B			B			F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	29%	1%	7%	0%	99%
Vol Thru, \%	14%	98%	93%	0%	1%
Vol Right, \%	57%	1%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	7	347	40	232	505
LT Vol	2	3	3	0	500
Through Vol	1	341	37	0	3
RT Vol	4	3	0	232	2
Lane Flow Rate	12	390	43	252	561
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.025	0.716	0.089	0.466	0.982
Departure Headway (Hd)	7.604	6.612	7.41	6.652	6.303
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	468	546	482	540	578
Service Time	5.7	4.671	5.18	4.421	4.303
HCM Lane V/C Ratio	0.026	0.714	0.089	0.467	0.971
HCM Control Delay	10.9	24.7	10.9	15.1	58.2
HCM Lane LOS	B	C	B	C	F
HCM 95th-tile Q	0.1	5.8	0.3	2.5	13.9

Notes
User approved volume balancing among the lanes for turning movement.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			${ }^{1}$	\uparrow	F＇		中4	「		中 ${ }^{\text {a }}$	
Traffic Volume（veh／h） 0	0	0	854	0	219	0	572	488	0	761	176
Future Volume（veh／h） 0	0	0	854	0	219	0	572	488	0	761	176
Initial $Q(Q b)$ ，veh			0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）			1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus，Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach				No			No			No	
Adj Sat Flow，veh／h／ln			1885	1900	1826	0	1870	1900	0	1870	1870
Adj Flow Rate，veh／h			938	0	241	0	629	0	0	836	193
Peak Hour Factor			0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh，\％			1	0	5	0	2	0	0	2	2
Cap，veh／h			1091	0	470	0	1861		0	1491	344
Arrive On Green			0.30	0.00	0.30	0.00	0.52	0.00	0.00	0.52	0.52
Sat Flow，veh／h			3591	0	1547	0	3647	1610	0	2940	657
Grp Volume（v），veh／h			938	0	241	0	629	0	0	522	507
Grp Sat Flow（s），veh／h／ln			1795	0	1547	0	1777	1610	0	1777	1727
Q Serve（g＿s），s			13.5	0.0	7.1	0.0	5.6	0.0	0.0	10.9	10.9
Cycle Q Clear（g＿c），s			13.5	0.0	7.1	0.0	5.6	0.0	0.0	10.9	10.9
Prop In Lane			1.00		1.00	0.00		1.00	0.00		0.38
Lane Grp Cap（c），veh／h			1091	0	470	0	1861		0	930	904
V／C Ratio（X）			0.86	0.00	0.51	0.00	0.34		0.00	0.56	0.56
Avail Cap（c＿a），veh／h			1143	0	492	0	1861		0	930	904
HCM Platoon Ratio			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）			1.00	0.00	1.00	0.00	0.88	0.00	0.00	0.90	0.90
Uniform Delay（d），s／veh			18.0	0.0	15.8	0.0	7.6	0.0	0.0	8.8	8.8
Incr Delay（d2），s／veh			6.7	0.0	1.0	0.0	0.4	0.0	0.0	2.2	2.3
Initial Q Delay（d3），s／veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln			5.8	0.0	2.3	0.0	1.7	0.0	0.0	4.0	3.9
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh			24.8	0.0	16.8	0.0	8.0	0.0	0.0	11.0	11.1
LnGrp LOS			C	A	B	A	A		A	B	B
Approach Vol，veh／h				1179			629	A		1029	
Approach Delay，s／veh				23.2			8.0			11.1	
Approach LOS				C			A			B	

Timer－Assigned Phs	2	6	8
Phs Duration $(G+Y+R c), ~ s$	34.1	34.1	20.9
Change Period（Y＋Rc），s	5.3	5.3	4.2
Max Green Setting（Gmax），s	28.0	28.0	17.5
Max Q Clear Time（g＿c＋11），s	7.6	12.9	15.5
Green Ext Time（p＿c），s	4.8	7.3	1.2

Intersection Summary

HCM 6th Ctrl Delay	15.4
HCM 6th LOS	B

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	F		\uparrow	F	\%	惺		${ }^{7}$	檪	
Traffic Volume (vph)	620	26	228	47	16	108	61	1467	18	46	1081	218
Future Volume (vph)	620	26	228	47	16	108	61	1467	18	46	1081	218
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	4.2		4.2	4.2	3.7	4.9		4.6	4.9	
Lane Util. Factor	0.95	0.95	1.00		1.00	1.00	1.00	0.91		1.00	0.91	
Frpb, ped/bikes	1.00	1.00	0.97		1.00	1.00	1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.97	
Flt Protected	0.95	0.96	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1625	1642	1509		1783	1561	1745	4949		1745	4763	
Flt Permitted	0.95	0.96	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1625	1642	1509		1783	1561	1745	4949		1745	4763	
Peak-hour factor, PHF	0.86	0.61	0.80	0.85	0.44	0.79	0.66	0.86	0.61	0.67	0.94	0.85
Adj. Flow (vph)	721	43	285	55	36	137	92	1706	30	69	1150	256
RTOR Reduction (vph)	0	0	112	0	0	119	0	1	0	0	28	0
Lane Group Flow (vph)	382	382	173	0	91	18	92	1735	0	69	1378	0
Confl. Peds. (\#/hr)			18	18			12		8	8		12
Confl. Bikes (\#/hr)												5

Heavy Vehicles (\%)	2%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%	1%
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	4	4		3	3		5	1		2	6	

Permitted Phases	4				3				
Actuated Green, G (s)	30.0	30.0	30.0	16.0	16.0	11.6	42.4	13.6	45.3
Effective Green, g (s)	30.0	30.0	30.0	16.0	16.0	11.6	42.4	13.6	45.3
Actuated g/C Ratio	0.25	0.25	0.25	0.13	0.13	0.10	0.35	0.11	0.38
Clearance Time (s)	4.2	4.2	4.2	4.2	4.2	3.7	4.9	4.6	4.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.2
Lane Grp Cap (vph)	406	410	377	237	208	168	1750	197	1799
v/s Ratio Prot	c0.24	0.23		c0.05		c0.05	c0.35	0.04	c0.29
v/s Ratio Perm			0.11		0.01				
v/c Ratio	0.94	0.93	0.46	0.38	0.09	0.55	0.99	0.35	0.77
Uniform Delay, d1	44.1	43.9	38.1	47.4	45.6	51.6	38.6	49.1	32.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.18	0.91
Incremental Delay, d2	30.0	27.9	0.9	1.0	0.2	3.6	19.5	1.0	3.1
Delay (s)	74.1	71.8	39.0	48.5	45.7	55.3	58.1	58.8	32.9
Level of Service	E	E	D	D	D	E	E	E	C
Approach Delay (s)		63.7		46.8			58.0		34.1
Approach LOS		E		D			E		C

Intersection Summary			
HCM 2000 Control Delay	51.0	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.81		17.9
Actuated Cycle Length (s)	119.9	Sum of lost time (s)	C
Intersection Capacity Utilization	69.9%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

	4	\rightarrow		7		4	4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	$\hat{\dagger}$			\uparrow	「	${ }^{7}$	檪		${ }^{7}$	个44	F
Traffic Volume（veh／h）	481	159	35	29	86	113	47	890	68	143	745	331
Future Volume（veh／h）	481	159	35	29	86	113	47	890	68	143	745	331
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.94	1.00		0.91	1.00		0.96	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h	506	167	37	31	91	119	49	937	72	151	784	348
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	1	1080	1	0	0	0	1	1	1	1	1	
Cap，veh／h	727	308	68	54	159	166	64	1878	144	193	2360	717
Arrive On Green	0.21	0.21	0.21	0.11	0.11	0.11	0.04	0.39	0.39	0.11	0.46	0.46
Sat Flow，veh／h	3483	1476	327	477	1399	1462	1795	4859	372	1795	5147	1563
Grp Volume（v），veh／h	506	0	204	122	0	119	49	661	348	151	784	348
Grp Sat Flow（s），veh／h／n	1742	0	1803	1876	0	1462	1795	1716	1800	1795	1716	1563
Q Serve（g＿s），s	12.2	0.0	9.1	5.6	0.0	7.1	2.4	13.2	13.3	7.4	8.8	14.0
Cycle Q Clear（g＿c），s	12.2	0.0	9.1	5.6	0.0	7.1	2.4	13.2	13.3	7.4	8.8	14.0
Prop In Lane	1.00		0.18	0.25		1.00	1.00		0.21	1.00		1.00
Lane Grp Cap（c），veh／h	727	0	376	213	0	166	64	1326	696	193	2360	717
V／C Ratio（X）	0.70	0.00	0.54	0.57	0.00	0.72	0.77	0.50	0.50	0.78	0.33	0.49
Avail Cap（c＿a），veh／h	809	0	419	436	0	339	318	1722	904	516	2584	785
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	33.1	0.0	31.9	38.0	0.0	38.7	43.2	21.1	21.1	39.3	15.6	17.1
Incr Delay（d2），s／veh	4.6	0.0	4.4	3.4	0.0	7.9	23.6	1.3	2.6	9.4	0.4	2.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	5.6	0.0	4.4	2.8	0.0	2.9	1.5	5.3	5.8	3.7	3.3	5.2
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	37.7	0.0	36.3	41.4	0.0	46.6	66.8	22.4	23.7	48.7	16.0	19.4
LnGrp LOS	D	A	D	D	A	D	E	C	C	D	B	B
Approach Vol，veh／h		710			241			1058			1283	
Approach Delay，s／veh		37.3			44.0			24.9			20.8	
Approach LOS		D			D			C			C	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	7.2	46.1	14.3	13.7	39.6	22.9
Change Period（Y＋Rc），s	4.0	4.6	4.0	4.0	4.6	4.0
Max Green Setting（Gmax），s	16.0	45.4	21.0	26.0	45.4	21.0
Max Q Clear Time（g＿c＋11），s	4.4	16.0	9.1	9.4	15.3	14.2
Green Ext Time（p＿c），s	0.1	20.2	1.2	0.5	19.6	3.8

Intersection Summary

HCM 6th Ctrl Delay	27.4
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green．

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations \%	* \downarrow		7	* \downarrow		\%	性		\% ${ }^{1 *}$	性	F
Traffic Volume (veh/h) 413	532	120	212	241	92	129	541	87	165	470	102
Future Volume (veh/h) 413	532	120	212	241	92	129	541	87	165	470	102
Initial $\mathrm{Q}(\mathrm{Qb})$, veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.97	1.00		0.96	1.00		0.97	1.00		0.97
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h 366	632	124	187	292	95	133	558	90	170	485	105
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \% 1	1	1	0	0	0	1	1	1	1	1	1
Cap, veh/h 466	790	155	346	523	166	172	1253	198	266	937	405
Arrive On Green 0.26	0.26	0.26	0.19	0.19	0.19	0.10	0.28	0.28	0.08	0.26	0.26
Sat Flow, veh/h 1795	3046	596	1810	2737	867	1795	4456	705	3483	3582	1547
Grp Volume(v), veh/h 366	391	365	187	200	187	133	427	221	170	485	105
Grp Sat Flow(s),veh/h/n1795	1885	1758	1810	1900	1704	1795	1716	1730	1742	1791	1547
Q Serve(g_s), s 17.6	17.9	18.0	8.6	8.8	9.2	6.7	9.5	9.7	4.4	10.7	5.0
Cycle Q Clear (g_c), s 17.6	17.9	18.0	8.6	8.8	9.2	6.7	9.5	9.7	4.4	10.7	5.0
Prop In Lane 1.00		0.34	1.00		0.51	1.00		0.41	1.00		1.00
Lane Grp Cap(c), veh/h 466	489	456	346	363	326	172	964	486	266	937	405
V/C Ratio(X) 0.79	0.80	0.80	0.54	0.55	0.57	0.77	0.44	0.45	0.64	0.52	0.26
Avail Cap(c_a), veh/h 492	517	482	496	521	467	504	1682	848	978	1756	758
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) $\quad 1.00$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 31.9	32.0	32.1	33.8	33.9	34.0	40.9	27.3	27.4	41.5	29.2	27.1
Incr Delay (d2), s/veh 8.4	8.8	9.6	1.9	1.9	2.3	10.0	1.2	2.4	3.6	1.6	1.2
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/Ir8. 6	9.3	8.8	4.0	4.3	4.0	3.4	3.9	4.2	2.0	4.7	1.9
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 40.3	40.9	41.7	35.7	35.7	36.3	50.9	28.5	29.8	45.1	30.8	28.3
LnGrp LOS D	D	D	D	D	D	D	C	C	D	C	C
Approach Vol, veh/h	1122			574			781			760	
Approach Delay, s/veh	41.0			35.9			32.7			33.7	
Approach LOS	D			D			C			C	

Timer - Assigned Phs 1	2	4	5	6	8
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), \$1.1	30.6	22.3	12.9	28.8	28.6
Change Period (Y+Rc), s 4.0	4.6	4.6	4.0	4.6	4.6
Max Green Setting (Gmȧ¢. $\mathrm{S}_{\text {S }}$	45.4	25.4	26.0	45.4	25.4
Max Q Clear Time (g_c +1 19,4s	11.7	11.2	8.7	12.7	20.0
Green Ext Time (p_c), s 0.8	11.1	3.6	0.5	9.6	3.5

Intersection Summary

HCM 6th Ctrl Delay	36.4
HCM 6th LOS	D

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations ${ }^{\text {a }}$	44	「	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	4	「	${ }^{7}$	F	
Traffic Volume（veh／h） 20	924	326	37	456	79	156	178	54	123	264	17
Future Volume（veh／h） 20	924	326	37	456	79	156	178	54	123	264	17
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		0.97	1.00		0.97	1.00		0.97	1.00		0.97
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h 22	994	351	40	490	85	168	191	58	132	284	18
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％ 1	1	1	1	1	1	1	1	1	1	1	1
Cap，veh／h 43	1417	611	66	1242	214	210	460	379	173	369	23
Arrive On Green 0.02	0.40	0.40	0.04	0.41	0.41	0.12	0.24	0.24	0.10	0.21	0.21
Sat Flow，veh／h 1795	3582	1544	1795	3041	524	1795	1885	1556	1795	1751	111
Grp Volume（v），veh／h 22	994	351	40	287	288	168	191	58	132	0	302
Grp Sat Flow（s），veh／h／ln1795	1791	1544	1795	1791	1774	1795	1885	1556	1795	0	1862
Q Serve（g＿s），s 1.0	18.4	8.4	1.7	9.0	9.1	7.2	6.8	2.3	5.7	0.0	12.1
Cycle Q Clear（g＿c），s 1.0	18.4	8.4	1.7	9.0	9.1	7.2	6.8	2.3	5.7	0.0	12.1
Prop In Lane 1.00		1.00	1.00		0.30	1.00		1.00	1.00		0.06
Lane Grp Cap（c），veh／h 43	1417	611	66	731	725	210	460	379	173	0	392
V／C Ratio（X） 0.51	0.70	0.57	0.60	0.39	0.40	0.80	0.42	0.15	0.76	0.00	0.77
Avail Cap（c＿a），veh／h 589	2033	877	589	1017	1007	589	713	589	589	0	704
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I） 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh 38.2	20.0	6.7	37.6	16.5	16.6	34.1	25.2	23.5	34.9	0.0	29.5
Incr Delay（d2），s／veh 8.8	0.8	1.0	8.5	0.4	0.4	2.6	0.2	0.1	8.1	0.0	3.9
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／Ir0．5	7.2	2.6	0.9	3.5	3.6	3.3	3.0	0.8	2.8	0.0	5.7
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 47.0	20.8	7.7	46.1	16.9	17.0	36.7	25.4	23.6	43.0	0.0	33.4
LnGrp LOS D	C	A	D	B	B	D	C	C	D	A	C
Approach Vol，veh／h	1367			615			417			434	
Approach Delay，s／veh	17.9			18.9			29.7			36.3	
Approach LOS	B			B			C			D	

Timer－Assigned Phs	2	3	4	5	6	7	
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， 55.9	37.4	11.6	24.3	6.9	36.4	14.3	21.7
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s 4.0	5.0	4.0	5.0	4.0	5.0	5.0	5
Max Green Setting（Gmadt．，©	45.0	26.0	30.0	26.0	45.0	26.0	30
Max Q Clear Time（g＿c +110 ， Cs $_{5}$	11.1	7.7	8.8	3.7	20.4	9.2	14.1
Green Ext Time（p＿c），s 0.0	4.8	0.4	0.4	0.1	11.0	0.1	1.9

Intersection Summary

HCM 6th Ctrl Delay	22.7
HCM 6th LOS	C

Notes
＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．

User approved pedestrian interval to be less than phase max green.

User approved pedestrian interval to be less than phase max green.

Notes
User approved pedestrian interval to be less than phase max green.

Intersection
Intersection Delay, s/veh55.7
Intersection LOS \quad F

Lane	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, \%	20%	14%	0%	14%	0%	17%
Vol Thru, \%	57%	86%	0%	86%	0%	54%
Vol Right, \%	23%	0%	100%	0%	100%	29%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	155	540	87	345	49	231
LT Vol	31	75	0	49	0	39
Through Vol	88	465	0	296	0	125
RT Vol	36	0	87	0	49	67
Lane Flow Rate	167	581	94	371	53	248
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.359	1.144	0.164	0.752	0.095	0.508
Departure Headway (Hd)	8.173	7.093	6.303	7.611	6.815	7.755
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	443	511	569	479	529	467
Service Time	6.173	4.837	4.046	5.311	4.515	5.755
HCM Lane V/C Ratio	0.377	1.137	0.165	0.775	0.1	0.531
HCM Control Delay	15.7	111	10.3	29.9	10.2	18.5
HCM Lane LOS	C	F	B	D	B	C
HCM 95th-tile Q	1.6	19.9	0.6	6.3	0.3	2.8

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Kimley»)Horn

APPENDIX E. NEAR TERM PLUS PROJECT CONDITIONS SYNCHRO OUTPUT SHEETS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个 \uparrow	「	\％	个t		7	\uparrow	「		\uparrow	F
Traffic Volume（veh／h）	29	599	460	121	533	65	598	24	108	27	23	12
Future Volume（veh／h）	29	599	460	121	533	65	598	24	108	27	23	12
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.96
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	30	618	0	125	549	67	634	0	0	28	24	12
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	0	0	0
Cap，veh／h	49	2079		88	1929	235	625	0		53	46	83
Arrive On Green	0.03	0.58	0.00	0.05	0.60	0.60	0.17	0.00	0.00	0.05	0.05	0.05
Sat Flow，veh／h	1795	3582	1598	1795	3201	389	3591	0	1598	996	854	1551
Grp Volume（v），veh／h	30	618	0	125	306	310	634	0	0	52	0	12
Grp Sat Flow（s），veh／h／ln	1795	1791	1598	1795	1791	1800	1795	0	1598	1850	0	1551
Q Serve（g＿s），s	1.9	9.8	0.0	5.5	9.2	9.3	19.5	0.0	0.0	3.1	0.0	0.8
Cycle Q Clear（g＿c），s	1.9	9.8	0.0	5.5	9.2	9.3	19.5	0.0	0.0	3.1	0.0	0.8
Prop In Lane	1.00		1.00	1.00		0.22	1.00		1.00	0.54		1.00
Lane Grp Cap（c），veh／h	49	2079		88	1079	1085	625	0		99	0	83
V／C Ratio（X）	0.62	0.30		1.42	0.28	0.29	1.01	0.00		0.53	0.00	0.14
Avail Cap（c＿a），veh／h	88	2079		88	1079	1085	625	0		372	0	312
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	0.00	0.96	0.96	0.96	0.66	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	53.9	11.9	0.0	53.3	10.7	10.7	46.3	0.0	0.0	51.6	0.0	50.6
Incr Delay（d2），s／veh	4.6	0.4	0.0	240.1	0.6	0.6	32.8	0.0	0.0	1.6	0.0	0.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.9	4.0	0.0	8.4	3.8	3.8	11.4	0.0	0.0	1.5	0.0	0.3
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	58.6	12.3	0.0	293.3	11.3	11.3	79.0	0.0	0.0	53.2	0.0	50.9
LnGrp LOS	E	B		F	B	B	F	A		D	A	D
Approach Vol，veh／h		648	A		741			634	A		64	
Approach Delay，s／veh		14.4			58.9			79.0			52.8	
Approach LOS		B			E			E			D	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	9.5	69.0	10.0	7.0	71.5	23.5
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting（Gmax），s	5.5	48.5	22.5	5.5	48.5	19.5
Max Q Clear Time（g＿c＋11），s	7.5	11.8	5.1	3.9	11.3	21.5
Green Ext Time（p＿c），s	0.0	5.1	0.1	0.0	4.5	0.0

Intersection Summary

HCM 6th Ctrl Delay	51.0
HCM 6th LOS	D

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

	4	\rightarrow	\％	7		4	4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个个	「	＊	性			\uparrow	F＇		\＄	
Traffic Volume（veh／h）	－	678	426	328	621	6	248	2	959	1	0	2
Future Volume（veh／h）	6	678	426	328	621	6	248	2	959	1	0	2
Initial $Q(Q b)$ ，veh	0	0	－	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.86
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1737	1870	1900	1900	1885	1885	1856	1870	1870	1870
Adj Flow Rate，veh／h	6	706	，	342	647	6	258		0	1	0	2
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	0	0	11	2	0	0	1	1	3	2	2	2
Cap，veh／h	11	1917		360	2664	25	278	2		9	0	17
Arrive On Green	0.01	0.53	0.00	0.40	1.00	1.00	0.16	0.16	0.00	0.02	0.00	0.02
Sat Flow，veh／h	1810	3610	1472	1781	3665	34	1782	14	1572	495	0	990
Grp Volume（v），veh／h	6	706	0	342	319	334	260	0	0	3	0	0
Grp Sat Flow（s），veh／h／ln	1810	1805	1472	1781	1805	1894	1796	0	1572	1485	0	0
Q Serve（g＿s），s	0.5	17.1	0.0	27.9	0.0	0.0	21.4	0.0	0.0	0.3	0.0	0.0
Cycle Q Clear（g＿c），s	0.5	17.1	0.0	27.9	0.0	0.0	21.4	0.0	0.0	0.3	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.02	0.99		1.00	0.33		0.67
Lane Grp Cap（c），veh／h	11	1917		360	1312	1377	281	0		26	0	0
V／C Ratio（X）	0.56	0.37		0.95	0.24	0.24	0.93	0.00		0.11	0.00	0.00
Avail Cap（c＿a），veh／h	48	1917		487	1312	1377	281	0		218	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	0.70	0.70	0.00	1.00	1.00	1.00	0.46	0.00	0.00	1.00	0.00	0.00
Uniform Delay（d），s／veh	74.4	20.5	0.0	44.0	0.0	0.0	62.4	0.0	0.0	72.5	0.0	0.0
Incr Delay（d2），s／veh	11.5	0.4	0.0	22.0	0.4	0.4	20.0	0.0	0.0	1.4	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.3	7.3	0.0	12.5	0.2	0.2	11.4	0.0	0.0	0.1	0.0	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	85.9	20.9	0.0	66.0	0.4	0.4	82.4	0.0	0.0	74.0	0.0	0.0
LnGrp LOS	F	C		E	A	A	F	A		E	A	A
Approach Vol，veh／h		712	A		995			260	A		3	
Approach Delay，s／veh		21.4			23.0			82.4			74.0	
Approach LOS		C			C			F			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	33.3	83.6	6.1	3.9	113.0	26.9
Change Period（Y＋Rc），s	3.0	4.0	3.5	3.0	4.0	3.5
Max Green Setting（Gmax），s	41.0	49.5	22.0	4.0	86.5	23.5
Max Q Clear Time（g＿c＋11），s	29.9	19.1	2.3	2.5	2.0	23.4
Green Ext Time（p＿c），s	0.4	7.4	0.0	0.0	6.7	0.0

Intersection Summary

HCM 6th Ctrl Delay	30.3
HCM 6th LOS	C

Notes
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个 4	「	\％	个 ${ }^{\text {a }}$		${ }^{7}$	\uparrow	「	${ }^{7}$	F	
Traffic Volume（veh／h）	167	851	615	4	1085	27	424	92	36	68	83	56
Future Volume（veh／h）	167	851	615	4	1085	27	424	92	36	68	83	56
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h	174	886	0	4	1130	28	511	0	0	71	86	58
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	2	3	4	0	4	4	6	2	3	2	0	0
Cap，veh／h	101	2143		9	1938	48	580	0		176	104	70
Arrive On Green	0.06	0.61	0.00	0.01	0.56	0.56	0.17	0.00	0.00	0.10	0.10	0.10
Sat Flow，veh／h	1781	3526	1560	1810	3484	86	3450	0	1572	1781	1054	711
Grp Volume（v），veh／h	174	886	0	4	567	591	511	0	0	71	0	144
Grp Sat Flow（s），veh／h／n	1781	1763	1560	1810	1749	1821	1725	0	1572	1781	0	1764
Q Serve（g＿s），s	8.5	19.7	0.0	0.3	31.9	32.0	21.7	0.0	0.0	5.6	0.0	12.0
Cycle Q Clear（g＿c），s	8.5	19.7	0.0	0.3	31.9	32.0	21.7	0.0	0.0	5.6	0.0	12.0
Prop In Lane	1.00		1.00	1.00		0.05	1.00		1.00	1.00		0.40
Lane Grp Cap（c），veh／h	101	2143		9	973	1013	580	0		176	0	174
V／C Ratio（X）	1.72	0.41		0.43	0.58	0.58	0.88	0.00		0.40	0.00	0.83
Avail Cap（c＿a），veh／h	101	2143		62	973	1013	793	0		338	0	335
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	70.7	15.4	0.0	74.4	21.8	21.8	60.9	0.0	0.0	63.4	0.0	66.3
Incr Delay（d2），s／veh	363.7	0.6	0.0	28.7	2.6	2.5	8.7	0.0	0.0	1.5	0.0	9.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（ 50% ），veh／ln	14.1	8.1	0.0	0.2	13.6	14.1	10.3	0.0	0.0	2.6	0.0	5.9
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	434.5	16.0	0.0	103.1	24.4	24.3	69.7	0.0	0.0	64.9	0.0	75.8
LnGrp LOS	F	B		F	C	C	E	A		E	A	E
Approach Vol，veh／h		1060	A		1162			511	A		215	
Approach Delay，s／veh		84.7			24.6			69.7			72.2	
Approach LOS		F			C			E			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	5.3	95.7	29.7	13.0	88.0	19.3
Change Period（Y＋Rc），s	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	5.1	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋11），s	2.3	21.7	23.7	10.5	34.0	14.0
Green Ext Time（p＿c），s	0.0	7.8	1.5	0.0	8.6	0.8

Intersection Summary

HCM 6th Ctrl Delay 57.5

HCM 6th LOS
E

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

4					
Movement EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	¢4	44	「	\%	「
Traffic Volume (veh/h) 374	300	604	167	393	589
Future Volume (veh/h) 374	300	604	167	393	589
Initial Q $(Q b)$, veh 0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00			0.98	1.00	1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	No		No	
Adj Sat Flow, veh/h/ln 1885	1885	1870	1870	1885	1885
Adj Flow Rate, veh/h 386	309	623	172	405	0
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \% 1	1	2	2	1	1
Cap, veh/h 823	821	795	347	524	
Arrive On Green 0.46	0.46	0.22	0.22	0.15	0.00
Sat Flow, veh/h 1795	1885	3647	1551	3483	1598
Grp Volume(v), veh/h 386	309	623	172	405	0
Grp Sat Flow(s),veh/h/ln1795	1791	1777	1551	1742	1598
Q Serve(g_s), s 11.9	9.0	13.2	7.7	8.9	0.0
Cycle Q Clear(g_c), s 11.9	9.0	13.2	7.7	8.9	0.0
Prop In Lane 1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h 823	821	795	347	524	
V/C Ratio(X) 0.47	0.38	0.78	0.50	0.77	
Avail Cap(c_a), veh/h 823	821	795	347	906	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 0.21	0.21	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh 14.9	14.2	29.2	27.1	32.7	0.0
Incr Delay (d2), s/veh 0.4	0.3	7.6	5.0	2.5	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/Ir4.7	3.6	6.3	3.3	3.9	0.0
Unsig. Movement Delay, s/veh					
LnGrp Delay(d),s/veh 15.4	14.5	36.8	32.1	35.1	0.0
LnGrp LOS B	B	D	C	D	
Approach Vol, veh/h	695	795		405	A
Approach Delay, s/veh	15.0	35.8		35.1	
Approach LOS	B	D		D	
Timer - Assigned Phs	2		4		6
Phs Duration (G+Y+Rc), s	41.3		16.2		22.5
Change Period ($Y+R \mathrm{R}$), s	4.6		* 4.2		4.6
Max Green Setting (Gmax), s	27.9		* 21		17.9
Max Q Clear Time (g_c+11), s	13.9		10.9		15.2
Green Ext Time (p_c), s	3.9		1.1		1.3

Intersection Summary

HCM 6th Ctrl Delay 28.0

HCM 6th LOS C
Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes
User approved volume balancing among the lanes for turning movement.

Intersection						
Int Delay, s/veh	7.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	「	${ }^{7}$	4	${ }^{*}$	「
Traffic Vol, veh/h	375	83	99	241	162	181
Future Vol, veh/h	375	83	99	241	162	181
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	25	170	-	145	0
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	0	0	0	0
Mvmt Flow	391	86	103	251	169	189

Intersection
Intersection Delay, s/veh14.8
Intersection LOS \quad B

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*			\uparrow	「		\$			\ddagger	
Traffic Vol, veh/h 13	92	0	5	26	467	0	1	7	283	0	5
Future Vol, veh/h 13	92	0	5	26	467	0	1	7	283	0	5
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, \% 2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow 14	96	0	5	27	486	0	1	7	295	0	5
Number of Lanes 0	1	0	0	1	1	0	1	0	0	1	0
Approach EB			WB				NB		SB		
Opposing Approach WB			EB				SB		NB		
Opposing Lanes 2			1				1		1		
Conflicting Approach Left SB			NB				EB		WB		
Conflicting Lanes Left 1			1				1		2		
Conflicting Approach RighNB			SB				WB		EB		
Conflicting Lanes Right 1			1				2		1		
HCM Control Delay 9.9			16.6				8.9		13.7		
HCM LOS A			C				A		B		

Lane	NBLn1 EBLn1WBLn1WBLn2 SBLn1				
Vol Left, \%	0%	12%	16%	0%	98%
Vol Thru, \%	12%	88%	84%	0%	0%
Vol Right, \%	88%	0%	0%	100%	2%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	8	105	31	467	288
LT Vol	0	13	5	0	283
Through Vol	1	92	26	0	0
RT Vol	7	0	0	467	5
Lane Flow Rate	8	109	32	486	300
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.013	0.173	0.052	0.669	0.473
Departure Headway (Hd)	5.773	5.695	5.742	4.953	5.676
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	618	630	627	735	636
Service Time	3.826	3.733	3.442	2.653	3.709
HCM Lane V/C Ratio	0.013	0.173	0.051	0.661	0.472
HCM Control Delay	8.9	9.9	8.8	17.1	13.7
HCM Lane LOS	A	A	A	C	B
HCM 95th-tile Q	0	0.6	0.2	5.2	2.5

Notes
User approved volume balancing among the lanes for turning movement.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			${ }^{1}$	\uparrow	F＇		中4	「		中 ${ }^{\text {a }}$	
Traffic Volume（veh／h） 0	0	0	692	9	428	0	618	374	0	593	194
Future Volume（veh／h） 0	0	0	692	9	428	0	618	374	0	593	194
Initial $Q(Q b)$ ，veh			0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）			1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus，Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach				No			No			No	
Adj Sat Flow，veh／h／ln			1885	1900	1826	0	1870	1900	0	1870	1870
Adj Flow Rate，veh／h			767	0	470	0	679	0	0	652	213
Peak Hour Factor			0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh，\％			1	0	5	0	2	0	0	2	2
Cap，veh／h			1143	0	492	0	1809		0	1329	434
Arrive On Green			0.32	0.00	0.32	0.00	0.51	0.00	0.00	0.51	0.51
Sat Flow，veh／h			3591	0	1547	0	3647	1610	0	2703	852
Grp Volume（v），veh／h			767	0	470	0	679	0	0	444	421
Grp Sat Flow（s），veh／h／ln			1795	0	1547	0	1777	1610	0	1777	1685
Q Serve（g＿s），s			10.2	0.0	16.4	0.0	6.4	0.0	0.0	9.0	9.0
Cycle Q Clear（g＿c），s			10.2	0.0	16.4	0.0	6.4	0.0	0.0	9.0	9.0
Prop In Lane			1.00		1.00	0.00		1.00	0.00		0.51
Lane Grp Cap（c），veh／h			1143	0	492	0	1809		0	905	858
V／C Ratio（X）			0.67	0.00	0.95	0.00	0.38		0.00	0.49	0.49
Avail Cap（c＿a），veh／h			1143	0	492	0	1809		0	905	858
HCM Platoon Ratio			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）			1.00	0.00	1.00	0.00	0.96	0.00	0.00	0.73	0.73
Uniform Delay（d），s／veh			16.3	0.0	18.4	0.0	8.2	0.0	0.0	8.8	8.8
Incr Delay（d2），s／veh			1.6	0.0	29.4	0.0	0.6	0.0	0.0	1.4	1.5
Initial Q Delay（d3），s／veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln			3.8	0.0	8.9	0.0	2.0	0.0	0.0	3.2	3.1
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh			17.9	0.0	47.8	0.0	8.8	0.0	0.0	10.2	10.3
LnGrp LOS			B	A	D	A	A		A	B	B
Approach Vol，veh／h				1237			679	A		865	
Approach Delay，s／veh				29.2			8.8			10.3	
Approach LOS				C			A			B	

Timer－Assigned Phs	2	6	8
Phs Duration $(G+Y+R c), ~ s$	33.3	33.3	21.7
Change Period（Y＋Rc），s	5.3	5.3	4.2
Max Green Setting（Gmax），s	28.0	28.0	17.5
Max Q Clear Time（g＿c＋11），s	8.4	11.0	18.4
Green Ext Time（p＿c），s	5.2	6.5	0.0

Intersection Summary

HCM 6th Ctrl Delay	18.3
HCM 6th LOS	B

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	「		\uparrow	「	${ }^{7}$	虫\％		${ }^{1}$	䖝	
Traffic Volume（vph）	272	16	108	15	7	26	137	1051	23	91	1118	342
Future Volume（vph）	272	16	108	15	7	26	137	1051	23	91	1118	342
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	4.2	4.2	4.2		4.2	4.2	3.7	4.9		4.6	4.9	
Lane Util．Factor	0.95	0.95	1.00		1.00	1.00	1.00	0.91		1.00	0.91	
Frpb，ped／bikes	1.00	1.00	0.97		1.00	1.00	1.00	1.00		1.00	0.98	
Flpb，ped／bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.96	
Flt Protected	0.95	0.96	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1625	1646	1509		1789	1561	1745	4938		1745	4685	
Flt Permitted	0.95	0.96	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（perm）	1625	1646	1509		1789	1561	1745	4938		1745	4685	
Peak－hour factor，PHF	0.86	0.61	0.80	0.85	0.44	0.79	0.66	0.86	0.61	0.67	0.94	0.85
Adj．Flow（vph）	316	26	135	18	16	33	208	1222	38	136	1189	402
RTOR Reduction（vph）	0	0	101	0	0	29	0	3	0	0	51	0
Lane Group Flow（vph）	171	171	34	0	34	4	208	1257	0	136	1540	0
Confl．Peds．（\＃／hr）			18	18			12		8	8		12
Confl．Bikes（\＃／hr）												5

Heavy Vehicles（\％）	2%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Prot	NA	
Protected Phases	4	4		3	3		5	1	2	6	

Permitted Phases			4		3			
Actuated Green，G（s）	30.0	30.0	30.0	16.0	16.0	15.8	40.0	16.0

Effective Green，g（s）	30.0	30.0	30.0	16.0	16.0	15.8	40.0	16.0	41.1
Actuated g／C Ratio	0.25	0.25	0.25	0.13	0.13	0.13	0.33	0.13	0.34
Clearance Time（s）	4.2	4.2	4.2	4.2	4.2	3.7	4.9	4.6	4.9
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.2
Lane Grp Cap（vph）	406	411	377	238	208	229	1647	232	1605
v／s Ratio Prot	$c 0.11$	0.10		$c 0.02$		$c 0.12$	0.25	0.08	$c 0.33$

v／s Ratio Perm		0.02	0.00		0.59	0.96			
v／c Ratio	0.42	0.42	0.09	0.14	0.02	0.91	0.76	48.8	38.6
Uniform Delay，d1	37.7	37.6	34.5	45.9	45.1	51.3	35.7	1.08	0.87
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.9	12.3
Incremental Delay，d2	0.7	0.7	0.1	0.3	0.0	35.3	3.4	55.5	46.0
Delay（s）	38.4	38.3	34.6	46.2	45.2	86.6	39.1	D	D
Level of Service	D	D	C	D	D	F	D	46.8	
Approach Delay（s）		37.3		45.7			45.9	D	D
Approach LOS	D	D			D				

Intersection Summary			
HCM 2000 Control Delay	45.2	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.67		17.9
Actuated Cycle Length（s）	119.9	Sum of lost time（s）	C
Intersection Capacity Utilization	67.3%	ICU Level of Service	

C Critical Lane Group

Notes
User approved pedestrian interval to be less than phase max green.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations＊	＊\uparrow		${ }^{*}$	＊${ }^{\text {F }}$		${ }^{*}$	性中		${ }^{7 *}$	中4	「
Traffic Volume（veh／h） 212	126	44	124	266	136	52	532	36	123	432	70
Future Volume（veh／h） 212	126	44	124	266	136	52	532	36	123	432	70
Initial $Q(Q b)$ ，veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		0.96	1.00		0.97	1.00		0.97	1.00		0.97
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h 131	253	45	128	274	140	54	548	37	127	445	72
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％ 1	1	1	0	0	0	1	1	1	1	1	1
Cap，veh／h 332	573	100	395	518	255	71	1397	93	260	1144	496
Arrive On Green 0.18	0.18	0.18	0.22	0.22	0.22	0.04	0.28	0.28	0.07	0.32	0.32
Sat Flow，veh／h 1795	3105	542	1810	2373	1169	1795	4915	329	3483	3582	1553
Grp Volume（v），veh／h 131	152	146	128	217	197	54	381	204	127	445	72
Grp Sat Flow（s），veh／h／ln1795	1885	1762	1810	1900	1642	1795	1716	1813	1742	1791	1553
Q Serve（g＿s），s 4.8	5.3	5.5	4.4	7.5	7.9	2.2	6.7	6.8	2.6	7.2	2.5
Cycle Q Clear（g＿c），s 4.8	5.3	5.5	4.4	7.5	7.9	2.2	6.7	6.8	2.6	7.2	2.5
Prop In Lane 1.00		0.31	1.00		0.71	1.00		0.18	1.00		1.00
Lane Grp Cap（c），veh／h 332	348	325	395	415	359	71	975	515	260	1144	496
V／C Ratio（X） 0.40	0.44	0.45	0.32	0.52	0.55	0.76	0.39	0.40	0.49	0.39	0.15
Avail Cap（c＿a），veh／h 610	641	599	615	646	558	625	2084	1101	1212	2176	943
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l） 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh 26.8	27.0	27.1	24.6	25.8	25.9	35.5	21.5	21.6	33.2	19.8	18.2
Incr Delay（d2），s／veh 1.1	1.2	1.4	0.7	1.5	1.9	20.8	0.9	1.8	2.0	0.8	0.5
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／112．1	2.5	2.4	1.9	3.5	3.2	1.3	2.6	3.0	1.1	2.9	0.9
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 27.9	28.2	28.5	25.2	27.2	27.8	56.3	22.5	23.4	35.2	20.6	18.6
LnGrp LOS C	C	C	C	C	C	E	C	C	D	C	B
Approach Vol，veh／h	429			542			639			644	
Approach Delay，s／veh	28.2			27.0			25.6			23.2	
Approach LOS	C			C			C			C	

Timer－Assigned Phs 1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s9．6	25.8	20.9	7.0	28.5	18.4
Change Period（Y＋Rc），s 4.0	4.6	4.6	4.0	4.6	4.6
Max Green Setting（Gmaz¢．¢	45.4	25.4	26.0	45.4	25.4
Max Q Clear Time（g＿c +1 14，©s	8.8	9.9	4.2	9.2	7.5
Green Ext Time（p＿c），s 0.6	10.1	3.7	0.2	8.6	2.9

Intersection Summary

HCM 6th Ctrl Delay	25.8
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green．
User approved volume balancing among the lanes for turning movement．

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

User approved pedestrian interval to be less than phase max green.

Notes
User approved pedestrian interval to be less than phase max green.

	，											\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	中 ${ }^{\text {a }}$		7	\uparrow	「		\uparrow	「		\uparrow	F
Traffic Volume（veh／h）	15	398	74	85	485	11	124	3	93	19	3	38
Future Volume（veh／h）	15	398	74	85	485	11	124	3	93	19	3	38
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.95	1.00		0.96	1.00		0.97	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	15	410	76	88	500	11	128	3	96	20	3	39
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	0	0	0	0	0	0	1	1	1	0	0	0
Cap，veh／h	27	810	149	117	623	506	141	2	616	134	11	636
Arrive On Green	0.02	0.27	0.27	0.06	0.33	0.33	0.40	0.40	0.40	0.40	0.40	0.40
Sat Flow，veh／h	1810	3018	553	1810	1900	1544	0	4	1552	0	29	1603
Grp Volume（v），veh／h	15	243	243	88	500	11	131	0	96	23	0	39
Grp Sat Flow（s），veh／h／n	1810	1805	1766	1810	1900	1544	4	0	1552	29	0	1603
Q Serve（g＿s），s	0.4	5.7	5.9	2.4	12.1	0.2	0.0	0.0	2.0	0.0	0.0	0.8
Cycle Q Clear（g＿c），s	0.4	5.7	5.9	2.4	12.1	0.2	20.0	0.0	2.0	20.0	0.0	0.8
Prop In Lane	1.00		0.31	1.00		1.00	0.98		1.00	0.87		1.00
Lane Grp Cap（c），veh／h	27	485	474	117	623	506	143	0	616	145	0	636
V／C Ratio（X）	0.55	0.50	0.51	0.75	0.80	0.02	0.92	0.00	0.16	0.16	0.00	0.06
Avail Cap（c＿a），veh／h	934	1608	1574	916	1693	1376	143	0	616	145	0	636
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	24.6	15.6	15.6	23.2	15.4	11.5	24.9	0.0	9.8	15.4	0.0	9.4
Incr Delay（d2），s／veh	16.3	0.3	0.3	9.3	0.9	0.0	50.0	0.0	0.0	0.2	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（ 50% ），veh／／10． 3		2.1	2.1	1.3	4.7	0.1	3.5	0.0	0.6	0.1	0.0	0.2
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／vehLnGrp LOS	40.9	15.9	15.9	32.5	16.4	11.5	74.9	0.0	9.8	15.6	0.0	9.4
	D	B	B	C	B	B	E	A	A	B	A	A
Approach Vol，veh／h		501			599			227			62	
Approach Delay，s／vehApproach LOS		16.7			18.6			47.4			11.7	
		B			B			D			B	

Timer－Assigned Phs	1	2	4	5	6

Intersection Summary

HCM 6th Ctrl Delay	22.3
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green．

Intersection
Intersection Delay, s/veh14.4
Intersection LOS \quad B

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	「		\uparrow	「		\$			\$	
Traffic Vol, veh/h 28	228	36	29	236	42	50	161	37	30	76	48
Future Vol, veh/h 28	228	36	29	236	42	50	161	37	30	76	48
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \% 0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow 30	245	39	31	254	45	54	173	40	32	82	52
Number of Lanes 0	1	1	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			2			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			2			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			2		
HCM Control Delay 14.9			15.1			14.4			12		
HCM LOS B			C			B			B		

	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, \%	20%	11%	0%	11%	0%	19%
Vol Thru, $\%$	65%	89%	0%	89%	0%	49%
Vol Right, \%	15%	0%	100%	0%	100%	31%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	248	256	36	265	42	154
LT Vol	50	28	0	29	0	30
Through Vol	161	228	0	236	0	76
RT Vol	37	0	36	0	42	48
Lane Flow Rate	267	275	39	285	45	166
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.458	0.501	0.062	0.517	0.072	0.291
Departure Headway (Hd)	6.181	6.557	5.786	6.531	5.761	6.334
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	584	551	620	553	623	566
Service Time	4.211	4.284	3.513	4.258	3.487	4.379
HCM Lane V/C Ratio	0.457	0.499	0.063	0.515	0.072	0.293
HCM Control Delay	14.4	15.7	8.9	16.1	8.9	12
HCM Lane LOS	B	C	A	C	A	B
HCM 95th-tile Q	2.4	2.8	0.2	2.9	0.2	1.2

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	「	${ }^{*}$	4	「	${ }^{1}$	\uparrow		${ }^{*}$	\uparrow	
Traffic Volume（veh／h） 94	164	106	25	371	141	110	57	12	121	66	110
Future Volume（veh／h） 94	164	106	25	371	141	110	57	12	121	66	110
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		1.00	1.00		1.00	1.00		0.91	1.00		0.91
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1885	1885	1885	1885	1885	1885	1900	1900	1900	1885	1885	1885
Adj Flow Rate，veh／h 104	182	0	28	412	0	122	63	13	134	73	122
Peak Hour Factor 0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh，\％ 1	1	1	1	1	1	0	0	0	1	1	1
Cap，veh／h 136	641		57	558		159	332	69	174	138	230
Arrive On Green 0.08	0.34	0.00	0.03	0.30	0.00	0.09	0.22	0.22	0.10	0.23	0.23
Sat Flow，veh／h 1795	1885	1598	1795	1885	1598	1810	1498	309	1795	596	996
Grp Volume（v），veh／h 104	182	0	28	412	0	122	0	76	134	0	195
Grp Sat Flow（s），veh／h／ln1795	1885	1598	1795	1885	1598	1810	0	1807	1795	0	1592
Q Serve（g＿s），s 3.0	3.8	0.0	0.8	10.5	0.0	3.5	0.0	1.8	3.9	0.0	5.7
Cycle Q Clear（g＿c），s 3.0	3.8	0.0	0.8	10.5	0.0	3.5	0.0	1.8	3.9	0.0	5.7
Prop In Lane 1.00		1.00	1.00		1.00	1.00		0.17	1.00		0.63
Lane Grp Cap（c），veh／h 136	641		57	558		159	0	401	174	0	367
V／C Ratio（X） 0.76	0.28		0.49	0.74		0.77	0.00	0.19	0.77	0.00	0.53
Avail Cap（c＿a），veh／h 539	1255		539	1255		543	0	711	539	0	627
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I） 1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh 24.2	12.9	0.0	25.4	16.9	0.0	23.8	0.0	16.9	23.5	0.0	18.0
Incr Delay（d2），s／veh 6.4	0.2	0.0	4.8	1.9	0.0	2.9	0.0	0.2	2.7	0.0	0.9
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／lı1． 5	1.5	0.0	0.4	4.3	0.0	1.5	0.0	0.7	1.6	0.0	2.0
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 30.6	13.1	0.0	30.1	18.9	0.0	26.7	0.0	17.0	26.2	0.0	18.9
LnGrp LOS C	B		C	B		C	A	B	C	A	B
Approach Vol，veh／h	286	A		440	A		198			329	
Approach Delay，s／veh	19.5			19.6			23.0			21.9	
Approach LOS	B			B			C			C	

Timer－Assigned Phs	2	3	4	5	6	7	
Phs Duration（G＋Y＋Rc），s5．7	22.6	8.7	16.3	8.1	20.3	9.2	15.8
Change Period（Y＋Rc），s 4.0	4.5	4.0	4.0	4.0	4.5	4.0	4.0
Max Green Setting（Gmax¢，．＠	35.5	16.0	21.0	16.0	35.5	16.0	21.0
Max Q Clear Time（g＿c＋1迶\＆	5.8	5.5	7.7	5.0	12.5	5.9	3.8
Green Ext Time（p＿c），s 0.0	1.1	0.1	0.8	0.1	2.6	0.1	0.2

Intersection Summary

HCM 6th Ctrl Delay	20.7
HCM 6th LOS	C

Notes
Unsignalized Delay for［EBR，WBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个 \uparrow	「	\％	个t		7	\uparrow	「		\uparrow	「
Traffic Volume（veh／h）	12	1027	1141	104	454	35	581	19	57	56	31	25
Future Volume（veh／h）	12	1027	1141	104	454	35	581	19	57	56	31	25
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	12	1059	0	107	468	36	613	0	0	58	32	26
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	0	0	0
Cap，veh／h	25	2006		88	2001	153	625	0		88	48	115
Arrive On Green	0.01	0.56	0.00	0.05	0.60	0.60	0.17	0.00	0.00	0.07	0.07	0.07
Sat Flow，veh／h	1795	3582	1598	1795	3362	258	3591	0	1598	1186	654	1562
Grp Volume（v），veh／h	12	1059	0	107	248	256	613	0	0	90	0	26
Grp Sat Flow（s），veh／h／ln	1795	1791	1598	1795	1791	1829	1795	0	1598	1841	0	1562
Q Serve（g＿s），s	0.7	20.7	0.0	5.5	7.3	7.4	19.0	0.0	0.0	5.3	0.0	1.8
Cycle Q Clear（g＿c），s	0.7	20.7	0.0	5.5	7.3	7.4	19.0	0.0	0.0	5.3	0.0	1.8
Prop In Lane	1.00		1.00	1.00		0.14	1.00		1.00	0.64		1.00
Lane Grp Cap（c），veh／h	25	2006		88	1066	1089	625	0		136	0	115
V／C Ratio（X）	0.48	0.53		1.21	0.23	0.23	0.98	0.00		0.66	0.00	0.23
Avail Cap（c＿a），veh／h	88	2006		88	1066	1089	625	0		370	0	314
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	0.00	0.97	0.97	0.97	0.87	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	54.8	15.4	0.0	53.3	10.7	10.7	46.1	0.0	0.0	50.5	0.0	48.8
Incr Delay（d2），s／veh	5.2	1.0	0.0	162.6	0.5	0.5	28.6	0.0	0.0	2.0	0.0	0.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.4	8.6	0.0	6.5	3.0	3.1	10.8	0.0	0.0	2.6	0.0	0.7
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	60.0	16.4	0.0	215.9	11.1	11.2	74.6	0.0	0.0	52.5	0.0	49.2
LnGrp LOS	E	B		F	B	B	E	A		D	A	D
Approach Vol，veh／h		1071	A		611			613	A		116	
Approach Delay，s／veh		16.9			47.0			74.6			51.8	
Approach LOS		B			D			E			D	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	9.5	66.7	12.3	5.6	70.7	23.5
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting（Gmax），s	5.5	48.5	22.5	5.5	48.5	19.5
Max Q Clear Time（g＿c＋11），s	7.5	22.7	7.3	2.7	9.4	21.0
Green Ext Time（p＿c），s	0.0	9.1	0.3	0.0	3.6	0.0

Intersection Summary

HCM 6th Ctrl Delay	40.9
HCM 6th LOS	D

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

	4	\rightarrow	\％	7		4	4	\uparrow	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	个4	「	＊	个 ${ }_{\text {d }}$			\uparrow	F＇		¢	
Traffic Volume（veh／h）	8	738	481	405	692	2	252	1	749	5	5	9
Future Volume（veh／h）	8	738	481	405	692	2	252	1	749	5	5	9
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.87
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1737	1870	1900	1900	1885	1885	1856	1870	1870	1870
Adj Flow Rate，veh／h	8	769	0	422	721	2	262	1	0	5	5	9
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	0	0	11	2	0	0	1	1	3	2	2	2
Cap，veh／h	14	1722		437	2639	7	280	1		12	12	21
Arrive On Green	0.01	0.48	0.00	0.49	1.00	1.00	0.16	0.16	0.00	0.03	0.03	0.03
Sat Flow，veh／h	1810	3610	1472	1781	3693	10	1789	7	1572	416	416	750
Grp Volume（v），veh／h	8	769	0	422	352	371	263	0	0	19	0	0
Grp Sat Flow（s），veh／h／ln	1810	1805	1472	1781	1805	1898	1796	0	1572	1582	0	0
Q Serve（g＿s），s	0.7	21.2	0.0	34.4	0.0	0.0	21.7	0.0	0.0	1.8	0.0	0.0
Cycle Q Clear（g＿c），s	0.7	21.2	0.0	34.4	0.0	0.0	21.7	0.0	0.0	1.8	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.26		0.47
Lane Grp Cap（c），veh／h	14	1722		437	1290	1356	281	0		44	0	0
V／C Ratio（X）	0.58	0.45		0.97	0.27	0.27	0.93	0.00		0.43	0.00	0.00
Avail Cap（c＿a），veh／h	48	1722		487	1290	1356	281	0		232	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	0.60	0.60	0.00	1.00	1.00	1.00	0.55	0.00	0.00	1.00	0.00	0.00
Uniform Delay（d），s／veh	74.2	26.1	0.0	37.6	0.0	0.0	62.5	0.0	0.0	71.7	0.0	0.0
Incr Delay（d2），s／veh	8.5	0.5	0.0	30.0	0.5	0.5	24.3	0.0	0.0	4.8	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.3	9.3	0.0	15.7	0.2	0.2	11.9	0.0	0.0	0.8	0.0	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	82.7	26.6	0.0	67.7	0.5	0.5	86.8	0.0	0.0	76.6	0.0	0.0
LnGrp LOS	F	C		E	A	A	F	A		E	A	A
Approach Vol，veh／h		777	A		1145			263	A		19	
Approach Delay，s／veh		27.1			25.3			86.8			76.6	
Approach LOS		C			C			F			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	39.8	75.6	7.7	4.1	111.2	27.0
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	3.0	4.0	3.5	3.0	4.0	3.5
Max Green Setting（Gmax），s	41.0	49.5	22.0	4.0	86.5	23.5
Max Q Clear Time（g＿c＋11），s	36.4	23.2	3.8	2.7	2.0	23.7
Green Ext Time（p＿c），s	0.3	7.8	0.0	0.0	7.7	0.0

Intersection Summary

HCM 6th Ctrl Delay	33.7
HCM 6th LOS	C

Notes
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个 \uparrow	「	${ }^{7}$	性		7	\uparrow	「	${ }^{7}$	F	
Traffic Volume（veh／h）	49	976	471	3	1081	13	518	15	50	117	148	97
Future Volume（veh／h）	49	976	471	3	1081	13	518	15	50	117	148	97
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h	51	1017	0	3	1126	14	551	0	0	122	154	101
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	2	3	4	0	4	4	6	2	3	2	0	0
Cap，veh／h	65	1890		7	1779	22	619	0		286	172	113
Arrive On Green	0.05	0.71	0.00	0.00	0.50	0.50	0.18	0.00	0.00	0.16	0.16	0.16
Sat Flow，veh／h	1781	3526	1560	1810	3536	44	3450	0	1572	1781	1068	701
Grp Volume（v），veh／h	51	1017	0	3	557	583	551	0	0	122	0	255
Grp Sat Flow（s），veh／h／n	1781	1763	1560	1810	1749	1831	1725	0	1572	1781	0	1769
Q Serve（g＿s），s	4.2	20.2	0.0	0.2	34.8	34.8	23.4	0.0	0.0	9.3	0.0	21.2
Cycle Q Clear（g＿c），s	4.2	20.2	0.0	0.2	34.8	34.8	23.4	0.0	0.0	9.3	0.0	21.2
Prop In Lane	1.00		1.00	1.00		0.02	1.00		1.00	1.00		0.40
Lane Grp Cap（c），veh／h	65	1890		7	880	921	619	0		286	0	284
V／C Ratio（X）	0.78	0.54		0.42	0.63	0.63	0.89	0.00		0.43	0.00	0.90
Avail Cap（c＿a），veh／h	101	1890		62	880	921	793	0		338	0	336
HCM Platoon Ratio	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	70.7	12.9	0.0	74.5	27.2	27.2	60.1	0.0	0.0	56.7	0.0	61.7
Incr Delay（d2），s／veh	18.4	1.1	0.0	35.4	3.5	3.3	10.2	0.0	0.0	1.0	0.0	23.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％oile BackOfQ（50\％），veh／ln	2.3	7.0	0.0	0.2	15.2	15.9	11.2	0.0	0.0	4.3	0.0	11.4
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	89.1	14.0	0.0	110.0	30.6	30.5	70.3	0.0	0.0	57.7	0.0	84.8
LnGrp LOS	F	B		F	C	C	E	A		E	A	F
Approach Vol，veh／h		1068	A		1143			551	A		377	
Approach Delay，s／veh		17.6			30.7			70.3			76.0	
Approach LOS		B			C			E			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	5.1	84.9	31.4	10.0	80.0	28.6
Change Period（Y＋Rc），s	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	5.1	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋11），s	2.2	22.2	25.4	6.2	36.8	23.2
Green Ext Time（p＿c），s	0.0	9.4	1.5	0.0	8.1	0.9

Intersection Summary

HCM 6th Ctrl Delay	38.6
HCM 6th LOS	D

Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes
User approved volume balancing among the lanes for turning movement.

Intersection
Intersection Delay, s/veh78.3
Intersection LOS \quad F

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\&			\uparrow	「		\ddagger			\$	
Traffic Vol, veh/h 5	341	3	3	37	277	2	1	4	612	3	6
Future Vol, veh/h 5	341	3	3	37	277	2	1	4	612	3	6
Peak Hour Factor 0.89	0.89	0.89	0.92	0.92	0.92	0.58	0.58	0.58	0.90	0.90	0.90
Heavy Vehicles, \% 2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow 6	383	3	3	40	301	3	2	7	680	3	7
Number of Lanes 0	1	0	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			1			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			1			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			1		
HCM Control Delay 27.5			17.9			11.6			138.6		
HCM LOS D			C			B			F		

	NBLn1 EBLn1WBLn1WBLn2 SBLn1				
Vol Left, \%	29%	1%	7%	0%	99%
Vol Thru, $\%$	14%	98%	93%	0%	0%
Vol Right, \%	57%	1%	0%	100%	1%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	7	349	40	277	621
LT Vol	2	5	3	0	612
Through Vol	1	341	37	0	3
RT Vol	4	3	0	277	6
Lane Flow Rate	12	392	43	301	690
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.026	0.727	0.089	0.556	1.226
Departure Headway (Hd)	8.388	7.329	8.105	7.342	6.398
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	429	498	445	494	573
Service Time	6.388	5.329	5.805	5.042	4.441
HCM Lane V/C Ratio	0.028	0.787	0.097	0.609	1.204
HCM Control Delay	11.6	27.5	11.6	18.8	138.6
HCM Lane LOS	B	D	B	C	F
HCM 95th-tile Q	0.1	5.9	0.3	3.3	25.8

Notes
User approved volume balancing among the lanes for turning movement.

Timer - Assigned Phs	2	6	8
Phs Duration $(G+Y+R c)$, s	34.0	34.0	21.0
Change Period (Y+Rc), s	5.3	5.3	4.2
Max Green Setting (Gmax), s	28.0	28.0	17.5
Max Q Clear Time (g_c+11), s	7.8	13.0	15.8
Green Ext Time (p_c), s	5.0	7.3	1.0

Intersection Summary

HCM 6th Ctrl Delay	15.7
HCM 6th LOS	B

Notes
User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	「		\uparrow	「	${ }^{*}$	性中		${ }^{*}$	种中	
Traffic Volume（vph）	672	26	288	47	16	108	86	1467	18	46	1081	238
Future Volume（vph）	672	26	288	47	16	108	86	1467	18	46	1081	238
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	4.2	4.2	4.2		4.2	4.2	3.7	4.9		4.6	4.9	
Lane Util．Factor	0.95	0.95	1.00		1.00	1.00	1.00	0.91		1.00	0.91	
Frpb，ped／bikes	1.00	1.00	0.97		1.00	1.00	1.00	1.00		1.00	0.99	
Flpb，ped／bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.97	
Flt Protected	0.95	0.96	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1625	1641	1509		1783	1561	1745	4949		1745	4748	
Flt Permitted	0.95	0.96	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（perm）	1625	1641	1509		1783	1561	1745	4949		1745	4748	
Peak－hour factor，PHF	0.86	0.61	0.80	0.85	0.44	0.79	0.66	0.86	0.61	0.67	0.94	0.85
Adj．Flow（vph）	781	43	360	55	36	137	130	1706	30	69	1150	280
RTOR Reduction（vph）	0	0	132	0	0	119	0	1	0	0	33	0
Lane Group Flow（vph）	414	410	228	0	91	18	130	1735	0	69	1397	0
Confl．Peds．（\＃／hr）			18	18			12		8	8		12
Confl．Bikes（\＃／hr）												5
Heavy Vehicles（\％）	2\％	0\％	0\％			0\％	0\％	1\％		0\％	1\％	1\％

Heavy Vehicles（\％）	2%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Prot	NA	
Protected Phases	4	4		3	3		5	1	2	6	

Permitted Phases	4			3					
Actuated Green，G（s）	30.0	30.0	30.0	16.0	16.0	13.4	42.4	13.6	43.5
Effective Green，g（s）	30.0	30.0	30.0	16.0	16.0	13.4	42.4	13.6	43.5
Actuated g／C Ratio	0.25	0.25	0.25	0.13	0.13	0.11	0.35	0.11	0.36
Clearance Time（s）	4.2	4.2	4.2	4.2	4.2	3.7	4.9	4.6	4.9
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.2
Lane Grp Cap（vph）	406	410	377	237	208	195	1750	197	1722
v／s Ratio Prot	c0．25	0.25		c0．05		c0．07	c0．35	0.04	0.29
v／s Ratio Perm			0.15		0.01				
v／c Ratio	1.02	1.00	0.60	0.38	0.09	0.67	0.99	0.35	0.81
Uniform Delay，d1	45.0	45.0	39.7	47.4	45.6	51.1	38.6	49.1	34.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.18	0.92
Incremental Delay，d2	49.8	44.4	2.7	1.0	0.2	8.3	19.5	1.0	4.1
Delay（s）	94.7	89.4	42.4	48.5	45.7	59.4	58.1	58.8	35.7
Level of Service	F	F	D	D	D	E	E	E	D
Approach Delay（s）		77.0		46.8			58.2		36.8
Approach LOS		E		D			E		D

Intersection Summary			
HCM 2000 Control Delay	55.6	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	0.86		17.9
Actuated Cycle Length（s）	119.9	Sum of lost time（s）	C
Intersection Capacity Utilization	71.1%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7} 1$	t			\uparrow	「	7			${ }^{7}$	444	F
Traffic Volume (veh/h)	481	159	35	29	86	114	47	913	68	147	798	334
Future Volume (veh/h)	481	159	35	29	86	114	47	913	68	147	798	334
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.94	1.00		0.91	1.00		0.96	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	506	167	37	31	91	120	49	961	72	155	840	352
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	1	1	1	0	0	0	1	1	1	1	1	1
Cap, veh/h	720	305	68	54	159	166	64	1892	141	197	2382	724
Arrive On Green	0.21	0.21	0.21	0.11	0.11	0.11	0.04	0.39	0.39	0.11	0.46	0.46
Sat Flow, veh/h	3483	1476	327	477	1399	1462	1795	4869	364	1795	5147	1563
Grp Volume(v), veh/h	506	0	204	122	0	120	49	676	357	155	840	352
Grp Sat Flow(s),veh/h/n	1742	0	1803	1876	0	1462	1795	1716	1802	1795	1716	1563
Q Serve(g_s), s	12.4	0.0	9.3	5.7	0.0	7.3	2.5	13.8	13.8	7.7	9.6	14.3
Cycle Q Clear(g_c), s	12.4	0.0	9.3	5.7	0.0	7.3	2.5	13.8	13.8	7.7	9.6	14.3
Prop In Lane	1.00		0.18	0.25		1.00	1.00		0.20	1.00		1.00
Lane Grp Cap(c), veh/h	720	0	373	214	0	166	64	1333	700	197	2382	724
V/C Ratio(X)	0.70	0.00	0.55	0.57	0.00	0.72	0.77	0.51	0.51	0.79	0.35	0.49
Avail Cap(c_a), veh/h	798	0	413	430	0	335	313	1699	892	509	2548	774
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.8	0.0	32.5	38.5	0.0	39.2	43.8	21.4	21.4	39.8	15.8	17.1
Incr Delay (d2), s/veh	4.8	0.0	4.5	3.4	0.0	8.1	23.5	1.4	2.6	9.4	0.4	2.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	5.7	0.0	4.5	2.8	0.0	3.0	1.5	5.5	6.1	3.8	3.6	5.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	38.6	0.0	37.0	41.9	0.0	47.3	67.4	22.7	24.0	49.2	16.2	19.4
LnGrp LOS	D	A	D	D	A	D	E	C	C	D	B	B
Approach Vol, veh/h		710			242			1082			1347	
Approach Delay, s/veh		38.1			44.6			25.2			20.8	
Approach LOS		D			D			C			C	

Timer - Assigned Phs	1	2	4	5	6	8
Phs Duration (G+Y+Rc), s	7.3	47.0	14.4	14.1	40.2	23.0
Change Period (Y+Rc), s	4.0	4.6	4.0	4.0	4.6	4.0
Max Green Setting (Gmax), s	16.0	45.4	21.0	26.0	45.4	21.0
Max Q Clear Time (g_c+11), s	4.5	16.3	9.3	9.7	15.8	14.4
Green Ext Time (p_c), s	0.1	20.9	1.2	0.6	19.8	3.7

Intersection Summary

HCM 6th Ctrl Delay	27.6
HCM 6th LOS	C

Notes
User approved pedestrian interval to be less than phase max green.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¢ ${ }^{\text {¢ }}$		${ }^{7}$	* ${ }^{\text {¢ }}$		${ }^{7}$	种\%		7\%	44	F
Traffic Volume (veh/h) 413	540	120	212	248	99	129	557	87	190	497	104
Future Volume (veh/h) 413	540	120	212	248	99	129	557	87	190	497	104
Initial Q $(Q b)$, veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.97	1.00		0.96	1.00		0.97	1.00		0.97
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h 369	637	124	192	293	102	133	574	90	196	512	107
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \% 1	1	1	0	0	0	1	1	1	1	1	1
Cap, veh/h 461	784	152	347	515	174	172	1240	191	296	955	412
Arrive On Green 0.26	0.26	0.26	0.19	0.19	0.19	0.10	0.28	0.28	0.08	0.27	0.27
Sat Flow, veh/h 1795	3051	593	1810	2685	909	1795	4475	689	3483	3582	1548
Grp Volume(v), veh/h 369	393	368	192	205	190	133	438	226	196	512	107
Grp Sat Flow(s),veh/h/ln1795	1885	1758	1810	1900	1694	1795	1716	1733	1742	1791	1548
Q Serve(g_s), s 18.1	18.4	18.5	9.0	9.2	9.6	6.8	9.9	10.2	5.1	11.5	5.1
Cycle Q Clear(g_c), s 18.1	18.4	18.5	9.0	9.2	9.6	6.8	9.9	10.2	5.1	11.5	5.1
Prop In Lane 1.00		0.34	1.00		0.54	1.00		0.40	1.00		1.00
Lane Grp Cap(c), veh/h 461	485	452	347	364	325	172	951	480	296	955	412
V/C Ratio(X) 0.80	0.81	0.81	0.55	0.56	0.58	0.78	0.46	0.47	0.66	0.54	0.26
Avail Cap(c_a), veh/h 485	509	475	488	513	457	496	1655	836	962	1728	747
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 32.7	32.8	32.8	34.4	34.5	34.6	41.6	28.2	28.3	41.7	29.5	27.2
Incr Delay (d2), s/veh 9.4	9.8	10.6	2.0	1.9	2.4	10.1	1.3	2.6	3.6	1.7	1.2
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/19.0	9.7	9.1	4.2	4.4	4.2	3.4	4.1	4.5	2.3	5.0	2.0
LnGrp Delay(d),s/veh 42.1	42.6	43.5	36.3	36.4	37.0	51.7	29.4	30.9	45.3	31.2	28.4
LnGrp LOS D	D	D	D	D	D	D	C	C	D	C	C
Approach Vol, veh/h	1130			587			797			815	
Approach Delay, s/veh	42.7			36.6			33.6			34.3	
Approach LOS	D			D			C			C	

Timer - Assigned Phs 1	2	4	5	6	8
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), \$ $\mathbf{2} .0$	30.7	22.6	13.0	29.7	28.8
Change Period (Y+Rc), s 4.0	4.6	4.6	4.0	4.6	4.6
	45.4	25.4	26.0	45.4	25.4
Max Q Clear Time (g_c l IT), 1 s	12.2	11.6	8.8	13.5	20.5
Green Ext Time (p_c), s 0.9	11.4	3.7	0.5	10.0	3.2

Intersection Summary

HCM 6th Ctrl Delay	37.4
HCM 6th LOS	D

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

												\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	「	\％	个的		${ }^{7}$	中 ${ }^{\text {a }}$	
Traffic Volume（veh／h）	142	187	67	54	85	85	67	526	88	69	509	101
Future Volume（veh／h）	142	187	67	54	85	85	67	526	88	69	509	101
Initial $Q(Q b)$ ，veh	0	0	0	，	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.97	1.00		0.96	1.00		0.95	1.00		0.95
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／n	1900	1900	1900	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h	149	197	71	57	89	89	71	554	93	73	536	106
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	0	0	．	0	0	0	1	1	1	1	1	1
Cap，veh／h	174	230	83	97	152	207	94	992	166	96	967	190
Arrive On Green	0.27	0.27	0.27	0.13	0.13	0.13	0.05	0.33	0.33	0.05	0.33	0.33
Sat Flow，veh／h	644	852	307	728	1136	1544	1795	3046	509	1795	2956	582
Grp Volume（v），veh／h	417	0	0	146	0	89	71	325	322	73	324	318
Grp Sat Flow（s），veh／h／n	1803	0	0	1864	0	1544	1795	1791	1764	1795	1791	1746
Q Serve（g＿s），s	16.8	0.0	0.0	5.6	0.0	4.1	3.0	11.4	11.5	3.1	11.4	11.5
Cycle Q Clear（g＿c），s	16.8	0.0	0.0	5.6	0.0	4.1	3.0	11.4	11.5	3.1	11.4	11.5
Prop In Lane	0.36		0.17	0.39		1.00	1.00		0.29	1.00		0.33
Lane Grp Cap（c），veh／h	487	0	0	249	0	207	94	583	575	96	586	571
V／C Ratio（X）	0.86	0.00	0.00	0.59	0.00	0.43	0.76	0.56	0.56	0.76	0.55	0.56
Avail Cap（c＿a），veh／h	612	0	0	633	0	524	610	1062	1046	610	1062	1035
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	26.5	0.0	0.0	31.2	0.0	30.5	35.8	21.3	21.3	35.7	21.2	21.2
Incr Delay（d2），s／veh	9.6	0.0	0.0	2.2	0.0	1.4	11.7	3.0	3.1	11.4	2.9	3.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（ 50% ），veh／	118.3	0.0	0.0	2.6	0.0	1.6	1.6	5.1	5.1	1.6	4.9	4.9
Unsig．Movement Delay，	，s／veh											
LnGrp Delay（d），s／veh	36.1	0.0	0.0	33.4	0.0	31.9	47.5	24.3	24.4	47.1	24.1	24.3
LnGrp LOS	D	A	A	C	A	C	D	C	C	D	C	C
Approach Vol，veh／h		417			235			718			715	
Approach Delay，s／veh		36.1			32.8			26.6			26.5	
Approach LOS		D			C			C			C	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $G+Y+R \mathrm{Cc}$ ），	， 8.1	29.5		14.2	8.0	29.7		24.7				
Change Period（ $Y+R \mathrm{Rc}$ ），s	s 4.0	4.6		4.0	4.0	4.6		4.0				
Max Green Setting（Gma	220．6	45.4		26.0	26.0	45.4		26.0				
Max Q Clear Time（g＿c＋	＋19， 1 is	13.5		7.6	5.0	13.5		18.8				
Green Ext Time（p＿c），s	0.1	11.4		1.0	0.1	10.7		1.6				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			29.2									
			O									

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	\rangle							4				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	性		${ }^{7}$	性		${ }^{7}$	$\hat{6}$		${ }^{7}$	$\hat{\beta}$	
Traffic Volume (veh/h)	51	870	124	98	408	49	151	198	85	200	373	48
Future Volume (veh/h)	51	870	124	98	408	49	151	198	85	200	373	48
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	1.00		0.95	1.00		0.97	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/n	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	54	916	131	103	429	52	159	208	89	211	393	51
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	70	1058	151	134	1196	144	199	302	129	254	447	58
Arrive On Green	0.04	0.34	0.34	0.07	0.37	0.37	0.11	0.24	0.24	0.14	0.27	0.27
Sat Flow, veh/h	1810	3149	450	1810	3225	388	1810	1250	535	1810	1641	213
Grp Volume(v), veh/h	54	525	522	103	239	242	159	0	297	211	0	444
Grp Sat Flow(s),veh/h/n	1810	1805	1794	1810	1805	1808	1810	0	1785	1810	0	1854
Q Serve(g_s), s	2.6	23.5	23.5	4.8	8.3	8.4	7.4	0.0	13.1	9.8	0.0	19.8
Cycle Q Clear(g_c), s	2.6	23.5	23.5	4.8	8.3	8.4	7.4	0.0	13.1	9.8	0.0	19.8
Prop In Lane	1.00		0.25	1.00		0.21	1.00		0.30	1.00		0.11
Lane Grp Cap(c), veh/h	70	606	603	134	670	671	199	0	432	254	0	505
V/C Ratio(X)	0.77	0.87	0.87	0.77	0.36	0.36	0.80	0.00	0.69	0.83	0.00	0.88
Avail Cap(c_a), veh/h	429	742	737	429	742	743	429	0	527	429	0	547
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	41.1	26.9	26.9	39.3	19.7	19.7	37.5	0.0	29.8	36.2	0.0	30.1
Incr Delay (d2), s/veh	12.3	7.8	7.9	6.8	0.4	0.4	7.2	0.0	2.4	7.0	0.0	14.8
Initial Q Delay(d3),s/veh 0.0 \%ile BackOfQ(50%),veh/IIII 4		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		11.0	10.9	2.4	3.4	3.5	3.6	0.0	5.8	4.7	0.0	10.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh LnGrp LOS	53.4	34.7	34.8	46.1	20.1	20.1	44.8	0.0	32.2	43.1	0.0	44.9
	D	C	C	D	C	C	D	A	C	D	A	D
Approach Vol, veh/h		1101			584			456			655	
Approach Delay, s/vehApproach LOS		35.7			24.7			36.6			44.3	
		D			C			D			D	

Timer - Assigned Phs	2	3	4	5	6	7	8
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), $\mathbf{5 0}^{0} 9$	33.5	16.6	25.4	7.9	36.6	14.0	28.0
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmaz), ${ }^{\text {F }}$	35.5	20.5	25.5	20.5	35.5	20.5	25.5
	25.5	11.8	15.1	4.6	10.4	9.4	21.8
Green Ext Time (p_c), s 0.1	3.5	0.4	1.1	0.1	3.6	0.3	1.1

Intersection Summary

HCM 6th Ctrl Delay	35.6
HCM 6th LOS	D

Notes
User approved pedestrian interval to be less than phase max green.

												\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }^{\text {a }}$		\%	个 ${ }^{\text {P }}$		${ }^{7}$	F		${ }^{7}$	F	
Traffic Volume (veh/h)	45	1059	56	53	468	85	22	58	65	278	143	55
Future Volume (veh/h)	45	1059	56	53	468	85	22	58	65	278	143	55
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.92	1.00		0.93	1.00		0.92	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	47	1115	59	56	493	89	23	61	68	293	151	58
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	0	0	0	0	0	1	1	1	0	0	0
Cap, veh/h	60	1437	76	73	1269	227	36	117	131	341	415	159
Arrive On Green	0.03	0.41	0.41	0.04	0.42	0.42	0.02	0.15	0.15	0.19	0.32	0.32
Sat Flow, veh/h	1810	3470	184	1810	3016	540	1795	775	864	1810	1295	497
Grp Volume(v), veh/h	47	580	594	56	294	288	23	0	129	293	0	209
Grp Sat Flow(s),veh/h/n	n1810	1805	1849	1810	1805	1752	1795	0	1640	1810	0	1793
Q Serve(g_s), s	2.0	21.6	21.6	2.4	8.7	8.9	1.0	0.0	5.6	12.2	0.0	7.0
Cycle Q Clear (g_c), s	2.0	21.6	21.6	2.4	8.7	8.9	1.0	0.0	5.6	12.2	0.0	7.0
Prop In Lane	1.00		0.10	1.00		0.31	1.00		0.53	1.00		0.28
Lane Grp Cap(c), veh/h	60	747	765	73	760	737	36	0	248	341	0	574
V/C Ratio(X)	0.78	0.78	0.78	0.77	0.39	0.39	0.64	0.00	0.52	0.86	0.00	0.36
Avail Cap(c_a), veh/h	372	1067	1093	372	1067	1036	485	0	337	489	0	574
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	h37.3	19.7	19.7	37.0	15.6	15.6	37.8	0.0	30.4	30.5	0.0	20.4
Incr Delay (d2), s/veh	19.2	2.3	2.3	15.6	0.3	0.3	17.0	0.0	1.7	10.2	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh	h/lıl 2	8.8	9.0	1.3	3.4	3.4	0.6	0.0	2.3	6.2	0.0	2.9
Unsig. Movement Delay	, s/veh											
LnGrp Delay (d),s/veh	56.5	22.0	22.0	52.6	15.9	16.0	54.9	0.0	32.1	40.8	0.0	20.7
LnGrp LOS	E	C	C	D	B	B	D	A	C	D	A	C
Approach Vol, veh/h		1221			638			152			502	
Approach Delay, s/veh		23.3			19.1			35.5			32.4	
Approach LOS		C			B			D			C	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$),	, 88.7	15.8	7.1	36.2	5.6	28.9	6.6	36.7				
Change Period ($\mathrm{Y}+\mathrm{Rc}$),	s 4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0				
Max Green Setting (Gma	28), 8	16.0	16.0	46.0	21.0	16.0	16.0	46.0				
Max Q Clear Time (g_c+	+114, 2 s	7.6	4.4	23.6	3.0	9.0	4.0	10.9				
Green Ext Time (p_c), s	S 0.5	0.4	0.1	8.6	0.0	0.6	0.1	4.0				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			24.8									
			C									

Notes
User approved pedestrian interval to be less than phase max green.

								4				\downarrow
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }^{\text {a }}$		${ }^{*}$	\uparrow	F		\uparrow	「		\uparrow	$\stackrel{7}{7}$
Traffic Volume (veh/h)	34	1263	107	147	569	21	88	10	115	19	9	16
Future Volume (veh/h)	34	1263	107	147	569	21	88	10	115	19	9	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1	1.00		0.96	1.00		0.97	1.00		0.97	1.00		0.99
Parking Bus, Adj 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln 19	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	35	1302	110	152	587	22	91	10	119	20	9	16
Peak Hour Factor 0	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	0	0	0	0	0	0	1	1	1	0	0	0
Cap, veh/h	50	1530	129	196	1031	845	89	5	401	79	22	415
Arrive On Green 0	0.03	0.46	0.46	0.11	0.54	0.54	0.26	0.26	0.26	0.26	0.26	0.26
Sat Flow, veh/h 18	1810	3358	283	1810	1900	1557	0	21	1545	0	86	1599
Grp Volume(v), veh/h	35	698	714	152	587	22	101	0	119	29	0	16
Grp Sat Flow(s),veh/h/n18	1810	1805	1836	1810	1900	1557	21	0	1545	86	0	1599
Q Serve(g_s), s	1.5	26.4	26.7	6.3	15.7	0.5	0.0	0.0	4.8	0.0	0.0	0.6
Cycle Q Clear(g_c), s	1.5	26.4	26.7	6.3	15.7	0.5	20.0	0.0	4.8	20.0	0.0	0.6
Prop In Lane $\quad 1$	1.00		0.15	1.00		1.00	0.90		1.00	0.69		1.00
Lane Grp Cap(c), veh/h	50	822	836	196	1031	845	94	0	401	101	0	415
V/C Ratio (X) 0.71	0.71	0.85	0.85	0.78	0.57	0.03	1.07	0.00	0.30	0.29	0.00	0.04
Avail Cap(c_a), veh/h	611	1052	1071	599	1108	908	94	0	401	101	0	415
HCM Platoon Ratio 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 3	37.1	18.6	18.7	33.4	11.6	8.2	37.4	0.0	22.9	23.8	0.0	21.3
Incr Delay (d2), s/veh 1	16.8	4.4	4.6	6.5	0.3	0.0	113.4	0.0	0.2	0.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/Ir	$1 / 10.9$	11.0	11.3	3.1	6.1	0.2	4.7	0.0	1.7	0.4	0.0	0.2
Unsig. Movement Delay, s	, s/veh											
LnGrp Delay(d),s/veh 5	53.9	23.0	23.3	40.0	12.0	8.2	150.8	0.0	23.0	24.4	0.0	21.3
LnGrp LOS	D	C	C	D	B	A	F	A	C	C	A	C
Approach Vol, veh/h		1447			761			220			45	
Approach Delay, s/veh		23.9			17.4			81.7			23.3	
Approach LOS		C			B			F			C	
Timer - Assigned Phs	,	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	, 22.8	40.2		24.0	6.1	46.9		24.0				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	s 4.5	5.1		4.0	4.0	5.1		4.0				
Max Green Setting (Gmaz	225	44.9		20.0	26.0	44.9		20.0				
Max Q Clear Time (g_c+11	118,38	28.7		22.0	3.5	17.7		22.0				
Green Ext Time (p_c), s	0.4	6.4		0.0	0.1	2.9		0.0				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			27.0									
			C									

Notes
User approved pedestrian interval to be less than phase max green.

								\uparrow				\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个		\%	$\hat{\beta}$		\%	F		${ }^{7}$	F	
Traffic Volume (veh/h)	53	337	126	145	225	34	77	348	115	64	443	41
Future Volume (veh/h)	53	337	126	145	225	34	77	348	115	64	443	41
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.94	1.00		0.95	1.00		0.95	1.00		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	55	351	131	151	234	35	80	362	120	67	461	43
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	1	1	1	0	0	0	1	1	1	0	0	0
Cap, veh/h	77	402	150	192	603	90	106	438	145	89	542	51
Arrive On Green	0.04	0.31	0.31	0.11	0.38	0.38	0.06	0.33	0.33	0.05	0.32	0.32
Sat Flow, veh/h	1795	1282	478	1810	1602	240	1795	1335	443	1810	1703	159
Grp Volume(v), veh/h	55	0	482	151	0	269	80	0	482	67	0	504
Grp Sat Flow(s), veh/h/ln	1795	0	1761	1810	0	1842	1795	0	1778	1810	0	1862
Q Serve(g_s), s	2.5	0.0	21.6	6.8	0.0	8.9	3.7	0.0	20.9	3.1	0.0	21.2
Cycle Q Clear (g_c), s	2.5	0.0	21.6	6.8	0.0	8.9	3.7	0.0	20.9	3.1	0.0	21.2
Prop In Lane	1.00		0.27	1.00		0.13	1.00		0.25	1.00		0.09
Lane Grp Cap(c), veh/h	77	0	552	192	0	694	106	0	583	89	0	592
V/C Ratio(X)	0.71	0.00	0.87	0.78	0.00	0.39	0.76	0.00	0.83	0.76	0.00	0.85
Avail Cap(c_a), veh/h	569	0	737	574	0	771	569	0	745	574	0	780
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	39.5	0.0	27.1	36.4	0.0	19.0	38.7	0.0	25.9	39.2	0.0	26.6
Incr Delay (d2), s/veh	11.3	0.0	8.9	6.9	0.0	0.4	10.4	0.0	6.9	12.2	0.0	7.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh	/111. 4	0.0	10.2	3.3	0.0	3.8	1.9	0.0	9.5	1.6	0.0	10.3
Unsig. Movement Delay,	, s/veh											
LnGrp Delay(d),s/veh	50.8	0.0	36.0	43.3	0.0	19.4	49.2	0.0	32.8	51.5	0.0	34.6
LnGrp LOS	D	A	D	D	A	B	D	A	C	D	A	C
Approach Vol, veh/h		537			420			562			571	
Approach Delay, s/veh		37.6			28.0			35.1			36.6	
Approach LOS		D			C			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$),	, 82.4	31.2	8.4	31.6	7.1	36.5	7.6	32.4				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	s 3.5	5.0	3.5	5.0	3.5	5.0	3.5	5.0				
Max Green Setting (Gma	2 2 ¢, 5	35.0	26.5	35.0	26.5	35.0	26.5	35.0				
Max Q Clear Time (g_c+	+19,8 8	23.6	5.7	23.2	4.5	10.9	5.1	22.9				
Green Ext Time (p_c), s	0.4	2.6	0.2	3.4	0.1	1.7	0.1	3.4				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			34.7									
			C									

Intersection

Intersection Delay, s/veh56.5
Intersection LOS
F

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	F		\uparrow	「		\$			\$	
Traffic Vol, veh/h 75	465	87	49	296	49	31	89	36	39	129	67
Future Vol, veh/h 75	465	87	49	296	49	31	89	36	39	129	67
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \% 0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow 81	500	94	53	318	53	33	96	39	42	139	72
Number of Lanes 0	1	1	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			2			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			2			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			2		
HCM Control Delay 98.7			27.8			15.8			18.8		
HCM LOS F			D			C			C		

Lane	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, \%	20%	14%	0%	14%	0%	17%
Vol Thru, \%	57%	86%	0%	86%	0%	55%
Vol Right, \%	23%	0%	100%	0%	100%	29%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	156	540	87	345	49	235
LT Vol	31	75	0	49	0	39
Through Vol	89	465	0	296	0	129
RT Vol	36	0	87	0	49	67
Lane Flow Rate	168	581	94	371	53	253
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.362	1.149	0.165	0.755	0.096	0.518
Departure Headway (Hd)	8.213	7.126	6.336	7.65	6.853	7.778
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	441	511	566	475	526	467
Service Time	6.213	4.871	4.08	5.35	4.553	5.778
HCM Lane V/C Ratio	0.381	1.137	0.166	0.781	0.101	0.542
HCM Control Delay	15.8	112.9	10.3	30.3	10.3	18.8
HCM Lane LOS	C	F	B	D	B	C
HCM 95th-tile Q	1.6	20.1	0.6	6.4	0.3	2.9

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	F	${ }^{7}$	4	「	${ }^{1}$	\uparrow		${ }^{*}$	\dagger	
Traffic Volume (veh/h) 71	522	242	15	304	131	87	44	7	175	97	110
Future Volume (veh/h) 71	522	242	15	304	131	87	44	7	175	97	110
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00		0.89	1.00		0.92
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1885	1885	1885	1885	1885	1885	1900	1900	1900	1885	1885	1885
Adj Flow Rate, veh/h 79	580	0	17	338	0	97	49	8	194	108	122
Peak Hour Factor 0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, \% 1	1	1	1	1	1	0	0	0	1	1	1
Cap, veh/h 110	708		37	631		127	295	48	243	195	221
Arrive On Green 0.06	0.38	0.00	0.02	0.33	0.00	0.07	0.19	0.19	0.14	0.25	0.25
Sat Flow, veh/h 1795	1885	1598	1795	1885	1598	1810	1563	255	1795	769	868
Grp Volume(v), veh/h 79	580	0	17	338	0	97	0	57	194	0	230
Grp Sat Flow(s),veh/h/ln1795	1885	1598	1795	1885	1598	1810	0	1819	1795	0	1637
Q Serve(g_s), s 2.5	16.4	0.0	0.6	8.6	0.0	3.1	0.0	1.5	6.2	0.0	7.2
Cycle Q Clear(g_c), s 2.5	16.4	0.0	0.6	8.6	0.0	3.1	0.0	1.5	6.2	0.0	7.2
Prop In Lane 1.00		1.00	1.00		1.00	1.00		0.14	1.00		0.53
Lane Grp Cap(c), veh/h 110	708		37	631		127	0	343	243	0	416
V/C Ratio(X) 0.72	0.82		0.46	0.54		0.77	0.00	0.17	0.80	0.00	0.55
Avail Cap(c_a), veh/h 487	1134		487	1134		491	0	647	487	0	583
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 27.2	16.6	0.0	28.6	15.9	0.0	27.0	0.0	20.1	24.7	0.0	19.1
Incr Delay (d2), s/veh 6.3	2.6	0.0	6.5	0.7	0.0	3.6	0.0	0.2	2.3	0.0	0.9
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lı1. 2	6.9	0.0	0.3	3.4	0.0	1.4	0.0	0.6	2.6	0.0	2.6
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 33.4	19.2	0.0	35.0	16.6	0.0	30.6	0.0	20.2	27.0	0.0	19.9
LnGrp LOS C	B		D	B		C	A	C	C	A	B
Approach Vol, veh/h	659	A		355	A		154			424	
Approach Delay, s/veh	20.9			17.5			26.7			23.2	
Approach LOS	C			B			C			C	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s5.2	26.7	8.1	19.0	7.6	24.2	12.0	15.1	
Change Period (Y+Rc), s 4.0	4.5	4.0	4.0	4.0	4.5	4.0	4.0	
Max Green Setting (Gmaxক., \&	35.5	16.0	21.0	16.0	35.5	16.0	21.0	
Max Q Clear Time (g_c+\|22,Cs	18.4	5.1	9.2	4.5	10.6	8.2	3.5	
Green Ext Time (p_c), s 0.0	3.8	0.1	0.9	0.1	2.1	0.2	0.2	

Intersection Summary

HCM 6th Ctrl Delay	21.3
HCM 6th LOS	C

Notes
Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Kimley»Horn

APPENDIX F. CUMULATIVE CONDITIONS SYNCHRO OUTPUT SHEETS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个 \uparrow	F	\％	中 ${ }^{\text {a }}$		${ }^{*}$	\uparrow	「		\uparrow	F
Traffic Volume（veh／h）	28	551	318	80	514	66	623	28	133	28	23	12
Future Volume（veh／h）	28	551	318	80	514	66	623	28	133	28	23	12
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	29	568	0	82	530	68	663	0	0	29	24	12
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	0	0	0
Cap，veh／h	52	1715		105	1616	207	748	0		67	55	103
Arrive On Green	0.03	0.48	0.00	0.06	0.51	0.51	0.21	0.00	0.00	0.07	0.07	0.07
Sat Flow，veh／h	1795	3582	1598	1795	3180	406	3591	0	1598	1012	837	1559
Grp Volume（v），veh／h	29	568	0	82	298	300	663	0	0	53	0	12
Grp Sat Flow（s），veh／h／ln	1795	1791	1598	1795	1791	1795	1795	0	1598	1849	0	1559
Q Serve（g＿s），s	1.4	8.4	0.0	3.8	8.3	8.4	15.2	0.0	0.0	2.3	0.0	0.6
Cycle Q Clear（g＿c），s	1.4	8.4	0.0	3.8	8.3	8.4	15.2	0.0	0.0	2.3	0.0	0.6
Prop In Lane	1.00		1.00	1.00		0.23	1.00		1.00	0.55		1.00
Lane Grp Cap（c），veh／h	52	1715		105	910	912	748	0		122	0	103
V／C Ratio（X）	0.55	0.33		0.78	0.33	0.33	0.89	0.00		0.43	0.00	0.12
Avail Cap（c＿a），veh／h	118	1715		137	910	912	824	0		490	0	413
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	0.97	0.97	0.97	0.71	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	40.7	13.7	0.0	39.5	12.3	12.3	32.7	0.0	0.0	38.2	0.0	37.4
Incr Delay（d2），s／veh	3.4	0.5	0.0	13.3	0.9	0.9	7.4	0.0	0.0	0.9	0.0	0.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	0.6	3.4	0.0	2.1	3.4	3.5	7.1	0.0	0.0	1.1	0.0	0.2
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	44.1	14.2	0.0	52.7	13.3	13.3	40.1	0.0	0.0	39.1	0.0	37.6
LnGrp LOS	D	B		D	B	B	D	A		D	A	D
Approach Vol，veh／h		597	A		680			663	A		65	
Approach Delay，s／veh		15.7			18.0			40.1			38.8	
Approach LOS		B			B			D			D	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	9.0	44.7	9.6	6.5	47.2	21.7
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting（Gmax），s	6.5	20.5	22.5	5.6	21.4	19.5
Max Q Clear Time（g＿c＋11），s	5.8	10.4	4.3	3.4	10.4	17.2
Green Ext Time（p＿c），s	0.0	2.8	0.1	0.0	2.9	0.4

Intersection Summary
HCM 6th Ctrl Delay 25.3
HCM 6th LOS
C

Notes

User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

											\downarrow	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	个4	F	${ }^{7}$	性			\uparrow	F		¢		
Traffic Volume (veh/h) 6	705	366	313	604	6	240	2	951	1	0	2	
Future Volume (veh/h)	705	366	313	604	6	240	2	951	1	0	2	
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.86	
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No			No			No		
Adj Sat Flow, veh/h/ln 1900	1900	1737	1870	1900	1900	1885	1885	1856	1870	1870	1870	
Adj Flow Rate, veh/h 6	734	0	326	629	6	250	2	0	1	0	2	
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	
Percent Heavy Veh, \% 0	0	11	2	0	0	1	1	3	2	2	2	
Cap, veh/h 11	1963		344	2678	26	271	2		9	0	17	
Arrive On Green 0.01	0.54	0.00	0.39	1.00	1.00	0.15	0.15	0.00	0.02	0.00	0.02	
Sat Flow, veh/h 1810	3610	1472	1781	3664	35	1782	14	1572	495	0	990	
Grp Volume(v), veh/h 6	734	0	326	310	325	252	0	0	3	0	0	
Grp Sat Flow(s),veh/h/ln1810	1805	1472	1781	1805	1894	1796	0	1572	1485	0	0	
Q Serve(g_s), s 0.5	17.5	0.0	26.6	0.0	0.0	20.8	0.0	0.0	0.3	0.0	0.0	
Cycle Q Clear(g_c), s 0.5	17.5	0.0	26.6	0.0	0.0	20.8	0.0	0.0	0.3	0.0	0.0	
Prop In Lane 1.00		1.00	1.00		0.02	0.99		1.00	0.33		0.67	
Lane Grp Cap(c), veh/h 11	1963		344	1319	1384	273	0		26	0	0	
V/C Ratio(X) 0.56	0.37		0.95	0.23	0.23	0.92	0.00		0.11	0.00	0.00	
Avail Cap(c_a), veh/h 48	1963		487	1319	1384	281	0		218	0	0	
HCM Platoon Ratio 1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(l) 0.71	0.71	0.00	1.00	1.00	1.00	0.53	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d), s/veh 74.4	19.6	0.0	45.3	0.0	0.0	62.7	0.0	0.0	72.5	0.0	0.0	
Incr Delay (d2), s/veh 11.6	0.4	0.0	20.1	0.4	0.4	20.8	0.0	0.0	1.4	0.0	0.0	
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%ile BackOfQ(50\%),veh/1r0. 3	7.4	0.0	11.9	0.2	0.2	11.2	0.0	0.0	0.1	0.0	0.0	
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh 86.0	20.0	0.0	65.4	0.4	0.4	83.5	0.0	0.0	74.0	0.0	0.0	
LnGrp LOS F	B		E	A	A	F	A		E	A	A	
Approach Vol, veh/h	740	A		961			252	A		3		
Approach Delay, s/veh	20.5			22.4			83.5			74.0		
Approach LOS	C			C			F			E		
Timer - Assigned Phs 1	2		4	5	6		8					
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), 32.0	85.6		6.1	3.9	113.6		26.3					
Change Period (Y+Rc), s 3.0	4.0		3.5	3.0	4.0		3.5					
Max Green Setting (Gmaz), ©	49.5		22.0	4.0	86.5		23.5					
Max Q Clear Time (g_c+E8, $\mathrm{Es}^{\text {c }}$	19.5		2.3	2.5	2.0		22.8					
Green Ext Time (p_c), s 0.4	7.7		0.0	0.0	6.5		0.1					
Intersection Summary												
HCM 6th Ctrr Delay		29.7										
HCM 6th LOS		C										
Notes												

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	个4	「	${ }^{7}$	性		${ }^{*}$	\uparrow	「	${ }^{*}$	$\hat{\beta}$	
Traffic Volume（veh／h） 155	909	593	7	1075	39	419	133	80	80	91	51
Future Volume（veh／h） 155	909	593	7	1075	39	419	133	80	80	91	51
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h 161	947	0	7	1120	41	288	347	0	83	95	53
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％ 2	3	4	0	4	4	6	2	3	2	0	0
Cap，veh／h 101	1996		15	1779	65	353	383		179	115	64
Arrive On Green 0.08	0.75	0.00	0.01	0.52	0.52	0.20	0.20	0.00	0.10	0.10	0.10
Sat Flow，veh／h 1781	3526	1560	1810	3435	126	1725	1870	1572	1781	1142	637
Grp Volume（v），veh／h 161	947	0	7	570	591	288	347	0	83	0	148
Grp Sat Flow（s），veh／h／ln1781	1763	1560	1810	1749	1812	1725	1870	1572	1781	0	1779
Q Serve（g＿s），s 8.5	15.5	0.0	0.6	35.0	35.0	23.9	27.2	0.0	6.6	0.0	12.2
Cycle Q Clear（g＿c），s 8.5	15.5	0.0	0.6	35.0	35.0	23.9	27.2	0.0	6.6	0.0	12.2
Prop In Lane 1.00		1.00	1.00		0.07	1.00		1.00	1.00		0.36
Lane Grp Cap（c），veh／h 101	1996		15	906	939	353	383		179	0	179
V／C Ratio（X） 1.60	0.47		0.46	0.63	0.63	0.82	0.91		0.46	0.00	0.83
Avail Cap（c＿a），veh／h 101	1996		62	906	939	397	430		338	0	338
HCM Platoon Ratio 1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）$\quad 1.00$	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh 69.3	10.0	0.0	74.0	25.9	25.9	56.9	58.2	0.0	63.6	0.0	66.2
Incr Delay（d2），s／veh 309.2	0.8	0.0	20.0	3.3	3.2	11.3	21.1	0.0	1.9	0.0	9.2
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ilir． 5	5.1	0.0	0.4	15.2	15.7	11.6	15.2	0.0	3.1	0.0	6.0
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 378.5	10.8	0.0	94.0	29.2	29.1	68.3	79.3	0.0	65.5	0.0	75.4
LnGrp LOS F	B		F	C	C	E	E		E	A	E
Approach Vol，veh／h	1108	A		1168			635	A		231	
Approach Delay，s／veh	64.2			29.5			74.3			71.8	
Approach LOS	E			C			E			E	

Timer－Assigned Phs	1	2	4	5	6
Phs Duration（G＋Y＋Rc），s5．8	89.4	35.2	13.0	82.2	19.6
Change Period（Y＋Rc），s 4．5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax5），\＄	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋｜21，6s	17.5	29.2	10.5	37.0	14.2
Green Ext Time（p＿c），s 0.0	8.6	1.5	0.0	8.3	0.9

Intersection Summary
HCM 6th Ctrl Delay 53.9
HCM 6th LOS D
Notes
User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes
User approved volume balancing among the lanes for turning movement.

Intersection						
Int Delay, s/veh	5.3					
Movement	EBT	EBR	WBL	WBT	NBL	
Lane Configurations	4	F	${ }^{*}$	4	${ }^{1}$	「
Traffic Vol, veh/h	217	97	75	211	162	96
Future Vol, veh/h	217	97	75	211	162	96
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	25	170	-	145	0
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	0	0	0	0
Mvmt Flow	226	101	78	220	169	100

Intersection						

Major/Minor \quad N	Major1		Major2		Minor1	
Conflicting Flow All	0	0	343	0	698	339
Stage 1	-	-	-	-	339	-
Stage 2	-	-	-	-	359	-
Critical Hdwy	-	-	4.12	-	6.51	6.31
Critical Hdwy Stg 1	-	-	-		5.51	-
Critical Hdwy Stg 2	-	-	-	-	5.51	-
Follow-up Hdwy	-		2.218		3.599	3.399
Pot Cap-1 Maneuver	-	-	1216	-	393	683
Stage 1	-	-	-		702	-
Stage 2	-	-	-		687	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1215	-	389	682
Mov Cap-2 Maneuver	-	-	-		493	-
Stage 1	-	-	-		701	-
Stage 2	-	-	-		680	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		11.6	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		561	-	-	1215	-
HCM Lane V/C Ratio		0.032	-		0.008	-
HCM Control Delay (s)		11.6	-	-	8	-
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 12.3 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow	「		*			*	
Traffic Vol, veh/h	10	92	0	6	26	393	0	2	9	269	0	5
Future Vol, veh/h	10	92	0	6	26	393	0	2	9	269	0	5
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, \%	2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow	10	96	0	6	27	409	0	2	9	280	0	5
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	9.6			12.9				8.6		12.6		
HCM LOS	A			B				A		B		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	10%	19%	0%	98%
Vol Thru, \%	18%	90%	81%	0%	0%
Vol Right, \%	82%	0%	0%	100%	2%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	11	102	32	393	274
LT Vol	0	10	6	0	269
Through Vol	2	92	26	0	0
RT Vol	9	0	0	393	5
Lane Flow Rate	11	106	33	409	285
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.018	0.163	0.052	0.543	0.434
Departure Headway (Hd)	5.522	5.507	5.579	4.778	5.48
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	650	653	635	745	662
Service Time	3.539	3.527	3.374	2.572	3.48
HCM Lane V/C Ratio	0.017	0.162	0.052	0.549	0.431
HCM Control Delay	8.6	9.6	8.7	13.2	12.6
HCM Lane LOS	A	A	A	B	B
HCM 95th-tile Q	0.1	0.6	0.2	3.3	2.2

Notes

User approved volume balancing among the lanes for turning movement.

Notes

User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Notes

User approved pedestrian interval to be less than phase max green.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊\uparrow		${ }^{*}$	＊\uparrow		${ }^{7}$	虾		${ }^{17}$	中4	「
Traffic Volume（veh／h） 471	178	69	124	246	132	49	497	36	110	432	84
Future Volume（veh／h） 471	178	69	124	246	132	49	497	36	110	432	84
Initial Q (Qb) ，veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		0.97	1.00		0.97	1.00		0.97	1.00		0.97
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h 486	184	71	128	254	136	51	512	37	113	445	87
Peak Hour Factor 0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％ 1	1	1	0	0	0	1	1	1	1	1	1
Cap，veh／h 840	300	116	374	483	248	67	1294	92	242	1064	461
Arrive On Green 0.23	0.23	0.23	0.21	0.21	0.21	0.04	0.26	0.26	0.07	0.30	0.30
Sat Flow，veh／h 3591	1283	495	1810	2335	1199	1795	4889	349	3483	3582	1551
Grp Volume（v），veh／h 486	0	255	128	205	185	51	358	191	113	445	87
Grp Sat Flow（s），veh／h／ln1795	0	1778	1810	1900	1633	1795	1716	1807	1742	1791	1551
Q Serve（g＿s），s 9.5	0.0	10.1	4.8	7.6	8.0	2.2	6.8	6.9	2.5	7.9	3.3
Cycle Q Clear（g＿c），s 9.5	0.0	10.1	4.8	7.6	8.0	2.2	6.8	6.9	2.5	7.9	3.3
Prop In Lane 1.00		0.28	1.00		0.73	1.00		0.19	1.00		1.00
Lane Grp Cap（c），veh／h 840	0	416	374	393	338	67	908	478	242	1064	461
V／C Ratio（X） 0.58	0.00	0.61	0.34	0.52	0.55	0.76	0.39	0.40	0.47	0.42	0.19
Avail Cap（c＿a），veh／h 1153	0	571	581	610	525	590	1970	1038	1145	2057	890
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）$\quad 1.00$	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh 26.8	0.0	27.1	26.8	27.9	28.1	37.7	23.9	23.9	35.4	22.3	20.7
Incr Delay（d2），s／veh 0.9	0.0	2.1	0.8	1.5	2.0	22.1	1.0	2.0	2.0	1.0	0.7
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／lı4． 1	0.0	4.5	2.1	3.6	3.3	1.4	2.7	3.1	1.1	3.3	1.2
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 27.7	0.0	29.2	27.5	29.4	30.0	59.8	24.9	25.9	37.4	23.3	21.4
LnGrp LOS C	A	C	C	C	C	E	C	C	D	C	C
Approach Vol，veh／h	741			518			600			645	
Approach Delay，s／veh	28.2			29.2			28.2			25.5	
Approach LOS	C			C			C			C	

Timer－Assigned Phs 1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s9．5	25.5	21.0	6.9	28.1	23.1
Change Period（Y＋Rc），s 4.0	4.6	4.6	4.0	4.6	4.6
Max Green Setting（Gmax¢，©	45.4	25.4	26.0	45.4	25.4
Max Q Clear Time（g＿c＋l14， 5 s	8.9	10.0	4.2	9.9	12.1
Green Ext Time（p＿c），s 0.5	9.4	3.5	0.1	8.8	4.2

Intersection Summary
HCM 6th Ctrl Delay 27.7
HCM 6th LOS C
Notes
User approved pedestrian interval to be less than phase max green．
User approved volume balancing among the lanes for turning movement．

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

User approved pedestrian interval to be less than phase max green.

Notes

User approved pedestrian interval to be less than phase max green.

Notes
User approved pedestrian interval to be less than phase max green.

									>			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		\%	$\hat{1}$		${ }^{7}$	$\hat{6}$		\%	$\hat{\beta}$	
Traffic Volume (veh/h)	29	127	96	96	176	37	91	469	80	27	318	40
Future Volume (veh/h)	29	127	96	96	176	37	91	469	80	27	318	40
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.92	1.00		0.94	1.00		0.95	1.00		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln 1	1885	1885	1885	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	30	132	100	100	183	39	95	489	83	28	331	42
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	1	1	1	0	0	0	1	1	1	0	0	0
Cap, veh/h	59	215	163	134	399	85	127	608	103	56	576	73
Arrive On Green	0.03	0.22	0.22	0.07	0.27	0.27	0.07	0.39	0.39	0.03	0.35	0.35
Sat Flow, veh/h	1795	956	724	1810	1498	319	1795	1558	264	1810	1643	208
Grp Volume(v), veh/h	30	0	232	100	0	222	95	0	572	28	0	373
Grp Sat Flow(s),veh/h/ln1	1795	0	1680	1810	0	1818	1795	0	1823	1810	0	1851
Q Serve(g_s), s	1.0	0.0	7.6	3.3	0.0	6.2	3.2	0.0	17.0	0.9	0.0	10.0
Cycle Q Clear(g_c), s	1.0	0.0	7.6	3.3	0.0	6.2	3.2	0.0	17.0	0.9	0.0	10.0
Prop In Lane	1.00		0.43	1.00		0.18	1.00		0.15	1.00		0.11
Lane Grp Cap(c), veh/h	59	0	378	134	0	484	127	0	712	56	0	650
V/C Ratio(X)	0.51	0.00	0.61	0.75	0.00	0.46	0.75	0.00	0.80	0.50	0.00	0.57
Avail Cap(c_a), veh/h	782	0	967	788	0	1046	782	0	1049	788	0	1065
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	28.9	0.0	21.2	27.6	0.0	18.6	27.7	0.0	16.5	29.0	0.0	16.0
Incr Delay (d2), s/veh	6.7	0.0	1.6	8.0	0.0	0.7	8.6	0.0	3.7	6.7	0.0	1.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50%),veh/	$1 / 10.5$	0.0	3.0	1.7	0.0	2.6	1.6	0.0	6.9	0.5	0.0	4.0
Unsig. Movement Delay,	, s/veh											
LnGrp Delay(d),s/veh	35.7	0.0	22.8	35.6	0.0	19.3	36.3	0.0	20.2	35.7	0.0	17.2
LnGrp LOS	D	A	C	D	A	B	D	A	C	D	A	B
Approach Vol, veh/h		262			322			667			401	
Approach Delay, s/veh		24.3			24.4			22.5			18.5	
Approach LOS		C			C			C			B	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($G+Y+R \mathrm{C})$,	, 88.0	18.7	7.8	26.3	5.5	21.2	5.4	28.7				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	s 3.5	5.0	3.5	5.0	3.5	5.0	3.5	5.0				
Max Green Setting (Gma	220.s.s	35.0	26.5	35.0	26.5	35.0	26.5	35.0				
Max Q Clear Time (g_c+1	+119,3	9.6	5.2	12.0	3.0	8.2	2.9	19.0				
Green Ext Time (p_c), s	0.2	1.5	0.2	3.3	0.0	1.4	0.0	4.8				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			22.2									
			C									

Intersection

Intersection Delay, s/veh12.2
Intersection LOS

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	「		\uparrow	F゙		\$			\$	
Traffic Vol, veh/h 27	186	36	29	176	41	50	159	38	31	76	48
Future Vol, veh/h 27	186	36	29	176	41	50	159	38	31	76	48
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \% 0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow 29	200	39	31	189	44	54	171	41	33	82	52
Number of Lanes 0	1	1	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			2			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			2			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			2		
HCM Control Delay 12.4			12.2			12.9			11		
HCM LOS B			B			B			B		

Lane	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, \%	20%	13%	0%	14%	0%	20%
Vol Thru, \%	64%	87%	0%	86%	0%	49%
Vol Right, \%	15%	0%	100%	0%	100%	31%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	247	213	36	205	41	155
LT Vol	50	27	0	29	0	31
Through Vol	159	186	0	176	0	76
RT Vol	38	0	36	0	41	48
Lane Flow Rate	266	229	39	220	44	167
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.42	0.398	0.059	0.384	0.067	0.268
Departure Headway (Hd)	5.69	6.256	5.479	6.271	5.486	5.797
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	629	573	650	571	649	615
Service Time	3.753	4.019	3.241	4.034	3.249	3.871
HCM Lane V/C Ratio	0.423	0.4	0.06	0.385	0.068	0.272
HCM Control Delay	12.9	13.1	8.6	12.9	8.6	11
HCM Lane LOS	B	B	A	B	A	B
HCM 95th-tile Q	2.1	1.9	0.2	1.8	0.2	1.1

Notes
Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

	\rangle			7			4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	${ }^{7}$	${ }^{4}$	\uparrow		${ }_{7}$	$\hat{\beta}$	
Traffic Volume (veh/h)	81	5	20	14	4	107	21	300	23	104	314	58
Future Volume (veh/h)	81	5	20	14	4	107	21	300	23	104	314	58
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.86	1.00		0.87	1.00		0.89	1.00		0.91
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1885	1885	1885	1870	1870	1870
Adj Flow Rate, veh/h	98	6	24	17	5	129	25	361	28	125	378	70
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Percent Heavy Veh, \%	2	2	2	2	2	2	1	1	1	2	2	2
Cap, veh/h	218	13	53	259	76	256	52	467	36	162	506	94
Arrive On Green	0.17	0.17	0.17	0.19	0.19	0.19	0.03	0.27	0.27	0.09	0.34	0.34
Sat Flow, veh/h	1292	79	316	1392	409	1380	1795	1710	133	1781	1508	279
Grp Volume(v), veh/h	128	0	0	22	0	129	25	0	389	125	0	448
Grp Sat Flow(s),veh/h/n	1687	0	0	1801	0	1380	1795	0	1842	1781	0	1788
Q Serve(g_s), s	3.6	0.0	0.0	0.5	0.0	4.5	0.7	0.0	10.4	3.7	0.0	11.9
Cycle Q Clear(g_c), s	3.6	0.0	0.0	0.5	0.0	4.5	0.7	0.0	10.4	3.7	0.0	11.9
Prop In Lane	0.77		0.19	0.77		1.00	1.00		0.07	1.00		0.16
Lane Grp Cap (c), veh/h	284	0	0	335	0	256	52	0	503	162	0	599
V/C Ratio(X)	0.45	0.00	0.00	0.07	0.00	0.50	0.48	0.00	0.77	0.77	0.00	0.75
Avail Cap(c_a), veh/h	1155	0	0	1553	0	1191	556	0	1244	551	0	1207
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	19.9	0.0	0.0	17.9	0.0	19.5	25.5	0.0	17.9	23.7	0.0	15.7
Incr Delay (d2), s/veh	0.4	0.0	0.0	0.1	0.0	1.5	2.5	0.0	1.0	2.9	0.0	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.4	0.0	0.0	0.2	0.0	1.4	0.3	0.0	4.0	1.6	0.0	4.3
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	20.4	0.0	0.0	18.0	0.0	21.0	28.0	0.0	18.8	26.6	0.0	16.4
LnGrp LOS	C	A	A	B	A	C	C	A	B	C	A	B
Approach Vol, veh/h		128			151			414			573	
Approach Delay, s/veh		20.4			20.6			19.4			18.6	
Approach LOS		C			C			B			B	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	8.4	18.6		12.5	5.0	21.9		13.9				
Change Period ($Y+\mathrm{Rc}$), s	3.5	4.0		3.5	3.5	4.0		4.0				
Max Green Setting (Gmax), s	16.5	36.0		36.5	16.5	36.0		46.0				
Max Q Clear Time (g_c +11), s	5.7	12.4		5.6	2.7	13.9		6.5				
Green Ext Time (p_c), s	0.1	0.8		0.3	0.0	1.0		0.7				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			19.3									
			B									

Intersection												
Int Delay, s/veh	0.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&			\&			\uparrow	
Traffic Vol, veh/h	1	131	0	0	123	2	0	6	0	2	0	2
Future Vol, veh/h	1	131	0	0	123	2	0	6	0	2	0	2
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, \%	2	2	2	2	2	2	0	0	0	0	0	0
Mvmt Flow	1	158	0	0	148	2	0	7	0	2	0	2

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	44	「	${ }^{1}$	㻢		${ }^{7}$	＊	「		\uparrow	「
Traffic Volume（veh／h）	12	1108	1224	132	591	39	613	19	50	56	32	25
Future Volume（veh／h）	12	1108	1224	132	591	39	613	19	50	56	32	25
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	12	1142	0	136	609	40	646	0	0	58	33	26
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	0	0	0
Cap，veh／h	24	2000		136	2114	139	669	0		81	46	108
Arrive On Green	0.01	0.56	0.00	0.08	0.62	0.62	0.19	0.00	0.00	0.07	0.07	0.07
Sat Flow，veh／h	1795	3582	1598	1795	3404	223	3591	0	1598	1174	668	1560
Grp Volume（v），veh／h	12	1142	0	136	320	329	646	0	0	91	0	26
Grp Sat Flow（s），veh／h／ln	1795	1791	1598	1795	1791	1836	1795	0	1598	1841	0	1560
Q Serve（g＿s），s	1.0	30.0	0.0	11.0	12.0	12.0	25.9	0.0	0.0	7.0	0.0	2.3
Cycle Q Clear（g＿c），s	1.0	30.0	0.0	11.0	12.0	12.0	25.9	0.0	0.0	7.0	0.0	2.3
Prop In Lane	1.00		1.00	1.00		0.12	1.00		1.00	0.64		1.00
Lane Grp Cap（c），veh／h	24	2000		136	1112	1140	669	0		128	0	108
V／C Ratio（X）	0.51	0.57		1.00	0.29	0.29	0.97	0.00		0.71	0.00	0.24
Avail Cap（c＿a），veh／h	68	2000		136	1112	1140	669	0		292	0	247
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	0.96	0.96	0.96	0.86	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	71.1	20.8	0.0	67.0	12.7	12.7	58.5	0.0	0.0	66.1	0.0	63.9
Incr Delay（d2），s／veh	6.0	1.2	0.0	75.1	0.6	0.6	24.0	0.0	0.0	2.8	0.0	0.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.5	13.0	0.0	7.9	5.1	5.2	13.9	0.0	0.0	3.4	0.0	0.9
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	77.1	22.0	0.0	142.1	13.3	13.3	82.6	0.0	0.0	68.8	0.0	64.3
LnGrp LOS	E	C		F	B	B	F	A		E	A	E
Approach Vol，veh／h		1154	A		785			646	A		117	
Approach Delay，s／veh		22.5			35.6			82.6			67.8	
Approach LOS		C			D			F			E	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	15.0	85.0	14.0	5.9	94.0	31.0
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting（Gmax），s	11.0	68.0	23.0	5.5	73.5	27.0
Max Q Clear Time（g＿c＋11），s	13.0	32.0	9.0	3.0	14.0	27.9
Green Ext Time（p＿c），s	0.0	11.3	0.3	0.0	4.9	0.0

Intersection Summary
HCM 6th Ctrl Delay 42.6
HCM 6th LOS D

Notes

User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	「	${ }^{*}$	中 ${ }^{\text {a }}$		${ }^{7}$	\uparrow	7	*	\uparrow	
Traffic Volume (veh/h) 63	1215	437	3	1253	13	502	14	48	114	145	119
Future Volume (veh/h) 63	1215	437	3	1253	13	502	14	48	114	145	119
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate, veh/h 66	1266	0	3	1305	14	534	0	0	119	151	124
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \% 2	3	4	0	4	4	6	2	3	2	0	0
Cap, veh/h 83	1867		7	1724	18	603	0		306	165	136
Arrive On Green 0.06	0.70	0.00	0.00	0.49	0.49	0.17	0.00	0.00	0.17	0.17	0.17
Sat Flow, veh/h 1781	3526	1560	1810	3543	38	3450	0	1572	1781	962	790
Grp Volume(v), veh/h 66	1266	0	3	644	675	534	0	0	119	0	275
Grp Sat Flow(s),veh/h/ln1781	1763	1560	1810	1749	1832	1725	0	1572	1781	0	1753
Q Serve(g_s), s 5.5	30.5	0.0	0.2	44.9	44.9	22.7	0.0	0.0	8.9	0.0	23.1
Cycle Q Clear(g_c), s 5.5	30.5	0.0	0.2	44.9	44.9	22.7	0.0	0.0	8.9	0.0	23.1
Prop In Lane 1.00		1.00	1.00		0.02	1.00		1.00	1.00		0.45
Lane Grp Cap(c), veh/h 83	1867		7	851	892	603	0		306	0	301
V/C Ratio(X) 0.79	0.68		0.42	0.76	0.76	0.89	0.00		0.39	0.00	0.91
Avail Cap(c_a), veh/h 101	1867		62	851	892	793	0		338	0	333
HCM Platoon Ratio 1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 69.6	14.9	0.0	74.5	31.3	31.3	60.4	0.0	0.0	55.1	0.0	61.0
Incr Delay (d2), s/veh 28.8	2.0	0.0	35.4	6.2	6.0	9.6	0.0	0.0	0.8	0.0	27.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/IR. 1	10.8	0.0	0.2	20.1	21.0	10.8	0.0	0.0	4.1	0.0	12.6
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 98.5	16.9	0.0	110.0	37.5	37.3	70.0	0.0	0.0	55.9	0.0	88.0
LnGrp LOS F	B		F	D	D	E	A		E	A	F
Approach Vol, veh/h	1332	A		1322			534	A		394	
Approach Delay, s/veh	21.0			37.5			70.0			78.3	
Approach LOS	C			D			E			E	

Timer - Assigned Phs 1	2	4	5	6	8
Phs Duration ($G+Y+R c$), s5.1	83.9	30.7	11.5	77.5	30.3
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax5, \$	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time (g_c+l12,2s	32.5	24.7	7.5	46.9	25.1
Green Ext Time (p_c), s 0.0	11.9	1.5	0.0	7.2	0.7

Intersection Summary

HCM 6th Ctrl Delay	40.7
HCM 6th LOS	D

Notes

User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes
User approved volume balancing among the lanes for turning movement.

Intersection						
Int Delay, s/veh	3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	$\mathbf{7}$		4	1	\mathbf{T}
Traffic Vol, veh/h	532	204	99	313	72	52
Future Vol, veh/h	532	204	99	313	72	52
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	25	170	-	145	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	0	0	0	0
Mvmt Flow	554	213	103	326	75	54

Intersection						

Major/Minor	Major1	Major2		Minor1		
Conflicting Flow All	0	0	740	0	1170	737
Stage 1	-	-			737	
Stage 2	-	-			433	
Critical Hdwy	-	-	4.12	-	6.51	6.31
Critical Hdwy Stg 1	-	-		-	5.51	
Critical Hdwy Stg 2	-	-			5.51	
Follow-up Hdwy	-		2.218		3.599	3.399
Pot Cap-1 Maneuver	-	-	867	-	205	404
Stage 1	-	-		-	458	
Stage 2	-	-		-	635	
Platoon blocked, \%	-	-				
Mov Cap-1 Maneuver	-	-	866		204	404
Mov Cap-2 Maneuver	-	-			332	
Stage 1	-	-				
Stage 2	-	-	-	-	633	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	15.7
HCM LOS			C

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 54.8 |
| Intersection LOS | F |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow	「		*			*	
Traffic Vol, veh/h	8	341	8	3	37	293	8	7	10	522	10	4
Future Vol, veh/h	8	341	8	3	37	293	8	7	10	522	10	4
Peak Hour Factor	0.89	0.89	0.89	0.92	0.92	0.92	0.58	0.58	0.58	0.90	0.90	0.90
Heavy Vehicles, \%	2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow	9	383	9	3	40	318	14	12	17	580	11	4
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	29.8			19.2			12.4			96.3		
HCM LOS	D			C			B			F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	32%	2%	7%	0%	97%
Vol Thru, \%	28%	96%	93%	0%	2%
Vol Right, \%	40%	2%	0%	100%	1%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	25	357	40	293	536
LT Vol	8	8	3	0	522
Through Vol	7	341	37	0	10
RT Vol	10	8	0	293	4
Lane Flow Rate	43	401	43	318	596
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.097	0.761	0.091	0.6	1.107
Departure Headway (Hd)	8.486	7.264	7.99	7.228	6.689
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	425	501	451	503	548
Service Time	6.486	5.264	5.69	4.928	4.691
HCM Lane V/C Ratio	0.101	0.8	0.095	0.632	1.088
HCM Control Delay	12.4	29.8	11.5	20.2	96.3
HCM Lane LOS	B	D	B	C	F
HCM 95th-tile Q	0.3	6.6	0.3	3.9	19

User approved volume balancing among the lanes for turning movement.

Notes

User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Notes

User approved pedestrian interval to be less than phase max green.

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

User approved pedestrian interval to be less than phase max green.

User approved pedestrian interval to be less than phase max green.

User approved pedestrian interval to be less than phase max green.

Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow	「		\uparrow			\uparrow	
Traffic Vol, veh/h	75	424	86	50	263	51	33	94	37	39	123	65
Future Vol, veh/h	75	424	86	50	263	51	33	94	37	39	123	65
Peak Hour Factor 0.	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \%	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	81	456	92	54	283	55	35	101	40	42	132	70
Number of Lanes	0	1	1	0	1	1	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			2			2		
Conflicting Approach Right	hNB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			2		
HCM Control Delay 69	69.3			22.5			15.4			17.5		
HCM LOS	F			C			C			C		

Lane	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, \%	20%	15%	0%	16%	0%	17%
Vol Thru, \%	57%	85%	0%	84%	0%	54%
Vol Right, \%	23%	0%	100%	0%	00%	29%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	164	499	86	313	51	227
LT Vol	33	75	0	50	0	39
Through Vol	94	424	0	263	0	123
RT Vol	37	0	86	0	51	65
Lane Flow Rate	176	537	92	337	55	244
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.373	1.049	0.16	0.676	0.1	0.49
Departure Headway (Hd)	7.839	7.037	6.241	7.504	6.7	7.523
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	462	520	577	485	538	483
Service Time	5.839	4.749	3.954	5.204	4.4	5.523
HCM Lane V/C Ratio	0.381	1.033	0.159	0.695	0.102	0.505
HCM Control Delay	15.4	79.5	10.1	24.5	10.1	17.5
HCM Lane LOS	C	F	B	C	B	C
HCM 95th-tile Q	1.7	15.8	0.6	5	0.3	2.7

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Kimley»)Horn

APPENDIX G. CUMULATIVE PLUS PROJECT CONDITIONS SYNCHRO OUTPUT SHEETS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个4	「	\％	中 ${ }^{\text {a }}$		${ }^{*}$	\uparrow	「		\uparrow	F
Traffic Volume（veh／h）	28	607	374	80	530	66	639	28	133	28	23	12
Future Volume（veh／h）	28	607	374	80	530	66	639	28	133	28	23	12
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	29	626	0	82	546	68	680	0	0	29	24	12
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	0	0	0
Cap，veh／h	52	1701		105	1610	200	763	0		67	55	103
Arrive On Green	0.03	0.47	0.00	0.06	0.50	0.50	0.21	0.00	0.00	0.07	0.07	0.07
Sat Flow，veh／h	1795	3582	1598	1795	3192	396	3591	0	1598	1012	837	1559
Grp Volume（v），veh／h	29	626	0	82	305	309	680	0	0	53	0	12
Grp Sat Flow（s），veh／h／ln	1795	1791	1598	1795	1791	1797	1795	0	1598	1849	0	1559
Q Serve（g＿s），s	1.4	9.5	0.0	3.8	8.7	8.7	15.6	0.0	0.0	2.3	0.0	0.6
Cycle Q Clear（g＿c），s	1.4	9.5	0.0	3.8	8.7	8.7	15.6	0.0	0.0	2.3	0.0	0.6
Prop In Lane	1.00		1.00	1.00		0.22	1.00		1.00	0.55		1.00
Lane Grp Cap（c），veh／h	52	1701		105	903	906	763	0		122	0	103
V／C Ratio（X）	0.55	0.37		0.78	0.34	0.34	0.89	0.00		0.43	0.00	0.12
Avail Cap（c＿a），veh／h	118	1701		137	903	906	824	0		490	0	413
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	0.96	0.96	0.96	0.63	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	40.7	14.2	0.0	39.5	12.6	12.6	32.5	0.0	0.0	38.2	0.0	37.4
Incr Delay（d2），s／veh	3.4	0.6	0.0	13.1	1.0	1.0	7.2	0.0	0.0	0.9	0.0	0.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	0.6	3.8	0.0	2.1	3.6	3.6	7.3	0.0	0.0	1.1	0.0	0.2
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	44.1	14.8	0.0	52.6	13.6	13.6	39.8	0.0	0.0	39.1	0.0	37.6
LnGrp LOS	D	B		D	B	B	D	A		D	A	D
Approach Vol，veh／h		655	A		696			680	A		65	
Approach Delay，s／veh		16.1			18.2			39.8			38.8	
Approach LOS		B			B			D			D	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	9.0	44.4	9.6	6.5	46.9	22.1
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting（Gmax），s	6.5	20.5	22.5	5.6	21.4	19.5
Max Q Clear Time（g＿c＋11），s	5.8	11.5	4.3	3.4	10.7	17.6
Green Ext Time（p＿c），s	0.0	2.9	0.1	0.0	2.9	0.4

Intersection Summary

HCM 6th Ctrl Delay	25.2
HCM 6th LOS	C

Notes

User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations \％	个4	「	\％	个 ${ }_{\text {P }}$		\％	\uparrow	「	${ }^{7}$	$\hat{\dagger}$	
Traffic Volume（veh／h） 155	910	615	7	1079	39	419	133	80	80	91	51
Future Volume（veh／h） 155	910	615	7	1079	39	419	133	80	80	91	51
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h 161	948	0	7	1124	41	288	347	0	83	95	53
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％ 2	3	4	0		4	6	2	3	2	0	0
Cap，veh／h 101	1996		15	1779	65	353	383		179	115	64
Arrive On Green 0.08	0.75	0.00	0.01	0.52	0.52	0.20	0.20	0.00	0.10	0.10	0.10
Sat Flow，veh／h 1781	3526	1560	1810	3436	125	1725	1870	1572	1781	1142	637
Grp Volume（v），veh／h 161	948	0	7	572	593	288	347	0	83	0	148
Grp Sat Flow（s），veh／h／ln1781	1763	1560	1810	1749	1812	1725	1870	1572	1781	0	1779
Q Serve（g＿s），s 8.5	15.5	0.0	0.6	35.1	35.2	23.9	27.2	0.0	6.6	0.0	12.2
Cycle Q Clear（g＿c），s 8.5	15.5	0.0	0.6	35.1	35.2	23.9	27.2	0.0	6.6	0.0	12.2
Prop In Lane 1.00		1.00	1.00		0.07	1.00		1.00	1.00		0.36
Lane Grp Cap（c），veh／h 101	1996		15	906	939	353	383		179	0	179
V／C Ratio（X） 1.60	0.47		0.46	0.63	0.63	0.82	0.91		0.46	0.00	0.83
Avail Cap（c＿a），veh／h 101	1996		62	906	939	397	430		338	0	338
HCM Platoon Ratio 1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I） 1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh 69.3	10.0	0.0	74.0	25.9	25.9	56.9	58.2	0.0	63.6	0.0	66.2
Incr Delay（d2），s／veh 309.2	0.8	0.0	20.0	3.3	3.2	11.3	21.1	0.0	1.9	0.0	9.2
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／lit2． 5	5.1	0.0	0.4	15.3	15.8	11.6	15.2	0.0	3.1	0.0	6.0
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 378.5	10.8	0.0	94.0	29.2	29.1	68.3	79.3	0.0	65.5	0.0	75.4
LnGrp LOS F	B		F	C	C	E	E		E	A	E
Approach Vol，veh／h	1109	A		1172			635	A		231	
Approach Delay，s／veh	64.2			29.6			74.3			71.8	
Approach LOS	E			C			E			E	

Timer－Assigned Phs	1	2	4	5	6
Phs Duration（G＋Y＋Rc），s5．8	89.4	35.2	13.0	82.2	19.6
Change Period（Y＋Rc），s 4．5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax5），\＄	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋｜12，6	17.5	29.2	10.5	37.2	14.2
Green Ext Time（p＿c），s 0.0	8.6	1.5	0.0	8.3	0.9

Intersection Summary

HCM 6th Ctrl Delay	53.9
HCM 6th LOS	D

Notes

User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

	\rightarrow	7		4	
Movement EB	EBT EBR	WBL	WBT	NBL	NBR
Lane Configurations	4 ${ }^{\text {¢ }}$	${ }^{7}$	4	**	
Traffic Volume (veh/h) 38	386264	67	347	412	113
Future Volume (veh/h) 38	386264	67	347	412	113
Initial $Q(Q b)$, veh	00	0	0	0	0
Ped-Bike Adj(A_pbT)	0.97	1.00		1.00	1.00
Parking Bus, Adj 1.00	1.001 .00	1.00	1.00	1.00	1.00
Work Zone On Approach N	No		No	No	
Adj Sat Flow, veh/h/ln 188	18851885	1900	1900	1885	1900
Adj Flow Rate, veh/h 41	411281	71	369	279	290
Peak Hour Factor 0.9	0.940 .94	0.94	0.94	0.94	0.94
Percent Heavy Veh, \%	11	0	0	1	0
Cap, veh/h 667	667549	90	963	490	440
Arrive On Green 0.3	0.350 .35	0.05	0.51	0.27	0.27
Sat Flow, veh/h 188	18851550	1810	1900	1795	1610
Grp Volume(v), veh/h 411	411281	71	369	279	290
Grp Sat Flow(s), veh/h/ln188	18851550	1810	1900	1795	1610
Q Serve(g_s), s 6	6.14 .9	1.3	4.0	4.6	5.4
Cycle Q Clear(g_c), s 6	6.14 .9	1.3	4.0	4.6	5.4
Prop In Lane	1.00	1.00		1.00	1.00
Lane Grp Cap(c), veh/h 667	667549	90	963	490	440
V/C Ratio(X) 0.62	0.620 .51	0.79	0.38	0.57	0.66
Avail Cap(c_a), veh/h 166	16611366	1595	1674	1582	1419
HCM Platoon Ratio 1.00	1.001 .00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.001 .00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 9	9.18 .7	16.0	5.1	10.7	11.0
Incr Delay (d2), s/veh 0	0.950 .7	13.8	0.3	1.0	1.7
Initial Q Delay(d3),s/veh 0.0	0.00 .0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ır2.	//12.0 1.3	0.8	0.8	1.5	1.6
Unsig. Movement Delay, s/v	, s/veh				
LnGrp Delay(d),s/veh 10.	$10.0 \quad 9.4$	29.8	5.4	11.7	12.7
LnGrp LOS	B A	C	A	B	B
Approach Vol, veh/h 692	692		440	569	
Approach Delay, s/veh 9.	9.8		9.3	12.2	
Approach LOS	A		A	B	
Timer - Assigned Phs	12		4		6
Phs Duration ($G+Y+R \mathrm{c}$), s5	, s5.2 16.0		12.8		21.2
Change Period (Y+Rc), s 3	s 3.54 .0		3.5		4.0
Max Green Setting (Gmax),	axQ).8 30.0		30.0		30.0
Max Q Clear Time (g_c+113)	+1何,38 8.1		7.4		6.0
Green Ext Time (p_c), s 0	0.23 .8		1.9		2.2
Intersection Summary					
HCM 6th Ctrl DelayHCM 6th LOS		10.5			
		B			

Notes
User approved volume balancing among the lanes for turning movement.

Intersection						
Int Delay, s/veh	7.8					
Movement E	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	「	${ }^{1}$	4	${ }^{7}$	「
Traffic Vol, veh/h	433	97	99	267	162	181
Future Vol, veh/h	433	97	99	267	162	181
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	25	170	-	145	0
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	0	0	0	0
Mvmt Flow	451	101	103	278	169	189

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\$			\uparrow	「		\&			\$	
Traffic Vol, veh/h 17	92	0	6	26	528	0	2	9	305	0	6
Future Vol, veh/h 17	92	0	6	26	528	0	2	9	305	0	6
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, \% 2	2	2	3	3	3	14	14	14	1	1	1
Mvmt Flow 18	96	0	6	27	550	0	2	9	318	0	6
Number of Lanes 0	1	0	0	1	1	0	1	0	0	1	0
Approach EB			WB				NB		SB		
Opposing Approach WB			EB				SB		NB		
Opposing Lanes 2			1				1		1		
Conflicting Approach Left SB			NB				EB		WB		
Conflicting Lanes Left 1			1				1		2		
Conflicting Approach RighNB			SB				WB		EB		
Conflicting Lanes Right 1			1				2		1		
HCM Control Delay 10.4			22.1				9.3		15.4		
HCM LOS B			C				A		C		

Lane	NBLn1 EBLn1WBLn1WBLn2 SBLn1				
Vol Left, \%	0%	16%	19%	0%	98%
Vol Thru, \%	18%	84%	81%	0%	0%
Vol Right, \%	82%	0%	0%	100%	2%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	11	109	32	528	311
LT Vol	0	17	6	0	305
Through Vol	2	92	26	0	0
RT Vol	9	0	0	528	6
Lane Flow Rate	11	114	33	550	324
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.019	0.187	0.054	0.773	0.529
Departure Headway (Hd)	6.112	5.938	5.862	5.059	5.881
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	583	603	611	715	612
Service Time	4.177	3.989	3.596	2.793	3.918
HCM Lane V/C Ratio	0.019	0.189	0.054	0.769	0.529
HCM Control Delay	9.3	10.4	8.9	22.9	15.4
HCM Lane LOS	A	B	A	C	C
HCM 95th-tile Q	0.1	0.7	0.2	7.4	3.1

User approved volume balancing among the lanes for turning movement.

Timer - Assigned Phs	2	6	8
Phs Duration $(G+Y+R c)$, s	33.3	33.3	21.7
Change Period (Y+Rc), s	5.3	5.3	4.2
Max Green Setting (Gmax), s	28.0	28.0	17.5
Max Q Clear Time (g_c+11), s	8.6	11.7	18.4
Green Ext Time (p_c), s	5.3	6.9	0.0

Intersection Summary

HCM 6th Ctrl Delay	18.2
HCM 6th LOS	B

Notes

User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Notes

User approved pedestrian interval to be less than phase max green.

Notes
User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

User approved pedestrian interval to be less than phase max green.

Notes

User approved pedestrian interval to be less than phase max green.

Notes
User approved pedestrian interval to be less than phase max green.

Intersection

Intersection Delay, s/veh12.3
Intersection LOS

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	F		\uparrow	F		\$			\$	
Traffic Vol, veh/h 27	186	36	29	176	41	50	163	38	31	77	48
Future Vol, veh/h 27	186	36	29	176	41	50	163	38	31	77	48
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \% 0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow 29	200	39	31	189	44	54	175	41	33	83	52
Number of Lanes 0	1	1	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			2			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			2			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			2		
HCM Control Delay 12.5			12.3			13			11.1		
HCMLOS B			B			B			B		

Lane	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, \%	20%	13%	0%	14%	0%	20%
Vol Thru, \%	65%	87%	0%	86%	0%	49%
Vol Right, \%	15%	0%	100%	0%	100%	31%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	251	213	36	205	41	156
LT Vol	50	27	0	29	0	31
Through Vol	163	186	0	176	0	77
RT Vol	38	0	36	0	41	48
Lane Flow Rate	270	229	39	220	44	168
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.427	0.399	0.059	0.385	0.067	0.271
Departure Headway (Hd)	5.697	6.276	5.499	6.291	5.506	5.812
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	629	570	648	569	647	614
Service Time	3.761	4.041	3.263	4.056	3.27	3.885
HCM Lane V/C Ratio	0.429	0.402	0.06	0.387	0.068	0.274
HCM Control Delay	13	13.2	8.6	13	8.7	11.1
HCM Lane LOS	B	B	A	B	A	B
HCM 95th-tile Q	2.1	1.9	0.2	1.8	0.2	1.1

												\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow	「	${ }^{7}$	\uparrow	「	${ }_{1}$	F		${ }^{*}$	$\hat{\dagger}$	
Traffic Volume（veh／h）	84	175	109	25	346	109	110	57	12	114	66	96
Future Volume（veh／h）	84	175	109	25	346	109	110	57	12	114	66	96
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		0.91	1.00		0.91
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln 1	1885	1885	1885	1885	1885	1885	1900	1900	1900	1885	1885	1885
Adj Flow Rate，veh／h	93	194	0	28	384	0	122	63	13	127	73	107
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh，\％	1	1	1	1	1	1	0	0	0	1	1	1
Cap，veh／h	129	613		58	538		160	337	70	166	149	218
Arrive On Green	0.07	0.33	0.00	0.03	0.29	0.00	0.09	0.22	0.22	0.09	0.23	0.23
Sat Flow，veh／h 1	1795	1885	1598	1795	1885	1598	1810	1498	309	1795	650	953
Grp Volume（v），veh／h	93	194	0	28	384	0	122	0	76	127	0	180
Grp Sat Flow（s），veh／h／nn	1795	1885	1598	1795	1885	1598	1810	0	1808	1795	0	1604
Q Serve（g＿s），s	2.6	3.9	0.0	0.8	9.3	0.0	3.3	0.0	1.7	3.5	0.0	4.9
Cycle Q Clear（g＿c），s	2.6	3.9	0.0	0.8	9.3	0.0	3.3	0.0	1.7	3.5	0.0	4.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.17	1.00		0.59
Lane Grp Cap（c），veh／h	129	613		58	538		160	0	407	166	0	367
V／C Ratio（X）	0.72	0.32		0.49	0.71		0.76	0.00	0.19	0.77	0.00	0.49
Avail Cap（c＿a），veh／h	567	1321		567	1321		571	0	749	567	0	665
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	23.0	12.9	0.0	24.1	16.3	0.0	22.6	0.0	15.9	22.5	0.0	17.0
Incr Delay（d2），s／veh	5.5	0.3	0.0	4.6	1.8	0.0	2.9	0.0	0.2	2.8	0.0	0.8
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／II	／In 12	1.5	0.0	0.4	3.7	0.0	1.5	0.0	0.7	1.5	0.0	1.7
Unsig．Movement Delay，	，s／veh											
LnGrp Delay（d），s／veh	28.5	13.2	0.0	28.7	18.0	0.0	25.4	0.0	16.1	25.3	0.0	17.7
LnGrp LOS	C	B		C	B		C	A	B	C	A	B
Approach Vol，veh／h		287	A		412	A		198			307	
Approach Delay，s／veh		18.1			18.8			21.8			20.8	
Approach LOS		B			B			C			C	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），	， 5.6	21.0	8.5	15.6	7.6	19.0	8.7	15.4				
Change Period（ $Y+R \mathrm{R}$ ），s	s 4.0	4.5	4.0	4.0	4.0	4.5	4.0	4.0				
Max Green Setting（Gma	146， 8	35.5	16.0	21.0	16.0	35.5	16.0	21.0				
Max Q Clear Time（g＿c＋1	1隹，	5.9	5.3	6.9	4.6	11.3	5.5	3.7				
Green Ext Time（p＿c），s	0.0	1.2	0.1	0.7	0.1	2.4	0.1	0.2				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			19.6									
			B									

Notes

Unsignalized Delay for［EBR，WBR］is excluded from calculations of the approach delay and intersection delay．

	4			\dagger			4	4			\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow	\＃		\uparrow	「	${ }^{7}$	性涫		${ }_{1}$	㔼	
Traffic Volume（vph）	296	16	101	14	7	27	154	1318	23	91	1140	382
Future Volume（vph）	296	16	101	14	7	27	154	1318	23	91	1140	382
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	4.2	4.2	4.2		4.2	4.2	3.7	4.9		4.6	4.9	
Lane Util．Factor	0.95	0.95	1.00		1.00	1.00	1.00	0.91		1.00	0.91	
Frpb，ped／bikes	1.00	1.00	0.97		1.00	1.00	1.00	1.00		1.00	0.98	
Flpb，ped／bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.96	
Flt Protected	0.95	0.96	1.00		0.98	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1625	1645	1509		1792	1561	1745	4943		1745	4666	
Flt Permitted	0.95	0.96	1.00		0.98	1.00	0.95	1.00		0.95	1.00	
Satd．Flow（perm）	1625	1645	1509		1792	1561	1745	4943		1745	4666	
Peak－hour factor，PHF	0.86	0.61	0.80	0.85	0.44	0.79	0.66	0.86	0.61	0.67	0.94	0.85
Adj．Flow（vph）	344	26	126	16	16	34	233	1533	38	136	1213	449
RTOR Reduction（vph）	0	0	94	0	0	29	0	2	0	0	56	0
Lane Group Flow（vph）	186	184	32	0	32	5	233	1569	0	136	1606	0
Confl．Peds．（\＃／hr）			18	18			12		8	8		12
Confl．Bikes（\＃／hr）												5
Heavy Vehicles（\％）	2\％	0\％	0\％	0\％	0\％	0\％	0\％	1\％	0\％	0\％	1\％	1\％
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	4	4		3	3		5	1		2	6	
Permitted Phases			4			3						
Actuated Green，G（s）	30.0	30.0	30.0		16.0	16.0	16.0	40.0		16.0	40.9	
Effective Green， $\mathrm{g}(\mathrm{s})$	30.0	30.0	30.0		16.0	16.0	16.0	40.0		16.0	40.9	
Actuated g／C Ratio	0.25	0.25	0.25		0.13	0.13	0.13	0.33		0.13	0.34	
Clearance Time（s）	4.2	4.2	4.2		4.2	4.2	3.7	4.9		4.6	4.9	
Vehicle Extension（s）	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.2	
Lane Grp Cap（vph）	406	411	377		239	208	232	1649		232	1591	
v／s Ratio Prot	c0．11	0.11			c0．02		c0．13	0.32		0.08	c0．34	
v／s Ratio Perm			0.02			0.00						
V／c Ratio	0.46	0.45	0.08		0.13	0.02	1.00	0.95		0.59	1.01	
Uniform Delay，d1	38.1	38.0	34.4		45.8	45.1	52.0	39.0		48.8	39.5	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.08	0.87	
Incremental Delay，d2	0.8	0.8	0.1		0.3	0.0	60.2	13.3		2.9	22.1	
Delay（s）	38.9	38.7	34.5		46.1	45.2	112.1	52.3		55.7	56.5	
Level of Service	D	D	C		D	D	F	D		E	E	
Approach Delay（s）		37.7			45.6			60.0			56.5	
Approach LOS		D			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			55.6		HCM 2000	Level of S	Service		E			
HCM 2000 Volume to Capacity ratio			0.72									
Actuated Cycle Length（s）			119.9		Sum of los	time（s）			17.9			
Intersection Capacity Utilization			70．0\％		CU Level	f Service			C			
Analysis Period（min）			15									
c Critical Lane Group												

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	44	「	${ }^{*}$	中 ${ }^{\text {a }}$		${ }^{7}$	\uparrow	F		\uparrow	「
Traffic Volume（veh／h）	12	1127	1243	132	636	39	658	19	50	56	32	25
Future Volume（veh／h）	12	1127	1243	132	636	39	658	19	50	56	32	25
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.97	1.00		1.00	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	12	1162	0	136	656	40	692	0	0	58	33	26
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	0	0	0
Cap，veh／h	24	2000		136	2125	129	669	0		81	46	108
Arrive On Green	0.01	0.56	0.00	0.08	0.62	0.62	0.19	0.00	0.00	0.07	0.07	0.07
Sat Flow，veh／h	1795	3582	1598	1795	3422	208	3591	0	1598	1174	668	1560
Grp Volume（v），veh／h	12	1162	0	136	343	353	692	0	0	91	0	26
Grp Sat Flow（s），veh／h／ln	1795	1791	1598	1795	1791	1840	1795	0	1598	1841	0	1560
Q Serve（g＿s），s	1.0	30.8	0.0	11.0	13.0	13.1	27.0	0.0	0.0	7.0	0.0	2.3
Cycle Q Clear（g＿c），s	1.0	30.8	0.0	11.0	13.0	13.1	27.0	0.0	0.0	7.0	0.0	2.3
Prop In Lane	1.00		1.00	1.00		0.11	1.00		1.00	0.64		1.00
Lane Grp Cap（c），veh／h	24	2000		136	1112	1142	669	0		128	0	108
V／C Ratio（X）	0.51	0.58		1.00	0.31	0.31	1.03	0.00		0.71	0.00	0.24
Avail Cap（c＿a），veh／h	68	2000		136	1112	1142	669	0		292	0	247
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	0.00	0.95	0.95	0.95	0.84	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	71.1	20.9	0.0	67.0	12.9	12.9	59.0	0.0	0.0	66.1	0.0	63.9
Incr Delay（d2），s／veh	6.0	1.2	0.0	74.7	0.7	0.7	41.3	0.0	0.0	2.8	0.0	0.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.5	13.4	0.0	7.9	5.6	5.7	16.0	0.0	0.0	3.4	0.0	0.9

Unsig．Movement Delay，s／veh

LnGrp Delay（d），s／veh	77.1	22.2	0.0	141.7	13.6	13.6	100.3	0.0	0.0	68.8	0.0
LnGrp LOS	E	C		F	B	B	F	A	E	A	E
Approach Vol，veh／h	1174	A		832		692	A	117			
Approach Delay，s／veh	22.7			34.5		100.3		67.8			
Approach LOS	C			C		F		E			

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	15.0	85.0	14.0	5.9	94.0	31.0
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0
Max Green Setting（Gmax），s	11.0	68.0	23.0	5.5	73.5	27.0
Max Q Clear Time（g＿c＋11），s	13.0	32.8	9.0	3.0	15.1	29.0
Green Ext Time（p＿c），s	0.0	11.5	0.3	0.0	5.4	0.0

Intersection Summary

HCM 6th Ctrl Delay	47.1
HCM 6th LOS	D

Notes

User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Notes
Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	「	${ }^{7}$	中 ${ }^{\text {c }}$		\％	\uparrow	「	\％	F	
Traffic Volume（veh／h）	63	1219	507	3	1254	13	502	14	48	114	145	119
Future Volume（veh／h）	63	1219	507	3	1254	13	502	14	48	114	145	119
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		0.96	1.00		1.00	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1856	1841	1900	1841	1841	1811	1870	1856	1870	1900	1900
Adj Flow Rate，veh／h	66	1270	0	3	1306	14	534	0	0	119	151	124
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh，\％	2	3	4	0	4	4	6	2	3	2	0	0
Cap，veh／h	83	1867		7	1724	18	603	0		306	165	136
Arrive On Green	0.06	0.70	0.00	0.00	0.49	0.49	0.17	0.00	0.00	0.17	0.17	0.17
Sat Flow，veh／h	1781	3526	1560	1810	3543	38	3450	0	1572	1781	962	790
Grp Volume（v），veh／h	66	1270	0	3	644	676	534	0	0	119	0	275
Grp Sat Flow（s），veh／h／n	1781	1763	1560	1810	1749	1832	1725	0	1572	1781	0	1753
Q Serve（g＿s），s	5.5	30.7	0.0	0.2	44.9	45.0	22.7	0.0	0.0	8.9	0.0	23.1
Cycle Q Clear（g＿c），s	5.5	30.7	0.0	0.2	44.9	45.0	22.7	0.0	0.0	8.9	0.0	23.1
Prop In Lane	1.00		1.00	1.00		0.02	1.00		1.00	1.00		0.45
Lane Grp Cap（c），veh／h	83	1867		7	851	892	603	0		306	0	301
V／C Ratio（X）	0.79	0.68		0.42	0.76	0.76	0.89	0.00		0.39	0.00	0.91
Avail Cap（c＿a），veh／h	101	1867		62	851	892	793	0		338	0	333
HCM Platoon Ratio	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	69.6	15.0	0.0	74.5	31.3	31.3	60.4	0.0	0.0	55.1	0.0	61.0
Incr Delay（d2），s／veh	28.8	2.0	0.0	35.4	6.2	6.0	9.6	0.0	0.0	0.8	0.0	27.0
Initial Q Delay（d3），s／veh 0.0\％ile BackOfQ（50\％），veh／13． 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		10.9	0.0	0.2	20.1	21.0	10.8	0.0	0.0	4.1	0.0	12.6
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh 98LnGrp LOS		17.0	0.0	110.0	37.5	37.3	70.0	0.0	0.0	55.9	0.0	88.0
		B		F	D	D	，	A		E	A	F
Approach Vol，veh／h		1336	A		1323			534	A		394	
Approach Delay，s／veh		21.0			37.6			70.0			78.3	
Approach LOS		C			D			E			E	

Timer－Assigned Phs 1	2	4	5	6	8
Phs Duration（ $G+Y+R c$ ），s5．1	83.9	30.7	11.5	77.5	30.3
Change Period（Y＋Rc），s 4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax5，\＄	63.9	34.5	8.5	60.5	28.5
Max Q Clear Time（g＿c＋l12，2s	32.7	24.7	7.5	47.0	25.1
Green Ext Time（p＿c），s 0.0	11.9	1.5	0.0	7.2	0.7

Intersection Summary

HCM 6th Ctrl Delay	40.7
HCM 6th LOS	D

Notes

User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR，EBR］is excluded from calculations of the approach delay and intersection delay．

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes
User approved volume balancing among the lanes for turning movement.

Intersection
Intersection Delay, s/veh05.9
Intersection LOS \quad F

Lane	NBLn1 EBLn1WBLn1WBLn2 SBLn1				
Vol Left, \%	32%	3%	7%	0%	97%
Vol Thru, \%	28%	95%	93%	0%	2%
Vol Right, \%	40%	2%	0%	100%	1%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	25	359	40	338	652
LT Vol	8	10	3	0	634
Through Vol	7	341	37	0	10
RT Vol	10	8	0	338	8
Lane Flow Rate	43	403	43	367	724
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.099	0.781	0.091	0.698	1.366
Departure Headway (Hd)	9.315	7.998	8.668	7.902	6.789
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	387	456	416	463	536
Service Time	7.315	5.998	6.368	5.602	4.863
HCM Lane V/C Ratio	0.111	0.884	0.103	0.793	1.351
HCM Control Delay	13.3	34.1	12.2	26.9	197.1
HCM Lane LOS	B	D	B	D	F
HCM 95th-tile Q	0.3	6.9	0.3	5.3	32.3

Notes

User approved volume balancing among the lanes for turning movement.

Movement EBL	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				${ }^{7}$	\uparrow	「		4	「		性	
Traffic Volume（veh／h）	0	0	0	887	0	253	0	596	528	0	785	143
Future Volume（veh／h）	0	0	0	887	0	253	0	596	528	0	785	143
Initial $Q(Q b)$ ，veh				0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）				1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus，Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow，veh／h／ln				1885	1900	1826	0	1870	1900	0	1870	1870
Adj Flow Rate，veh／h				975	0	278	0	655	0	0	863	157
Peak Hour Factor				0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh，\％				1	0	5	0	2	0	0	2	2
Cap，veh／h				1111	0	479	0	1840		0	1546	281
Arrive On Green				0.31	0.00	0.31	0.00	0.52	0.00	0.00	0.52	0.52
Sat Flow，veh／h				3591	0	1547	0	3647	1610	0	3079	543
Grp Volume（v），veh／h				975	0	278	0	655	0	0	514	506
Grp Sat Flow（s），veh／h／ln				1795	0	1547	0	1777	1610	0	1777	1752
Q Serve（g＿s），s				14.2	0.0	8.3	0.0	6.0	0.0	0.0	10.8	10.8
Cycle Q Clear（g＿c），s				14.2	0.0	8.3	0.0	6.0	0.0	0.0	10.8	10.8
Prop In Lane				1.00		1.00	0.00		1.00	0.00		0.31
Lane Grp Cap（c），veh／h				1111	0	479	0	1840		0	920	907
V／C Ratio（X）				0.88	0.00	0.58	0.00	0.36		0.00	0.56	0.56
Avail Cap（c＿a），veh／h				1143	0	492	0	1840		0	920	907
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）				1.00	0.00	1.00	0.00	0.89	0.00	0.00	0.62	0.62
Uniform Delay（d），s／veh				18.0	0.0	16.0	0.0	7.8	0.0	0.0	9.0	9.0
Incr Delay（d2），s／veh				8.0	0.0	1.8	0.0	0.5	0.0	0.0	1.5	1.5
Initial Q Delay（d3），s／veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（ 50% ），veh／ln				6.2	0.0	2.8	0.0	1.8	0.0	0.0	3.8	3.8
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh				26.0	0.0	17.8	0.0	8.3	0.0	0.0	10.5	10.5
LnGrp LOS				C	A	B	A	A		A	B	B
Approach Vol，veh／h					1253			655	A		1020	
Approach Delay，s／veh					24.2			8.3			10.5	
Approach LOS					C			A			B	

Timer－Assigned Phs	2	6	8
Phs Duration（G＋Y＋Rc），s	33.8	33.8	21.2
Change Period（Y＋Rc），s	5.3	5.3	4.2
Max Green Setting（Gmax），s	28.0	28.0	17.5
Max Q Clear Time（g＿c＋11），s	8.0	12.8	16.2
Green Ext Time（p＿c），s	5.0	7.3	0.9

Intersection Summary

HCM 6th Ctrl Delay	15.9
HCM 6th LOS	B

Notes

User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［NBR］is excluded from calculations of the approach delay and intersection delay．

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow			${ }_{*}^{*}$	「	${ }^{1}$	种		${ }^{1 /}$	坐束	「
Traffic Volume（veh／h） 475	159	34	30	88	116	46	870	67	152	819	341
Future Volume（veh／h） 475	159	34	30	88	116	46	870	67	152	819	341
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		0.94	1.00		0.91	1.00		0.96	1.00		0.98
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1885	1885	1885	1900	1900	1900	1885	1885	1885	1885	1885	1885
Adj Flow Rate，veh／h 500	167	36	32	93	122	48	916	71	160	862	359
Peak Hour Factor 0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％ 1	1	1	0	0	0	1	1	1	1	1	1
Cap，veh／h 723	308	66	56	161	169	62	1847	143	203	2361	717
Arrive On Green 0.21	0.21	0.21	0.12	0.12	0.12	0.03	0.38	0.38	0.11	0.46	0.46
Sat Flow，veh／h 3483	1485	320	480	1396	1464	1795	4855	375	1795	5147	1563
Grp Volume（v），veh／h 500	0	203	125	0	122	48	646	341	160	862	359
Grp Sat Flow（s），veh／h／ln1742	0	1805	1876	0	1464	1795	1716	1799	1795	1716	1563
Q Serve（g＿s），s 12.0	0.0	9.1	5.7	0.0	7.3	2.4	13.0	13.1	7.9	9.9	14.6
Cycle Q Clear（g＿c），s 12.0	0.0	9.1	5.7	0.0	7.3	2.4	13.0	13.1	7.9	9.9	14.6
Prop In Lane 1.00		0.18	0.26		1.00	1.00		0.21	1.00		1.00
Lane Grp Cap（c），veh／h 723	0	375	217	0	169	62	1305	684	203	2361	717
V／C Ratio（X） 0.69	0.00	0.54	0.58	0.00	0.72	0.77	0.50	0.50	0.79	0.37	0.50
Avail Cap（c＿a），veh／h 807	0	418	435	0	339	317	1719	901	515	2578	783
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I） 1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh 33.2	0.0	32.1	38.0	0.0	38.7	43.4	21.4	21.5	39.1	15.9	17.2
Incr Delay（d2），s／veh 4.5	0.0	4.4	3.4	0.0	7.9	24.1	1.3	2.6	9.2	0.4	2.5
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／lı5． 5	0.0	4.4	2.8	0.0	3.0	1.5	5.2	5.7	3.9	3.7	5.4
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 37.7	0.0	36.4	41.4	0.0	46.6	67.5	22.8	24.0	48.3	16.4	19.7
LnGrp LOS D	A	D	D	A	D	E	C	C	D	B	B
Approach Vol，veh／h	703			247			1035			1381	
Approach Delay，s／veh	37.4			43.9			25.3			20.9	
Approach LOS	D			D			C			C	

Timer－Assigned Phs	1	2	4	5	6
Phs Duration（G＋Y＋Rc），s7．1	46.2	14.5	14.3	39.1	22.8
Change Period（Y＋Rc），s 4．0	4.6	4.0	4.0	4.6	4.0
Max Green Setting（Gmaxф，．s	45.4	21.0	26.0	45.4	21.0
Max Q Clear Time（g＿c＋｜14，4s	16.6	9.3	9.9	15.1	14.0
Green Ext Time（p＿c），s 0.1	21.1	1.2	0.6	19.4	3.8

Intersection Summary

HCM 6th Ctrl Delay	27.4
HCM 6th LOS	C

Notes

User approved pedestrian interval to be less than phase max green．

User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Notes
User approved pedestrian interval to be less than phase max green.

User approved pedestrian interval to be less than phase max green.

												\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	性		${ }^{*}$	\uparrow	「		\uparrow	「		$\hat{*}$	F
Traffic Volume（veh／h）	34	1347	106	149	679	22	93	10	119	19	9	16
Future Volume（veh／h）	34	1347	106	149	679	22	93	10	119	19	9	16
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.96	1.00		0.97	1.00		0.97	0.99		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln 1	1900	1900	1900	1900	1900	1900	1885	1885	1885	1900	1900	1900
Adj Flow Rate，veh／h	35	1389	109	154	700	23	96	10	123	20	9	16
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	0	0	0	0	0	0	1	1	1	0	0	0
Cap，veh／h	49	1598	125	197	1065	873	85	5	385	76	21	398
Arrive On Green	0.03	0.47	0.47	0.11	0.56	0.56	0.25	0.25	0.25	0.25	0.25	0.25
Sat Flow，veh／h	1810	3381	264	1810	1900	1558	0	20	1544	0	86	1599
Grp Volume（v），veh／h	35	738	760	154	700	23	106	0	123	29	0	16
Grp Sat Flow（s），veh／h／ln1	1810	1805	1840	1810	1900	1558	20	0	1544	86	0	1599
Q Serve（g＿s），s	1.5	29.3	29.8	6.7	20.6	0.5	0.0	0.0	5.2	0.0	0.0	0.6
Cycle Q Clear（g＿c），s	1.5	29.3	29.8	6.7	20.6	0.5	20.0	0.0	5.2	20.0	0.0	0.6
Prop In Lane	1.00		0.14	1.00		1.00	0.91		1.00	0.69		1.00
Lane Grp Cap（c），veh／h	49	853	870	197	1065	873	90	0	385	97	0	398
V／C Ratio（X）	0.72	0.87	0.87	0.78	0.66	0.03	1.17	0.00	0.32	0.30	0.00	0.04
Avail Cap（c＿a），veh／h	586	1010	1030	575	1065	873	90	0	385	97	0	398
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	38.7	18.9	19.0	34.8	12.3	7.9	39.0	0.0	24.6	25.8	0.0	22.8
Incr Delay（d2），s／veh	17.7	6.2	6.6	6.7	1.2	0.0	148.5	0.0	0.2	0.6	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／	110.9	12.6	13.1	3.3	8.2	0.2	5.5	0.0	1.9	0.4	0.0	0.2
Unsig．Movement Delay，	，s／veh											
LnGrp Delay（d），s／veh	56.4	25.1	25.6	41.5	13.5	7.9	187.5	0.0	24.7	26.4	0.0	22.9
LnGrp LOS	E	C	C	D	B	A	F	A	C	C	A	C
Approach Vol，veh／h		1533			877			229			45	
Approach Delay，s／veh		26.1			18.2			100.1			25.1	
Approach LOS		C			B			F			C	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $G+Y+R \mathrm{C})$ ，	83．2	43.0		24.0	6.2	50.1		24.0				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	s 4.5	5.1		4.0	4.0	5.1		4.0				
Max Green Setting（Gma	225， 5	44.9		20.0	26.0	44.9		20.0				
Max Q Clear Time（g＿c＋1	＋19，7	31.8		22.0	3.5	22.6		22.0				
Green Ext Time（p＿c），s	0.4	6.2		0.0	0.1	3.5		0.0				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			29.8									
			C									

Notes
User approved pedestrian interval to be less than phase max green．

Intersection
Intersection Delay, s/veh41.9
Intersection LOS \quad E

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	「		\uparrow	「		4			¢	
Traffic Vol, veh/h 75	424	86	50	263	51	33	95	37	39	127	65
Future Vol, veh/h 75	424	86	50	263	51	33	95	37	39	127	65
Peak Hour Factor 0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \% 0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow 81	456	92	54	283	55	35	102	40	42	137	70
Number of Lanes 0	1	1	0	1	1	0	1	0	0	1	0
Approach EB			WB			NB			SB		
Opposing Approach WB			EB			SB			NB		
Opposing Lanes 2			2			1			1		
Conflicting Approach Left SB			NB			EB			WB		
Conflicting Lanes Left 1			1			2			2		
Conflicting Approach RighNB			SB			WB			EB		
Conflicting Lanes Right 1			1			2			2		
HCM Control Delay 70.8			22.8			15.6			17.8		
HCM LOS F			C			C			C		

Lane	NBLn1 EBLn1 EBLn2WBLn1WBLn2 SBLn1					
Vol Left, \%	20%	15%	0%	16%	0%	17%
Vol Thru, \%	58%	85%	0%	84%	0%	55%
Vol Right, \%	22%	0%	100%	0%	100%	28%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	165	499	86	313	51	231
LT Vol	33	75	0	50	0	39
Through Vol	95	424	0	263	0	127
RT Vol	37	0	86	0	51	65
Lane Flow Rate	177	537	92	337	55	248
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.377	1.054	0.161	0.68	0.1	0.499
Departure Headway (Hd)	7.877	7.071	6.276	7.542	6.738	7.549
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	460	515	574	481	535	479
Service Time	5.877	4.783	3.987	5.242	4.438	5.549
HCM Lane V/C Ratio	0.385	1.043	0.16	0.701	0.103	0.518
HCM Control Delay	15.6	81.2	10.2	24.8	10.2	17.8
HCM Lane LOS	C	F	B	C	B	C
HCM 95th-tile Q	1.7	16	0.6	5	0.3	2.7

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Kimley»)Horn

APPENDIX H. IMPROVED CONDITIONS SYNCHRO OUTPUT SHEETS

	4		7	7	4	4	4	4	\%	\pm	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{*} \uparrow$	「		${ }_{*} \uparrow$	「'		\&			\uparrow	
Traffic Volume (veh/h)	26	178	35	29	175	41	49	157	37	30	76	47
Future Volume (veh/h)	26	178	35	29	175	41	49	157	37	30	76	47
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.93	1.00		0.94	0.98		0.95	0.99		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	28	191	38	31	188	44	53	169	40	32	82	51
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	48	327	297	54	324	302	168	312	66	156	250	132
Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25	0.25	0.25	0.25	0.25
Sat Flow, veh/h	241	1647	1495	267	1620	1508	222	1239	263	178	993	524
Grp Volume(v), veh/h	219	0	38	219	0	44	262	0	0	165	0	0
Grp Sat Flow(s), veh/h/ln	1888	0	1495	1887	0	1508	1724	0	0	1694	0	0
Q Serve(g_s), s	4.1	0.0	0.8	4.1	0.0	0.9	1.7	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	4.1	0.0	0.8	4.1	0.0	0.9	5.0	0.0	0.0	3.0	0.0	0.0
Prop In Lane	0.13		1.00	0.14		1.00	0.20		0.15	0.19		0.31
Lane Grp Cap(c), veh/h	375	0	297	378	0	302	546	0	0	538	0	0
V/C Ratio(X)	0.58	0.00	0.13	0.58	0.00	0.15	0.48	0.00	0.00	0.31	0.00	0.00
Avail Cap(c_a), veh/h	1343	0	1064	1391	0	1112	1442	0	0	1395	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	14.0	0.0	12.7	14.0	0.0	12.7	12.6	0.0	0.0	11.9	0.0	0.0
Incr Delay (d2), s/veh	1.4	0.0	0.2	1.4	0.0	0.2	0.7	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.6	0.0	0.2	1.6	0.0	0.3	1.7	0.0	0.0	1.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	15.5	0.0	12.9	15.4	0.0	13.0	13.3	0.0	0.0	12.3	0.0	0.0
LnGrp LOS	B	A	B	B	A	B	B	A	A	B	A	A
Approach Vol, veh/h		257			263			262			165	
Approach Delay, s/veh		15.1			15.0			13.3			12.3	
Approach LOS		B			B			B			B	
Timer - Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s		14.2		12.2		14.2		12.2				
Change Period (Y+Rc), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		30.5		27.5		30.5		28.5				
Max Q Clear Time (g_c+11), s		7.0		6.1		5.0		6.1				
Green Ext Time (p_c), s		1.7		1.4		1.0		1.4				
Intersection Summary												
HCM 6th Ctrl Delay			14.1									
HCM 6th LOS			B									

	\rangle	\rightarrow		7			4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow	「		¢			¢	
Traffic Volume (veh/h)	74	424	86	49	250	49	31	89	36	39	127	64
Future Volume (veh/h)	74	424	86	49	250	49	31	89	36	39	127	64
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	1.00		0.94	0.99		0.95	0.98		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	80	456	92	53	269	53	33	96	39	42	137	69
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	100	567	541	70	358	345	111	231	82	106	211	96
Arrive On Green	0.35	0.35	0.35	0.23	0.23	0.23	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	281	1604	1531	310	1574	1516	208	1140	408	188	1045	475
Grp Volume(v), veh/h	536	0	92	322	0	53	168	0	0	248	0	0
Grp Sat Flow(s),veh/h/ln	1886	0	1531	1884	0	1516	1756	0	0	1707	0	0
Q Serve(g_s), s	16.0	0.0	2.6	9.9	0.0	1.7	0.0	0.0	0.0	3.1	0.0	0.0
Cycle Q Clear (g_c), s	16.0	0.0	2.6	9.9	0.0	1.7	5.1	0.0	0.0	8.3	0.0	0.0
Prop In Lane	0.15		1.00	0.16		1.00	0.20		0.23	0.17		0.28
Lane Grp Cap (c), veh/h	667	0	541	428	0	345	424	0	0	413	0	0
V/C Ratio(X)	0.80	0.00	0.17	0.75	0.00	0.15	0.40	0.00	0.00	0.60	0.00	0.00
Avail Cap(c_a), veh/h	1167	0	947	772	0	621	681	0	0	675	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	18.2	0.0	13.8	22.4	0.0	19.3	21.8	0.0	0.0	23.0	0.0	0.0
Incr Delay (d2), s/veh	2.3	0.0	0.1	2.7	0.0	0.2	0.6	0.0	0.0	1.4	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	6.8	0.0	0.9	4.5	0.0	0.6	2.1	0.0	0.0	3.4	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.5	0.0	14.0	25.1	0.0	19.5	22.4	0.0	0.0	24.4	0.0	0.0
LnGrp LOS	C	A	B	C	A	B	C	A	A	C	A	A
Approach Vol, veh/h		628			375			168			248	
Approach Delay, s/veh		19.5			24.3			22.4			24.4	
Approach LOS		B			C			C			C	
Timer - Assigned Phs		2		4		6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s		17.1		26.5		17.1		18.6				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		22.5		38.5		22.5		25.5				
Max Q Clear Time (g_c+1), s		7.1		18.0		10.3		11.9				
Green Ext Time (p_c), s		0.8		4.0		1.2		1.8				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			22.0									
			C									

	4			7	-		4	4	p		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F		\uparrow	「		\dagger			\dagger	
Traffic Volume (veh/h)	28	228	36	29	236	42	50	161	37	30	76	48
Future Volume (veh/h)	28	228	36	29	236	42	50	161	37	30	76	48
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.93	1.00		0.94	0.98		0.95	0.99		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	30	245	39	31	254	45	54	173	40	32	82	52
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	46	379	339	48	391	352	151	298	62	140	239	129
Arrive On Green	0.23	0.23	0.23	0.23	0.23	0.23	0.24	0.24	0.24	0.24	0.24	0.24
Sat Flow, veh/h	206	1684	1505	206	1684	1517	227	1237	258	181	990	535
Grp Volume(v), veh/h	275	0	39	285	0	45	267	0	0	166	0	0
Grp Sat Flow(s),veh/h/n	1890	0	1505	1890	0	1517	1722	0	0	1706	0	0
Q Serve(g_s), s	5.9	0.0	0.9	6.1	0.0	1.0	2.5	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	5.9	0.0	0.9	6.1	0.0	1.0	6.1	0.0	0.0	3.5	0.0	0.0
Prop In Lane	0.11		1.00	0.11		1.00	0.20		0.15	0.19		0.31
Lane Grp Cap(c), veh/h	425	0	339	439	0	352	512	0	0	507	0	0
V/C Ratio(X)	0.65	0.00	0.12	0.65	0.00	0.13	0.52	0.00	0.00	0.33	0.00	0.00
Avail Cap(c_a), veh/h	1162	0	925	1204	0	967	1247	0	0	1210	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	15.7	0.0	13.8	15.5	0.0	13.6	15.1	0.0	0.0	14.2	0.0	0.0
Incr Delay (d2), s/veh	1.7	0.0	0.1	1.6	0.0	0.2	0.8	0.0	0.0	0.4	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	2.4	0.0	0.3	2.5	0.0	0.3	2.2	0.0	0.0	1.3	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	17.4	0.0	13.9	17.1	0.0	13.7	15.9	0.0	0.0	14.6	0.0	0.0
LnGrp LOS	B	A	B	B	A	B	B	A	A	B	A	A
Approach Vol, veh/h		314			330			267			166	
Approach Delay, s/veh		16.9			16.7			15.9			14.6	
Approach LOS		B			B			B			B	
Timer - Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s		15.3		14.6		15.3		14.9				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		30.5		27.5		30.5		28.5				
Max Q Clear Time (g_c+11), s		8.1		7.9		5.5		8.1				
Green Ext Time (p_c), s		1.7		1.7		1.0		1.8				
Intersection Summary												
HCM 6th Ctrr Delay			16.3									
HCM 6th LOS			B									

	4			7	-		4	4	p		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F		\uparrow	「		\dagger			\dagger	
Traffic Volume (veh/h)	75	465	87	49	296	49	31	89	36	39	129	67
Future Volume (veh/h)	75	465	87	49	296	49	31	89	36	39	129	67
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	1.00		0.94	0.99		0.95	0.98		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	81	500	94	53	318	53	33	96	39	42	139	72
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	97	598	565	65	392	368	103	222	80	97	203	96
Arrive On Green	0.37	0.37	0.37	0.24	0.24	0.24	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	263	1624	1533	270	1617	1520	211	1132	406	189	1036	487
Grp Volume(v), veh/h	581	0	94	371	0	53	168	0	0	253	0	0
Grp Sat Flow(s),veh/h/n	1887	0	1533	1887	0	1520	1749	0	0	1711	0	0
Q Serve(g_s), s	19.7	0.0	2.9	13.0	0.0	1.9	0.0	0.0	0.0	3.8	0.0	0.0
Cycle Q Clear(g_c), s	19.7	0.0	2.9	13.0	0.0	1.9	5.8	0.0	0.0	9.6	0.0	0.0
Prop In Lane	0.14		1.00	0.14		1.00	0.20		0.23	0.17		0.28
Lane Grp Cap(c), veh/h	695	0	565	457	0	368	405	0	0	396	0	0
V/C Ratio(X)	0.84	0.00	0.17	0.81	0.00	0.14	0.41	0.00	0.00	0.64	0.00	0.00
Avail Cap(c_a), veh/h	1038	0	843	687	0	553	606	0	0	602	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	20.2	0.0	14.9	25.0	0.0	20.8	24.9	0.0	0.0	26.4	0.0	0.0
Incr Delay (d2), s/veh	3.9	0.0	0.1	4.5	0.0	0.2	0.7	0.0	0.0	1.7	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	8.8	0.0	1.0	6.1	0.0	0.7	2.5	0.0	0.0	4.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	24.1	0.0	15.0	29.5	0.0	21.0	25.6	0.0	0.0	28.1	0.0	0.0
LnGrp LOS	C	A	B	C	A	C	C	A	A	C	A	A
Approach Vol, veh/h		675			424			168			253	
Approach Delay, s/veh		22.8			28.4			25.6			28.1	
Approach LOS		C			C			C			C	
Timer - Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s		18.2		30.3		18.2		21.5				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		22.5		38.5		22.5		25.5				
Max Q Clear Time (g_c+11), s		7.8		21.7		11.6		15.0				
Green Ext Time (p_c), s		0.8		4.1		1.1		1.9				
Intersection Summary												
HCM 6th Ctrr Delay			25.6									
HCM 6th LOS			C									

Intersection						
Int Delay, s/veh	5.4					
Movement EBT	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	F	${ }^{*}$	4	${ }^{*}$	F
Traffic Vol, veh/h	433	97	99	267	162	181
Future Vol, veh/h 4	433	97	99	267	162	181
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control Fr	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	25	170	-	145	0
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	0	0	0	0
Mvmt Flow	451	101	103	278	169	189

Kimley»)Horn

APPENDIX I. SOQUEL AVENUE STRIPING IMPROVEMENT CONCEPT LAYOUTS

Kimley")Horn
$\overline{\text { xx-097XXXXXX } \quad \text { FEBRUARY } 2019}$

GRAPHIC SCALE IN FEET

Kimley")Horn
$\overline{\text { XX-097XXXXXX } \quad \text { FEBRUARY } 2019}$

GRAPHIC SCALE IN FEET

Kimley»)Horn
GRAPHIC SCALE IN FEET

XX-097XXXXXX FEBRUARY 2019

GRAPHIC SCALE IN FEET

Kimley»)Horn
$\overline{\text { xX-097XXXXXX }} \quad$ FEBRUARY 2019

Kimley»)Horn

Kimley»)Horn

APPENDIX J. SIGNAL WARRANT WORKSHEETS

Traffic Signal Warrant Write-up

Signal warrant analysis was completed for the following intersections:

- Intersection 8: Soquel Avenue \& Project Driveway
- Intersection 24: Brommer Street \& 30 ${ }^{\text {th }}$ Avenue

This analysis used methodology provided by Chapter 4 of the California Manual on Uniform Traffic Control Devices (MUTCD) (2014). The Peak Hour Warrant (Warrant 3) was used to analyze these intersections because 24 -hour counts were not collected near the intersections to complete the Eight-Hour Warrant (Warrant 1) and Four-Hour Warrant (Warrant 2). In addition, future volumes are only analyzed during the peak hour, therefore the Peak Hour Warrant would only be used in the future scenarios.

For Intersection 8, three scenarios were analyzed:

1. One approach lane for both the Major and Minor Street
a. This simulates the geometry present at Intersection 8 in existing conditions.
2. Two approach lanes for the Major and Minor Road
a. This simulates the proposed geometry of Intersection 8 provided in this report.
3. Two approach lanes for the Major and Minor Street with the highest left turning volumes added to the Minor Street approach
a. This is compliant with Paragraph 13 of Chapter 4 of the California MUTCD. The paragraph states that if the intersection has a high volume of left-turn traffic, the higher volume of the Major Street left turn may be added to the Minor Street approach volumes. This analysis was completed to because the MUTCD does not define what a high volume of left-turn traffic means and left-turn volumes in the plus project conditions are relatively high.

In all three scenarios, it was determined that the plus project conditions warrant a traffic signal at Intersection 8.

For Intersection 24, one scenario was analyzed:

1. One approach for both the Major and Minor Road - It is anticipated that the intersection geometry would remain the same in both existing and cumulative conditions.

In this scenario, it was determined that the existing and plus project conditions warrant a traffic signal at Intersection 24.

TRAFFIC SIGNAL VOLUME WARRANT ANALYSIS (2010 MUTCD)

MAJOR STREET:	Brommer St	EB	WB	\# OF APPROACH LANES:	1
MINOR STREET:	30th Ave	SB	NB	\# OF APPROACH LANES:	1
CITY, STATE:	Santa Cruz County, California				
COMMENTS:	Existing Conditions				

85TH PERCENTILE SPEED GREATER THAN 40 MPH ON MAJOR STREET (Y OR N)

			MAJOR ST TWO-WAY TRAFFIC	MINOR ST TRAFFIC HEAVY LEG	Ped Count CROSSING MAJOR ST	WARRANT 1 - Condition A, Part 1			WARRANT 1 - Condition B, Part 1			WARRANT 1 - Condition A, Part 2			WARRANT	1 - Conditi	B, Part 2	WARRANT 2 Four-Hour	WARRANT 3 Peak Hour	
			MAIN LINE			$\begin{gathered} \hline \text { SIDE } \\ \text { STREET } \\ \hline \end{gathered}$	BOTH MET	MAIN LINE	$\begin{aligned} & \hline \text { SIDE } \\ & \text { STREET } \end{aligned}$	$\begin{aligned} & \text { BOTH } \\ & \text { MET } \end{aligned}$	MAIN LINE	$\begin{gathered} \text { SIDE } \\ \text { STREET } \end{gathered}$	$\begin{aligned} & \text { BOTH } \\ & \text { MET } \end{aligned}$	MAIN LINE	$\begin{gathered} \text { SIDE } \\ \text { STREET } \end{gathered}$	BOTH MET				
THRESHOLD VALUES							500	150		750	75		400	120		600	60		60	75
06:30 AM	TO	07:30 AM																		
07:30 AM	TO	08:30 AM																		
08:30 AM	TO	09:30 AM	484	239			Y			Y		Y	Y	Y		Y				
09:30 AM	TO	10:30 AM																		
10:30 AM	TO	11:30 AM																		
11:00 AM	TO	12:00 PM																		
12:30 PM	TO	01:30 PM																		
01:30 PM	TO	02:30 PM																		
02:30 PM	TO	03:30 PM																		
03:30 PM	TO	04:30 PM																		
04:30 PM	TO	05:30 PM	932	226		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
05:30 PM	TO	06:30 PM																		
06:30 PM	TO	07:30 PM																		
07:30 PM	TO	08:30 PM																		
08:30 PM	TO	09:30 PM																		
09:30 PM	TO	10:30 PM																		
			1,416	465		1	2	1	1	2	1	2	2	2	1	2	1	1	1	
						8 HOURS NEEDED NOT SATISFIED			8 HOURS NEEDED NOT SATISFIED				8 HOURS NEEDED for both Condition A \& B NOT SATISFIED					4 HRS NEEDED NOT SATISFIED	1 HR NEEDED SATISFIED	

Kimley-Horn and Associates

TRAFFIC SIGNAL VOLUME WARRANT ANALYSIS (2010 MUTCD)

MAJOR STREET:	Brommer St	EB	WB	\# OF APPROACH LANES:	1
MINOR STREET:	30th Ave	SB	NB	\# OF APPROACH LANES:	1
CITY, STATE:	Santa Cruz C				
COMMENTS:	Existing Plus Project Conditions Existing Geometry				

ISOLATED COMMUNITY WITH POPULATION LESS THAN 10,000 (Y OR N)
85TH PERCENTILE SPEED GREATER THAN 40 MPH ON MAJOR STREET (Y OR N

Kimley-Horn and Associates

TRAFFIC SIGNAL VOLUME WARRANT ANALYSIS (2010 MUTCD)

Kimley-Horn and Associates

TRAFFIC SIGNAL VOLUME WARRANT ANALYSIS (2010 MUTCD)

ISOLATED COMMUNITY WITH POPULATION LESS THAN 10,000 (Y OR N)
85TH PERCENTILE SPEED GREATER THAN 40 MPH ON MAJOR STREET (Y OR N

			MAJOR ST TWO-WAY TRAFFIC	MINOR ST TRAFFIC HEAVY LEG	Ped Count CROSSING MAJOR ST	WARRANT 1 - Condition A, Part 1			WARRANT 1 - Condition B, Part 1			WARRANT 1 - Condition A, Part 2			WARRANT 1 - Condition B, Part 2				WARRANT 3 Peak Hour	
			MAIN LINE			$\begin{aligned} & \hline \text { SIDE } \\ & \text { STREET } \end{aligned}$	BOTH MET	MAIN LINE	$\begin{gathered} \hline \text { SIDE } \\ \text { STREET } \end{gathered}$	BOTH	MAIN LINE	$\begin{gathered} \text { SIDE } \\ \text { STREET } \end{gathered}$	BOTH	MAIN LINE	SIDE STREET	BOTH MET	Four-Hour			
THRESHOLD VALUES							500	150		750	75		400	120		600	60		60	75
06:30 AM	TO	07:30 AM																		
07:30 AM	TO	08:30 AM																		
08:30 AM	TO	09:30 AM	1,014	130		Y			Y	Y	Y	Y	Y	Y	Y	Y	Y	Y		
09:30 AM	TO	10:30 AM																		
10:30 AM	TO	11:30 AM																		
11:00 AM	TO	12:00 PM																		
12:30 PM	TO	01:30 PM																		
01:30 PM	TO	02:30 PM																		
02:30 PM	TO	03:30 PM																		
03:30 PM	TO	04:30 PM																		
04:30 PM	TO	05:30 PM	997	373		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
05:30 PM	TO	06:30 PM																		
06:30 PM	TO	07:30 PM																		
07:30 PM	TO	08:30 PM																		
08:30 PM	TO	09:30 PM																		
09:30 PM	TO	10:30 PM																		
			2,011	503		2	1	1	2	2	2	2	2	2	2	2	2	2	1	
						8 HOURS NEEDED nOT SATISFIED			8 HOURS NEEDED NOT SATISFIED			8 HOURS NEEDED for both Condition A \& B NOT SATISFIED						4 HRS NEEDED NOT SATISFIED	1 HR NEEDED SATISFIED	

Kimley-Horn and Associates

Kimley»)Horn

APPENDIX K. FULL SCCRTP IMPROVEMENT LIST

Appendix F
 Project List

This page intentionally left blank

2040 Regional Transportation Plan Project List

Constrained and Unconstrained Projects - Not Escalated

Projects listed by lead agency, in alphabetical order by project name.

Project IDs without the letter " p " in front of the number have been also included in the Regional Transportatioon Improvement Program. "Constrained" represents amount of project cost that could be funded with revenues anticipated through 2040.
While some projects have secured funding, this amount does not typically represent committed funds. "Unconstrained" represents amount of project cost that would need additional funding in order to be implemented.

All Figures in year 2016, '000s (thousands of dollars)

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Caltrans					
Collision Reduction \& Emergency Projects	CT-P46	Various SHOPP projects that address collision reduction, mandates (including stormwater mandates) and emergency projects. (Constrained $=30 \%$ of total cost).	\$732,380	\$219,714	\$512,666
Hwy 1/Harkins Slough Road Interchange: Bicycle/Pedestrian Bridge	WAT 01A	Construction of Pedestrian/Bicycle Bridge over Highway 1. Caltrans Project ID 05-1G490	\$9,900	\$9,900	\$0
Hwy 17 Access Management - Laurel Rd/Sugarloaf Rd/Glenwood Cutoff Area Grade Separation Concept	CT-P52	New structure providing grade-separation to facilitate crossing and turnaround.	\$40,000	\$0	\$40,000
Hwy 17 Access Management - Multimodal Improvements	CT-P50	Multimodal improvements including park and ride improvements, and facilities serving separated bike/ped crossing or express transit route.	\$20,000	\$0	\$20,000
Hwy 17 Access Management - Old Santa Cruz Hwy Area Grade Separation Concept	CT-P53	New structure providing grade-separation to facilitate crossing and turnaround.	\$40,000	\$0	\$40,000
Hwy 17 Access Management - Operational Improvements	CT-P49	Operational improvements to existing facilities including ramp modifications, accel/decel lanes, turning lanes, driveway consolidation, driveway channelization, etc.	\$50,000	\$0	\$50,000
Hwy 17 Access Management - Vine Hill Area Grade Separation Concept	CT-P51	New structure providing grade-separation to facilitate crossing and turnaround.	\$40,000	\$0	\$40,000
Hwy 17 Wildlife Habitat Connectivity	CT-P48	Wildlife Crossing	\$9,198	\$9,198	\$0
Measure D Hwy 9 Corridor Projects	CT-P09e	Corridor study is underway to identify need for shoulder widening, turnouts for buses, bicycle and pedestrian improvements, and turn lanes at spot locations in SLV. Capital Cost Est. TBD.	\$10,000	\$7,349	\$2,651
Minors	CT-P47	Various small SHOPP projects (less than $\$ 1$ million) that reduce/enhance maintenance efforts by providing minor operational, pavement rehab, drainage, intersection, electrical upgrades, landscape and barrier improvements. (Constrained=30\% of total cost).	\$8,600	\$2,580	\$6,020
State Highway Preservation (bridge, roadway, roadside)	CT-P45	Various SHOPP projects that address bridge preservation, roadway \& roadside preservation and limited mobility improvements. (Constrained $=30 \%$ of cost to maintain).	\$778,390	\$467,163	\$311,227
			Caltrans Total \$1,738,468	\$715,904 \$1,022,564	
CHP - California Highway Patrol					
Hwy 129 Safety Program	CHP-P03	Additional CHP enforcement and public education campaign on Highway 129.	\$500	\$0	\$500
Hwy 17 Safety Program	CHP-P01	Continuation of Highway 17 Safety Program in Santa Cruz County at $\$ 100 / y e a r$. Includes public education and awareness, California Highway Patrol (CHP) enhancement, pilot cars, electronic speed signs.	\$2,200	\$2,200	\$0

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \\ & \hline \end{aligned}$	Constrained	Unconstrained
Traffic Management	CHP-P02	Patrol of state route system and unincorporated roadways aimed at minimizing traffic collisions and traffic delays; and provide assistance to motorists. COST EST TBD.	\$0	\$0	\$0
		CHP - California Highway Patrol Total	\$2,700	\$2,200	\$500
City of Capitola					
40th Ave (at Deanes Ln)Bike/Ped connection	CAP-P46	40th Avenue N/S bike/pedestrian connection at Deanes Lane.	\$10	\$10	\$0
40th Ave/Clares St Intersection Improvements	CAP-P38	Widen intersection and signalize.	\$1,550	\$1,050	\$500
41st Ave (Soquel to Portola) Crosswalks	CAP-P47	Evaluate and if found necessary, increase number of crosswalks on 41st to closer to every 300 ft .	\$20	\$20	\$0
41st Ave/Capitola Road Intersection Improvements	CAP-P37	Widen intersection and reconfigure signal phasing.	\$520	\$520	\$0
46th/47th Ave (Clares to Cliff Dr) Bike Lanes/Traffic Calming	CAP-P40	46th/47th from Clares to Portola/Cliff - Add traffic calming and wayfinding signage to connect to Brommer and MBSST.	\$20	\$20	\$0
47th Avenue Traffic Calming and Greenway	CAP-P30	Traffic calming and traffic dispersion improvements along 47th Ave from Capitola Rd to Portola Drive and implementation of greenway, which gives priority to bicycles and pedestrians on low volume, low speed streets including, pedestrian facilities, way finding and pavement markings, bicycle treatments to connect to MBSST.	\$100	\$100	\$0
Auto Plaza Drive Extension to Bay Avenue	CAP-P35	Extend Auto Plaza Drive over Soquel Creek to Bay Avenue. Includes improvements to Auto Plaza Drive.	\$10,330	\$0	\$10,330
Bay Avenue Traffic Calming and Bike/Ped Enhancements	CAP-P29	Traffic calming features along Bay Avenue from Highway 1 to Monterey Avenue, including left turn pocket, buffered pedestrian facilities and bicycle treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals) to address speed inconsistency between bicyclists and vehicles.	\$410	\$210	\$200
Bay Avenue/Capitola Avenue Intersection Modifications/Roundabout	CAP 16	Multimodal improvements to intersection. Roundabout.	\$1,000	\$1,000	\$0
Bay Avenue/Hill Street Intersection	CAP-P07	Intersection improvements to improve traffic flow. Roundabout.	\$210	\$210	\$0
Bay Avenue/Monterey Avenue Intersection Modification	CAP-P32	Multimodal improvements to the intersection. Include signalization or roundabout along with pedestrian, bicycle treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals) and transit access.	\$310	\$310	\$0
Brommer Street Complete Street Improvements (250' west of 38th Ave to 41st Ave)	CAP 18	Construct complete street roadway improvements on Brommer St. to improve access for vehicles, bikes, and pedestrians. Pavement reconstruction, install ADA driveways and sidewalks, and reconfigure eastbound approach to 41st Ave. for vehicle access.	\$770	\$770	\$0
Brommer/Jade/Topaz St Bike Lanes/Traffic Calming (Western City Limit on Brommer to 47thAve)	CAP-P41	Add buffered bike lanes, traffic calming and wayfinding signage and bike/ped priority crossing at 41st Ave, connecting the two N / S neighborhood greenways.	\$20	\$20	\$0
Capitola Intra-City Rail Trolley	CAP-P18	Construct \& Operate Weekend Rail Trolley Service. Project includes installation of 3 stations.	\$14,460	\$0	\$14,460
Capitola Jitney Transit Service	CAP-P15	Purchase and operate local transit service.	\$1,030	\$0	\$1,030
Capitola Mall (Capitola Rd to Clares) Bike Path	CAP-P48	Separated bicycle facility through Capitola Mall parking lot to connect 38th Ave bike lanes and 40th Ave.	\$50	\$50	\$0

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \\ & \hline \end{aligned}$	Constrained	Unconstrained
Capitola Rd \& 45th Avenue I/S Improvements	CAP-P53	Signalization or other LOS improvements	\$400	\$400	\$0
Capitola Village Enhancements: Capitola Ave	CAP-P34	Multimodal enhancements along Capitola Avenue.	\$1,030	\$1,030	\$0
Capitola Village Multimodal Enhancements Phase 2/3	CAP-P04b	Multimodal enhancements in Capitola Village along Stockton Ave, Esplanade, San Jose Ave, \& Monterey Av. Includes sidewalks, bike lanes, bike lockers, landscaping, improve transit facilities, parking, pavement rehab and drainage.	\$3,100	\$3,100	\$0
Capitola-wide HOV priority	CAP-P50	Evaluate HOV priority at signals and HOV queue bypass.	\$40	\$40	\$0
Citywide Bike Projects	CAP-P52	Bike projects based on needs identified through the Bicycle Plan. These projects are in addition to projects listed individually in the RTP.	\$1,030	\$400	\$630
Citywide General Maintenance and Operations	CAP-P06	Ongoing maintenance, repair, and operation of road/street system within the City limits. (Const=\$1850K/yr; Unconst=\$150K/yr).	\$44,000	\$40,666	\$3,334
Citywide Sidewalk Program	CAP-P51	Install sidewalks to fill gaps. Annual Cost $\$ 50 \mathrm{k} / \mathrm{yr}$.	\$1,030	\$520	\$510
Citywide Traffic Calming	CAP-P17	Install traffic calming/neighborhood livability improvements.	\$1,450	\$1,450	\$0
Clares St Bike Lanes/Sharrows (Capitola Rd to 41st Ave)	CAP-P42	Evaluate and if found necessary, add bike lanes/sharrows to Clares.	\$100	\$100	\$0
Clares St/41st Ave Bicycle Intersection Improvement	CAP-P43	Bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals) at Clares across 41st.	\$10	\$10	\$0
Clares Street Pedestrian Crossing west of 40th Ave	CAP-P16	Construct signalized ped x -ing 0.20 miles west of 40th Ave.	\$520	\$250	\$270
Clares Street Traffic Calming	CAP 11	Implementation of traffic calming measures: chicanes, center island median, new bus stop, and road edge landscape treatments to slow traffic. Construct new safe, accessible ped x-ing at 42nd and 46th Av.	\$750	\$750	\$0
Cliff Drive Improvements	CAP-P05	Installation of sidewalks, pedestrian crossing and slope stabilization of embankment including seawall.	\$1,550	\$1,550	\$0
Gross/41st Ave Bicycle Intersection Improvement	CAP-P44	Bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals) from Gross E / B to 41 st N / B.	\$20	\$20	\$0
Hwy 1/41st Avenue Interchange	CAP-P01	Implement 41st Avenue \& Bay Ave/Porter Ave single interchange improvements as detailed and expensed in Hwy 1 HOV project (RTC 24) as a stand alone project if the RTC project does not proceed. (\$117M)	\$0	\$0	\$0
Monterey Avenue and Park Avenue I/S Improvements	CAP-P56	Signalization or other LOS improvements	\$400	\$400	\$0
Monterey Avenue at Depot Hill	CAP-P28	Improve vehicle ingress and egress to Depot Hill along Escalona Ave and improve pedestrian facilities.	\$260	\$260	\$0
Monterey Avenue Multimodal Improvements	CAP-P12	Installation of sidewalks and bike lanes in area near school and parks.	\$360	\$360	\$0
Park Avenue Sidewalks	CAP 15	Installation of sidewalks, plus crosswalks at Cabrillo and Washburn to improve access to transit stops. Links Cliffwood Heights neighborhood to Capitola Village. Currently only 4 short segments of sidewalk exist.	\$650	\$650	\$0
Park Avenue/Kennedy Drive Improvements	CAP-P09	Construct intersection improvements, especially for bikes/peds. May include traffic signal.	\$360	\$360	\$0

Project Title	ID	Project Description/Scope	$\begin{gathered} \text { Est total } \\ \text { cost } \\ \hline \end{gathered}$	Constrained	Unconstrained
Porter Street and Highway 1 I/S Improvements	CAP-P55	Add additional dedicated right turn lane on Porter St to northbound on ramp	\$250	\$250	\$0
Stockton Ave Bridge Rehab	CAP-P07p	Replace bridge with wider facility that includes standard bike lanes and sidewalks.	\$3,000	\$1,500	\$1,500
Stockton Avenue and Capitola Avenue I/S Improvements	CAP-P57	Signalization or other LOS improvements	\$350	\$350	\$0
Upper Capitola Avenue Improvements	CAP-P03	Installation of bike lanes and sidewalks on Capitola Av. (Bay Av.-SR 1) and sidewalks on Hill St. from Bay Av. to Rosedale Av.	\$1,340	\$1,340	\$0
Upper Pacific Cove Parking Lot Pedestrian Trail and Depot Park Metro Development	CAP 17	Construct 4 foot wide pedestrian pathway along City owned Upper Pacific Cove Parking lot, adjacent to rail line (680^{\prime}). Includes new signal for ped crossing over Monterey Avenue. Includes a new metro shelter located and landscaped setting along the rail corridor/Park Ave. Part of MBSST.	\$310	\$310	\$0
Wharf Road and Stockton Avenue I/S Improvements	CAP-P54	Signalization or other LOS improvements	\$350	\$350	\$0
Wheelchair Access Ramps	CAP-P27	Install wheelchair access/curb cut ramps on sidewalks citywide.	\$200	\$200	\$0
		City of Capitola Total	\$93,670	\$60,906	\$32,764
City of Santa Cruz					
Almar Ave Sidewalks	SC-P126	Fill gaps in sidewalks and access ramps to improve pedestrian safety.	\$200	\$200	\$0
Arroyo Seco Trail (Medar St to Grandview St)	SC-P107	Pave existing gravel trail and widen and pave connection to Grandview St.	\$500	\$0	\$500
Bay Street Corridor Modifications	SC-P77	Intersection modifications on Bay St Corridor from Mission St to Escalona Dr, including widening at the Mission St northeast corner and widening on Bay. Improve bike lanes and add sidewalks to west side of Bay.	\$5,100	\$970	\$4,130
Bay/California Traffic Signals	SC-P96	Install traffic signals for safety and capacity improvements.	\$520	\$0	\$520
Bay/High Intersection Modification	SC-P109	Install a roundabout or modify the traffic signal to include protected left-turns and new turn lanes. Revise sidewalks, access ramps and bike lanes as appropriate.	\$2,150	\$2,150	\$0
Beach/Cliff Intersection Signalization	SC-P93	Signalize intersection for pedestrian and train safety.	\$210	\$210	\$0
Branciforte Creek Pedestrian Path Connections	SC-P95	Fill gaps in pedestrian and bike paths along and across Branciforte Creek in the Ocean-Lee-Market-May Streets area.	\$3,410	\$0	\$3,410
Brookwood Drive Bike and Pedestrian Path	SC-P21	Provide 2-way bicycle and pedestrian travel.	\$1,030	\$0	\$1,030
Chestnut St. Pathway	SC-P22	Install a Class 1 bicycle/pedestrian facility to connect the east side of Neary Lagoon Park with the Depot Park path.	\$570	\$570	\$0
Chestnut Street Bike Lanes	SC-P47	Install Class 2 bike lanes to provide connection from existing bike lanes on Laurel Street and upper Chestnut Street to proposed Class 1 bike path connections to Bay Street and Pacific Avenue/Beach Street.	\$100	\$100	\$0
Citywide Operations and Maintenance	SC-P07	Ongoing maintenance, repair, and operation of street system within the City limits. (Const=\$3.0M/yr; Unconst=\$4.2M/yr)	\$163,630	\$86,249	\$77,381
Citywide Safe Routes to School Projects ATP	SC-P125	Projects to improve pedestrian and bicycle safety near schools.	\$8,204	\$1,404	\$6,800

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Citywide Street Sweeping	SC-P128	Ongoing street sweeping, funded from City Refuse Enterprise Fund.	\$19,800	\$19,800	\$0
Delaware Avenue Complete Streets	SC-P23	Fill gaps in bicycle lanes, sidewalks and sidewalk access ramps.	\$150	\$150	\$0
High St/Moore St Intersection Modification	SC-P90	Add a protected left turn to existing signalized intersection along High St at city arterial. Project is located in high pedestrian and bicycle use activity area.	\$100	\$100	\$0
Hwy 1 - Harvey West Area Alternative Access	SC-P108	Development of an on/off ramp from NB Highway 1 to Harvey West Boulevard/Evergreen St, to improve access, especially during peak congestion times and emergencies.	\$4,130	\$0	\$4,130
Hwy 1 Sound Wall	SC-P03	Install sound wall on Hwy 1: River to Chestnut.	\$520	\$0	\$520
Hwy 1/9 Intersection Modifications	SC 25	Intersection modifications including new turn lanes, bike lanes, shoulders, lighting, sidewalks and access ramps. Includes adding second left-turn lane on Highway 1 southbound to Highway 9 northbound; second northbound through lane and shoulder on northbound Highway 9, from Highway 1 to Fern Street; a right-turn lane and shoulder on northbound Highway 9; throughleft turn lane on northbound River St; replace channelizers on Highway 9 at the intersection of Coral Street; sufficient lane width along the northbound through/left turn lane on Highway 9 from Fern Street to Encinal Street; new sidewalk along the east side of Highway 9 from Fern Street north to Encinal Street; new through/left turn lane on southbound Highway 9; Traffic Signal interconnect to adjacent signals. (Caltrans project ID - 05-46580)	\$7,850	\$7,850	\$0
Hwy 1/Mission St at Chestnut/King/Union Intersection Modification	SC-P81	Modify design of existing intersections to add lanes and upgrade the traffic signal operations to add capacity, reduce delay and improve safety. Provide access ramps and bike lanes on King and Mission. Includes traffic signal coordination.	\$4,650	\$4,650	\$0
Hwy 1/San Lorenzo Bridge Replacement	SC 38	Replace the Highway 1 bridge over San Lorenzo River to increase capacity, improve safety and improve seismic stability, from Highway 17 to the Junction of $1 / 9$. Reduce flooding potential and improve fish passage. Caltrans Project ID 05-OP460	\$20,000	\$20,000	\$0
Hwy 1/Shaffer Rd Signalization	SC-P92	Signalization of intersection of Hwy 1 and Shaffer Rd. Project may includes some widening of Hwy 1 to accommodate a left turn lane.	\$520	\$0	\$520
King Street Bike Facility (entire length)	SC-P59	Install Class 2 bike lanes on residential collector street which includes some parking and landscape strip removals, and some drainage inlet modifications.	\$2,070	\$2,070	\$0
King/Laurel Intersection Modification	SC-P114	Modify unsignalized intersection to add eastbound right turn lane.	\$100	\$0	\$100
Laurent/High Intersection Improvements	SC-P97	Install Traffic Signal.	\$410	\$0	\$410
Lump Sum Bike Projects	SC-P75	Bike projects based on needs identified through the Active Transportation Plan and Santa Cruz City Schools Complete Streets Master Plan. These are in addition to projects listed individually in the RTP.	\$6,800	\$0	\$6,800
Market Street Sidewalks and Bike Lanes	SC-P105	Completion of sidewalks and bicycle lanes. Includes retaining walls, right-of-way, tree removals, and a bridge modification.	\$1,030	\$1,030	\$0
MBSST (Coastal Rail Trail): Segment 7 (Natural Bridges to Pacific Ave)	TRL 07SC	2.1 miles of Monterey Bay Sanctuary Scenic Trail Network (MBSST) Segment 7 along rail line (excluding Moore Creek rail trestle bridge and trail to Natural Bridges Drive).	\$7,400	\$7,400	\$0
MBSST (Coastal Rail Trail_ - Segment 8 and 9)	TRL 8-9a	Rail Trail Design, Environmental Clearance and Construction along the rail corridor between Pacific Ave in the City of Santa Cruz to 17th Ave in Santa Cruz County	\$32,934	\$32,934	\$0
Measure H Road Projects	SC-P104	Road rehabilitation and reconstruction projects citywide to address backlog of needs using Measure H sales tax revenues. (Some Measure H funds anticipated to fund specific projects listed in the RTP).	\$41,800	\$41,800	\$0

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \\ & \hline \end{aligned}$	Constrained	Unconstrained
Mission St (Hwy 1)/Laurel St Intersection Modification	SC-P112	Modify traffic signal to add right-turn from Mission St to Laurel St and signal overlap phase.	\$1,030	\$0	\$1,030
Mission St (Hwy 1)/Swift St Intersection Modification	SC-P113	Modify traffic signal to add Swift St right-turn lane and signal overlap phase.	\$500	\$0	\$500
Morrissey Blvd. Bike Path over Hwy 1	SC-P29	Install a Class 1 bicycle and pedestrian facility on freeway overpass.	\$300	\$300	\$0
Morrissey/Poplar/Soquel Intersection Modification	SC-P12	Modify the roadway configuration in the Morrissey/Poplar/Soquel triangle area to improve traffic circulation and safety for all modes.	\$2,070	\$0	\$2,070
Murray St Bridge Retrofit	SC 37	Seismic retrofit of existing Murray St. bridge (36C0108) over Woods Lagoon at harbor and associated approach roadway improvements and replacement of barrier rail. Includes wider bike lanes and sidewalk on ocean side. Include access paths to harbor if eligible.	\$11,440	\$11,440	\$0
Murray St to Harbor Path Connection	SC-P30	Install a Class 1 bicycle/pedestrian facility.	\$210	\$210	\$0
Neighborhood Traffic Management Improvements	SC-P73	Install traffic control devices and roadway design features to manage neighborhood traffic.	\$2,580	\$0	\$2,580
North Branciforte/Water Intersection Modification	SC-P115	Modify traffic signal and add additional lanes per traffic study. Include signal interconnect if applicable.	\$2,070	\$0	\$2,070
Ocean St and San Lorenzo River Levee Bike/Ped Connections (Felker, Kennan, Blain, Barson Streets)	SC-P120	Improve pedestrian and bicycle facilities on side streets to connect Ocean Street with San Lorenzo River Levee path system.	\$620	\$0	\$620
Ocean St Pavement Rehabilitation	SC 48	Pavement rehabilitation using cold-in-place recycling process; includes new curb ramps, restriping of bicycle lanes and crosswalks.	\$1,030	\$1,030	\$0
Ocean St Streetscape and Intersection, Plymouth to Water	SC-P86	Implement this phase of the Ocean Street plan and modify Plymouth St to provide separate turn lanes and through lanes, widen sidewalks, pedestrian islands/bulbouts, transit improvements, street trees, street lighting and medians landscaping improvements. This includes pedestrian and bicycle crossing improvements and detection and connectivity to the pedestrian and bicycle path on the San Lorenzo River and adjacent neighborhoods. Include Gateway treatment.	\$4,130	\$2,000	\$2,130
Ocean St Streetscape and Intersection, Water to Soquel	SC-P84	Implement this phase of the adopted Ocean Street plan including adding turn lanes on Ocean Street at the Water Street intersections, wider sidewalks, pedestrian crossing islands/bulb outs, transit improvements, street trees, pedestrian scale street lights, and medians improvements, way finding, and pedestrian and bicycle connectivity to San Lorenzo Park and neighborhoods.	\$6,200	\$0	\$6,200
Ocean Street Corridor Multiuse Transit Lane	SC-P122	Consider restricting parking to develop business access and transit (BAT) lane to serve tourism and improving transit facilities.	\$410	\$0	\$410
Ocean Street Widening from Soquel to East Cliff	SC-P66	Implement this phase of the Ocean Street plan that includes utility undergrounding, bike lanes, wider sidewalks, pedestrian crossing islands/bulb outs, transit improvements, pedestrian scale street lights, street trees and left turn lanes at Broadway and a right-turn lane at San Lorenzo Blvd. This includes pedestrian and bicycle crossing improvements and detection and connectivity to the pedestrian and bicycle path on the San Lorenzo River and adjacent neighborhoods.	\$5,170	\$0	\$5,170
Ocean Street/San Lorenzo River Levee Area Wayfinding	SC-P124	Install signage on the bike/ped scale to bike/ped facilities connecting key destinations.	\$150	\$0	\$150

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Pacific Ave. Sidewalk	SC 50	Construct 200' of new sidewalk on Pacific Avenue between Front Street and 55 Front St, including installation of a new accessible crosswalk at Front and Pacific; 150' bike lane.	\$440	\$440	\$0
River (Rte 9)/Fern Intersection Modification	SC-P110	Install traffic signal, sidewalk and new access ramps. Provide bike lanes on Fern.	\$520	\$0	\$520
River St/River Street South Intersection Modification	SC-P116	Install a roundabout or traffic signal to improve access and safety to the Downtown core, integrating bike and pedestrian facilities.	\$520	\$0	\$520
River Street Pavement Rehabilitation (Water St to Potrero Street)	SC 51	Pavement rehabilitation of River Street between Water Street and Potrero Street. (0.4 mi)	\$2,000	\$1,000	\$1,000
Riverside Ave/Second St Intersection Modification.	SC-P13	Modify intersection to reduce congestion and improve pedestrian crossing.	\$175	\$175	\$0
San Lorenzo River Bike/Ped Trail at RR Bridge	TRL 8a	Widen existing four foot walkway that connects the east end of the Beach Street Pathway with East Cliff Drive at the location of the current railroad bridge over the San Lorenzo River and to connect the east and west banks of the San Lorenzo River Pathway. The crossing currently only accommodates pedestrians.	\$1,550	\$1,550	\$0
San Lorenzo River Levee Path Connection	SC-P35	Install a Multi-Use bicycle/pedestrian facility connecting the end of the San Lorenzo River Levee path on the eastern side of the river, up East Cliff Drive near Buena Vista Ave.	\$2,070	\$2,070	\$0
Seabright Avenue Bike Lanes (Pine-Soquel)	SC-P69	Install Class 2 bike lanes on arterial street to complete the Seabright Avenue bike lane corridor and connect to bike lane corridor on Soquel Avenue and Murray. Includes removal of some parking and some landscape strips.	\$2,070	\$2,070	\$0
Seabright/Murray Traffic Signal Modifications	SC-P100	Remove split phasing on Seabright and add right-turn lane northbound.	\$1,030	\$1,030	\$0
Seabright/Water Intersection Improvements	SC-P99	Modify unsignalized intersection to add northbound right and extend left-turn pocket.	\$100	\$0	\$100
Shaffer Road Widening and Railroad Crossing	SC-P91	Construction of a new crossing of the Railroad line at Shaffer Rd. and widening at the southern leg of Shaffer in conjunction with development. Complete sidewalks and bike lanes.	\$1,000	\$1,000	\$0
Sidewalk Program	SC-P09	Install and maintain sidewalks and access ramps.	\$20,660	\$5,500	\$15,160
Soquel Ave at Frederick St Intersection Modifications	SC 42	Widen to improve eastbound through-lane transition on Soquel Ave and lengthen right-turn pocket and bicycle lane on Frederick St. Upgrade access ramps.	\$310	\$310	\$0
Soquel Ave Corridor Widening (BranciforteMorrissey)	SC-P87	Minor widening and signal modifications along Soquel Ave corridor from Branciforte to Morrissey Blvd to widen sidewalks, transit improvements, improve pedestrian and bicycle detection and crossings, add a travel lane, maintain some commercial parking and improve existing bike lanes. Replacing the split phasing with protected left-turns at Branciforte to reduce delays for all modes of travel and GHG.	\$2,320	\$0	\$2,320
Soquel/Branciforte/Water (San Lorenzo River to Branciforte) Bike Lane Treatments	SC-P123	Consider bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals) to address speed inconsistency and parking conflicts between bicyclists and vehicles.	\$410	\$410	\$0
Soquel/Water (Branciforte to Morrissey) Crosswalks	SC-P119	Evaluate and if found necessary implement additional crosswalks on Soquel/Water with consideration for safety, and update crosswalks to more visible pattern (block).	\$300	\$150	\$150
Storey/King Street Intersection Left-Turn Lane	SC-P76	Remove parking and modify striping for second southbound left turn lane.	\$100	\$0	\$100
Swift/Delaware Intersection Roundabout or Traffic Signal	SC-P101	Install Traffic Signal or Roundabout at Intersection to improve capacity and safety.	\$500	\$500	\$0

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Water Street Pavement Rehabilitation(N. Branciforte Ave- Ocean St)	SC 49	Pavement rehabilitation of Water Street between North Branciforte Avenue and Ocean Street. Grant Condition: Add bicycle and pedestrian treatments at intersections, especially at Branciforte to reduce conflicts between motorized and non-motorized users.	\$1,453	\$1,453	\$0
West Cliff Path Minor Widening (David Way Lighthouse to Swanton)	SC 23	Improve existing path.	\$520	\$520	\$0
West Cliff/Bay Street Modifications	SC-P83	Install signal or roundabout to replace the all-way stop to improve safety and capacity.	\$500	\$500	\$0
		City of Santa Cruz Total	\$412,346	\$263,295	\$149,051
City of Scotts Valley					
Bean Creek Rd Sidewalks (SVMS to Blue Bonnet)	SV-P35	Fill gaps in sidewalks on Bean Creek Rd.	\$410	\$410	\$0
Bean Creek Road Realignment	SV-P16	Realign Bean Creek Road to intersect Scotts Valley Drive farther North to create a four way intersection.	\$2,840	\$0	\$2,840
Bike Rest Stops in Scotts Valley	SV-P38	Bike rest stops (including racks, water) at Camp Evers Park and Skypark.	\$230	\$0	\$230
Citywide Access Ramps	SV-P06	Place handicap ramps at various locations. Avg annual cost: $\$ 8 \mathrm{~K} / \mathrm{yr}$.	\$210	\$210	\$0
Citywide Bike Lanes	SV-P41	Construction of additional bike lanes and paths citywide (including Green Hills).	\$3,100	\$0	\$3,100
Citywide General Maintenance and Operations	SV-P27	Ongoing maintenance, repairs, and operation of road/street system within the City limits. ($\$ 400 \mathrm{~K} / \mathrm{yr}$ const; $\$ 250 / \mathrm{yr}$ unconst).	\$14,770	\$13,459	\$1,311
Citywide Sidewalk Program	SV-P05	Install sidewalks to fill gaps. Annual Cost \$50k/yr	\$5,170	\$2,600	\$2,570
Civic Center Dr Bike Lanes	SV-P33	Add bike lanes to narrow road.	\$410	\$0	\$410
El Pueblo Rd Ext North	SV-P14	Connect El Pueblo Road via Janis Way to Victor Square, crossing Carbonero Creek.	\$1,240	\$0	\$1,240
El Pueblo Rd Extensions	SV-P15	Connect El Pueblo Road to Disc Drive.	\$410	\$0	\$410
El Rancho Dr Bike Lanes	SV-P36	Add bike lanes on El Rancho within city limits.	\$340	\$0	\$340
Emergency Access Granite Creek/Hwy 17	SV-P24	Connect Granite Creek Rd to SR 17 via Navarra Drive to Sucinto Drive, for emergency access.	\$570	\$0	\$570
Emergency Access SV DR/Upper Willis Dr	SV-P25	Connect Scotts Valley Drive to Upper Willis Road for emergency access.	\$1,030	\$0	\$1,030
Emergency Access Whispering Pines	SV-P26	Connect Whispering Pines Drive to Manana Woods for emergency access.	\$50	\$0	\$50
Emergency Access-Bethany/Glenwood	SV-P23	Connect Bethany Drive to Glenwood Drive.	\$210	\$0	\$210
Emergency Access-Sundridge/Pueblo	SV-P22	Connect Sunridge Drive to Disc Drive for emergency access.	\$410	\$0	\$410
Erba Lane/Terrace View/SV Drive Realignment	SV-P10	Realign Terrace View to access Scotts Valley Drive via Erba Lane.	\$520	\$0	\$520
Glen Canyon Rd Bike Lanes	SV-P29	Class 2 Bike lanes from Flora Lane to Green Hills. Oak Creek to Flora Ln are already complete.	\$1,030	\$0	\$1,030

Project Title	ID	Project Description/Scope	$\begin{gathered} \text { Est total } \\ \text { cost } \end{gathered}$	Constrained	Unconstrained
Glen Canyon Rd/Green Hills Rd/S. Navarra Dr Bike Corridor and Roadway Preservation	SV 28	Repave two roads, add bike lanes (on Green Hills Rd), and signage. Includes road markings like sharrows and green lane treatments to assist commuters, students, and recreational bikers; and bike/walk education and outreach programs (\$14k).	\$993	\$993	\$0
Glenwood Drive Rehabilitation and Bicycle Improvement Project	SV 29	Pavement rehabilitation of Glenwood Dr. (K Street Way to city limits), drainage repair, and widen to add bike lanes. (0.58 mi)	\$865	\$865	\$0
Hwy 17/Midtown Interchange	SV-P01	Construct new SR17 interchange midway between Mt. Hermon Rd and Granite Creek Rd. Will require right-of-way.	\$30,990	\$0	\$30,990
Hwy 17/Mt. Hermon Rd Interchange Operations Improvement	SV-P44	Add lane to SB off-ramp at Hwy 17/Mt. Hermon Rd interchange.	\$1,030	\$0	\$1,030
Kings Village Rd/Town Center Entrance Traffic Signal	SV-P52	Install new traffic signal at the intersection of Kings Village Rd and new Town Center entrance (near transit center) with protected pedestrian crossings and transit signal priority. New Signalization of the intersection on Kings Village Rd at the transit center exit and future Plan street connection would provide a location for protected pedestrian crossings, and would allow transit operators to easily exit the transit center and maintain operating schedules.	\$210	\$105	\$105
Kings Village Road/ Bluebonnet Lane Sidewalk	SV 30	Construct new, fill gaps, and improve accessibility of sidewalks on both sides of King's Village Rd. (Mt. Hermon to Bluebonnet) and south side of Bluebonnet Lon (KV to Bean Creek). Approx. 0.3 mi . Curb ramp upgrades at Mt. Hermon.	\$306	\$306	\$0
Lockhart Gulch Rd Bike Lanes	SV-P37	Add Class 2 bike lanes to narrow, primarily residential street.	\$720	\$0	\$720
Lockwood Ln Pedestrian Signal Near Golf Course	SV-P21	Construct a pedestrian signal at unprotected ped crossing on Lockwood Lane.	\$50	\$50	\$0
Lockwoode Lane Sidewalk and Bike Lanes	SV-P40	Construct Bike Lanes and add sidewalk on the west side from Mt. Hermon to the City limit.	\$520	\$520	\$0
Mt Hermon Rd and Scotts Valley Drive Crosswalks	SV-P49	Increase number of crosswalks on Mt Hermon/Scotts Valley Dr, update crosswalks to block pattern, add pedestrian treatments where necessary at intersections to decrease distance across using refuge islands. Add crosswalks to all sides of intersections (particularly an issue on Scotts Valley Dr). Add HAWK signals to provide a low delay signalized crossing opportunity at select locations. Examples include the Safeway Driveway on Mt. Hermon Rd, at Victor Square/Scotts Valley Dr., and at Tramell Way/Scotts Valley Dr.	\$1,030	\$515	\$515
Mt Hermon Rd to El Rancho Drive Bike/Ped Connection	SV-P53	New bike/ped connection between Mt Hermon Road and El Rancho Drive which could include improved bike/ped facilities on existing interchange or new bike/ped crossing.	\$1,030	\$1,030	\$0
Mt Hermon Rd/ Spring Lakes Dr. Pedestrian Intersection Improvements	SV-P54	Improve pedestrian crossing at Spring Lakes Drive and Mt. Hermon Road.	\$50	\$50	\$0
Mt Hermon Road Sidewalk Connections	SV-P30A	Add sidewalks to fill gaps in business district.	\$520	\$520	\$0
Mt Hermon, Lockewood, Springs Lake Widening	SV-P13	Widen, reconstruct and improve portions of roadway and intersection.	\$4,130	\$0	\$4,130
Mt Hermon/King's Village Rd-Transit Signal priority	SV-P46	Transit signal priority at Kings Village Rd/Mt Hermon Rd.	\$80	\$80	\$0
Mt Hermon/Scotts Valley - Transit Queue Jump	SV-P47	Evaluate and if found to be beneficial, remove right turn islands at Mt Hermon Rd/Scotts Valley Road to add transit queue jump lanes/signals.	\$620	\$620	\$0
Mt. Hermon Rd Circulation Master Plan	SV-P09	Provides various circulation and access improvements to the Mount Herman corridor.	\$3,620	\$0	\$3,620

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \end{aligned}$	Constrained	Unconstrained
Mt. Hermon Road/Town Center Entrance Traffic Signal	SV-P51	Install new traffic signal at the intersection of the future Town Center road that will accommodate increased pedestrian travel. Add a right-turn lane on the westbound approach. New signalization of the intersection at the future Town Center's primary access point on Mt. Hermon Road would provide protected pedestrian crossing, ADA accessible curb ramps and detectable surfaces on all intersection corners. Permitted left-turn phasing shall be used for the northbound and southbound approaches, while protected left-turn phasing shall be provided on the eastbound and westbound Mt. Hermon Road approaches.	\$260	\$130	\$130
N. Navarra Dr-Sucinto Dr Bike Lanes	SV-P34	Add bike lanes to developing area behind commercial.	\$620	\$0	\$620
Neighborhood Traffic Calming	SV-P28	Citywide traffic calming devices.	\$770	\$770	\$0
Scotts Valley Town Center Bicycle/Pedestrian Facilities	SV-P45	Bicycle and pedestrian facilities and circulation elements within planned development.	\$4,130	\$4,130	\$0
Scotts Valley-wide - Greenway Signage	SV-P48	Add signage for neighborhood greenways.	\$20	\$0	\$20
Sky Park Commercial Area Circulation	SV-P11	Construct infrastructure improvement for Skypark commercial area.	\$2,070	\$0	\$2,070
Synchronize Traffic Signals along Mt. Hermon Road	SV-P42	Re-time to coordinate traffic signals along Mt. Hermon Road.	\$100	\$100	\$0
		City of Scotts Valley Total	\$87,684	\$27,463	\$60,221
City of Watsonville					
2nd/Maple Ave (Lincoln to Walker) Traffic Calming and Greenway	WAT-P49	Evaluate and if found necessary, add traffic calming/bicycle traffic priority with wayfinding signage to provide access to MBSST and create low stress grid around downtown.	\$25	\$25	\$0
5th St (Lincoln to Walker) - Traffic Calming and Greenway	WAT-P50	Evaluate and if found necessary, add traffic calming/bicycle traffic priority with wayfinding signage to provide access to MBSST and create low stress grid around downtown.	\$25	\$25	\$0
Airport Blvd Improvements (Freedom Blvd to City Limits)	WAT 38	Road widening to accommodate extension of bicycle lane and portion of travel lane, installation of bus pull out, new sidewalks and curb ramps, refuge island, rectangular flashing beacon, striping, and roadway rehab.	\$1,346	\$1,346	\$0
Airport Blvd Modifications (Hanger Way to Ross Ave)	WAT-P34	Reconstruct or repave roadway and bike lanes; repair, replace and install curb, gutter, sidewalk and curb ramps; replace and upgrade signage and striping.	\$600	\$0	\$600
Airport Boulevard Improvements: Westgate/Larkin to Hanger Way	WAT 40	Reconstruct roadway, install new sidewalk, upgrade curb ramps and driveway crossings, install median islands, modify traffic signals to include add'l ped crossing and install rectangular rapid flashing beacon at crosswalk.	\$1,645	\$1,645	\$0
Alley Improvements	WAT-P36	Repair \& reconstruct some alleys.	\$60	\$60	\$0
Bicycle Safety Improvements (Various Locations)	WAT 44	Improve existing bicycle facilities by installing new striping, markings and signage in place of the existing and installing new green bike lanes at the approaches on various streets. Work will be done at the following locations: Beach St from Lee Rd to Rodriguez St (1.42 mi); Bridge St from Beck St to East Lake Ave (1.48 mi); Green Valley Rd from Harkins Slough Rd to Corralitos Creek Bridge (1.92 mi); Harkins Slough Rd/Walker St from Green Valley Rd to Riverside Dr (1.73 mi); Rodriguez St from Riverside Dr to Main St (0.92 mi).	\$525	\$375	\$150
Bridge Maintenance	WAT-P35	Maintenance of bridges	\$115	\$115	\$0
Buena Vista/Calabasas/Freedom Connection	WAT-P30	Construction of roadway connection from Buena Vista area to Freedom Blvd. Reconstruct Via Nicola.	\$5,950	\$0	\$5,950

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Citywide General Maintenance and Operations	WAT-P06	Ongoing maintenance, repair, and operation of road/street system, including bicycle and pedestrian facilities. (Total Need $=\$ 2,600 /$ year, constr=\$1500/yr)	\$65,350	\$41,400	\$23,950
Citywide Pedestrian Facilities	WAT-P15	Construct sidewalks and curb ramps where necessary. This work is usually combined with the annual road rehabilitation and maintenance projects. Avg annual cost: $\$ 100 / \mathrm{yr}$.	\$2,380	\$0	\$2,380
Citywide Transportation Projects	WAT-P24	Lump sum of transportation projects to be identified in the future. Including major rehabilitation and operational improvements ($\$ 1.2 \mathrm{M} / \mathrm{yr}$).	\$28,510	\$0	\$28,510
Crestview/Wagner Extension	WAT-P29	Construction of roadway connection from Atkinson Lane area to SR 152. Reconstruct/widen Wagner St.	\$4,750	\$0	\$4,750
Downtown Watsonville Universal Streets	WAT-P59	Evaluate and if feasible, implement universal streets, which are designed for pedestrians and restrict vehicular access, which facilitate new ped access.	\$600	\$600	\$0
East Fifth St (Main St to Lincoln St)	WAT-P39	Repair, replace and install curb, gutter, sidewalk and curb ramps; replace and upgrade signage and striping.	\$300	\$0	\$300
East Lake Ave-(Hwy 152) Widening (Martinelli St-Holohan Rd)	CT-P33	Widen East Lake Ave. (SR 152) from 2 to 4 lanes (Martinelli St-Holohan Rd).	\$1,030	\$0	\$1,030
East Lake/Madison - ped crossing	WAT-P57	Evaluate and if feasible, add pedestrian crossing (HAWK signal if ped volume warrants) at E Lake \& Madison for better access to Hall Middle School.	\$300	\$300	\$0
Freedom Blvd (Davis Ave to Green Valley Rd)	WAT-P68	Repair, reconstruct and/or upgrade pavement, bike lanes, sidewalks, transit facilities, signage and striping	\$1,730	\$1,730	\$0
Freedom Blvd (Green Valley Rd to Buena Vista Dr)	WAT-P72	Repair and resurface damaged roadway and bike lanes, replace damaged sidewalks, add pedestrian facilities where none exist.	\$5,000	\$5,000	\$0
Freedom Blvd (Green Valley Rd to Davis) Bicycle and Pedestrian Improvements	WAT-P61	Evaluate and if feasible, install bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals) to address speed inconsistency between bicyclists and vehicles. Complete sidewalks, including pedestrian buffer, and pedestrian islands at crossings.	\$300	\$300	\$0
Freedom Blvd Pedestrian Crossings (Airport to Lincoln)	WAT-P62	Evaluate and if feasible, install new and improve existing uncontrolled pedestrian crossings at Roach Road, Davis Avenue, Clifford Lane, Mariposa Avenue, Alta Vista Street, Crestview Drive, Martinelli Street and Marin Street).	\$600	\$600	\$0
Freedom Blvd Reconstruction (Alta Vista to Green Valley)	WAT 45	Remove and replace non-ADA compliant driveways and curb ramps, install high visibility crosswalks, provide sharrows and bicycle signage, upgrade existing bus stop shelter, install new traffic signal at Sydney Ave with pedestrian signal heads, pedestrian actuated traffic signals, audible countdown, pedestrian-level lighting and illumination at crosswalks and reconstruct roadway.	\$3,250	\$2,000	\$1,250
Freedom Blvd Undergrounding	WAT-P38	Underground existing overhead utilities.	\$1,270	\$1,270	\$0
Freedom Blvd/Green Valley Rd Neighborhood Bike/Ped Connections	WAT-P64	Evaluate and if feasible, implement greenway, which gives priority to bicycles and pedestrians on low volume, low speed streets including, pedestrian facilities, way finding and pavement markings, bicycle treatments to connect neighborhoods to goods and services on Freedom Blvd.	\$1,800	\$0	\$1,800
Freedom Boulevard Plan Line	WAT 43	Preparation of a plan line for Freedom Boulevard between Green Valley Road and Buena Vista Drive that delineates multimodal modifications supported by the community.	\$160	\$160	\$0
Green Valley Rd Improvement (Freedom Blvd to City Limit)	WAT-P45	Reconstruct existing roadway, install a median island to encourage safer turning movements, remove and replace existing driveways and curb ramps that do not comply with existing accessibility standards, restripe roadway to provide striping for bike lanes where none exist.	\$2,000	\$0	\$2,000

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Green Valley Road Reconstruction (Struve Slough-Freedom Blvd)	WAT 42	Reconstruct existing roadway and bikelanes, remove existing asphalt pedestrian path and replace with concrete curb, gutter and sidewalk, remove and replace non-ADA compliant curb ramps and driveways, remove and replace existing signage, striping and loop detectors for traffic signal detectors. Increase sidewalk width consistent with the Complete Streets Guidebook. City may have to reduce existing roadway lane widths in order to provide wider sidewalks; may repave instead of reconstruct roadway or reduce limits of reconstruction based on allocated funds.	\$1,598	\$1,598	\$0
Harkins Slough Rd (Hwy 1 to Green Valley Rd)	WAT-P69	Repair, reconstruct and/or upgrade pavement, bike lanes, sidewalks, transit facilities, signage and striping	\$1,150	\$0	\$1,150
Hillside Ave to Freedom Blvd Ped/Bike Connection	WAT-P60	Evaluate and if feasible, install new bike/ped connection from Carey Avenue to Freedom Boulevard between Roache Road and Green Valley Road to connect neighborhood to goods, services and transit on Freedom Boulevard. Include new crossing from new bicycle/pedestrian facility to east side of Freedom Boulevard.	\$360	\$0	\$360
Kearney/Rodriguez - Ped Crossing	WAT-P53	Evaluate and if found necessary, add pedestrian crossing at Kearney and Rodriguez with traffic calming for access to Radcliffe Elementary.	\$35	\$35	\$0
Lower Watsonville Slough Trail	WAT-P46	Install bicycle/pedestrian trail	\$770	\$770	\$0
Lump Sum Bicycle Projects	WAT-P19	Update the City Bicycle Plan and construction of additional routes and paths (250k/yr).	\$5,950	\$0	\$5,950
Main St - 3 HAWK Signals	WAT-P54	Evaluate and if found necessary, add Hawk signals in 3 locations on Main St.	\$890	\$890	\$0
Main St (Freedom to Riverside) Ped/Bike Enhancements	WAT-P58	Evaluate and if feasible improve ped facilities and bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals) and bike boxes and bicycle priority at intersections on Main Street intersections.	\$890	\$890	\$0
Main St Modifications (500 Block: Fifth St to East Lake Ave)	WAT-P40	Repair, replace and install curb, gutter, and curb ramps; replace and upgrade signage and striping. Evaluate and if feasible, provide bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals), and buffered sidewalk.	\$710	\$710	\$0
Main St Modifications (City Limit to Lake Ave)	WAT-P47	Repave roadway and bike lanes; repair, replace and install curb, gutter, sidewalk and curb ramps: replace and upgrade signage and striping. Evaluate and if feasible, provide bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals) and buffered sidewalks.	\$1,670	\$1,670	\$0
Main St Modifications (East Lake Ave to Freedom Blvd)	WAT-P73	Provide complete streets improvements including but not limited to pedestrian crossings, bicycle facilities, bus stops, parking, sidewalks and traffic management	\$1,000	\$1,000	\$0
Main St. (Hwy 152)/Freedom Blvd Roundabout	WAT 27a	Installation of a roundabout to replace the currently signalized intersection with safety considerations for bike/ped. Caltrans Project ID - 05-0T150.	\$1,500	\$1,500	\$0
Main St/Beach St/Lake Ave Bike Facilities	CT-P38	Bicycle facilities - Main St (GV Rd to Mont Co line), Beach St (Walker to Lincoln) and Lake Ave (Main St to fairgrounds). County/City Project - Cost unknown.	\$0	\$0	\$0
Main/Rodriguez/Union/Brennan (Freedom to Riverside) - Crosswalks	WAT-P55	Evaluate and if found necessary, increase the number of crosswalks on Main St, Rodriguez, and Union/Brennan to aim for 300 ft distance between crossings. Update pattern of crosswalks to block pattern.	\$115	\$115	\$0
MBSST (Coastal Rail Trail): Lee Road, 4000 feet east to City Slough Trail connection	TRL 18L	Construction of 4000-foot long pathway parallel to the railroad tracks: twelve-foot width asphalt (hma). A 500 ft long retaining wall up to 3 ft tall with fence near Lee Road. A drainage structure east of Ohlone Parkway to be modified.Connection to Lee Road shall require installation of pathway or sidewalk to link to the existing sidewalk. At grade crossing at Ohlone Parkway and at a spur line located between Lee Road and Highway 1.	\$1,540	\$1,540	\$0

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
MBSST Rail Trail: Walker Street to City Slough Trail connection	TRL 18W	Construction of 2400 ft pedestrian and bicycle path parallel to the existing railroad tracks and within the rail right-of-way. Also includes public outreach and training to improve bicycle and pedestrian safety.	\$860	\$860	\$0
Neighborhood Traffic Plan	WAT-P04	Plan to identify and address concerns regarding speeding, bicycle and pedestrian access and safety, and other neighborhood traffic issues ($\$ 5 \mathrm{k} / \mathrm{yr}$).	\$115	\$115	\$0
Neighborhood Traffic Plan Implementation	WAT-P13	Address concerns about traffic complaints through Education, Enforcement, and Engineering solutions. Install traffic calming devices that do not impede bicyclist access ($\$ 20 \mathrm{k} / \mathrm{yr}$).	\$470	\$470	\$0
Ohlone Parkway Improvements - Phase 2 (UPRR to West Beach)	WAT-P31	Roadway, pedestrian, and bicycle facilities.	\$600	\$600	\$0
Pajaro Lane to Freedom Blvd Ped/Bike Connection	WAT-P63	Evaluate and if feasible, new bike/ped connection from Pajaro Lane to Freedom Blvd to connect neighborhood to goods, services and transit on Freedom Boulevard. Include new crossing from new bicycle/pedestrian facility to west side of Freedom Boulevard.	\$360	\$0	\$360
Pajaro Valley High School Connector Trail	WAT-P42	Install bicycle/pedestrian trail (this trail connects Pajaro Valley High School to Airport Blvd).	\$710	\$710	\$0
Pennsylvania Dr (Green Valley Rd to Clifford Ave)	WAT-P70	Repair, reconstruct and/or upgrade pavement, bike lanes, sidewalks, transit facilities, signage and striping	\$4,600	\$0	\$4,600
Riverside (Hwy 129) Bike Facilities	CT-P39	Bicycle facilities - Lee to Lakeview Road. County/City Project -Cost Unknown.	\$0	\$0	\$0
Rodriguez St (Main St to Riverside)Buffered Bike Lane	WAT-P51	Evaluate and if found necessary, improve bike lane striping, add buffered lanes on Rodriguez St to delineate bike lane from vehicle parking and traffic.	\$12	\$12	\$0
Union/Brennan (Freedom to Riverside) Sharrows	WAT-P52	Evaluate and if found necessary, add sharrows to Union/Brennan.	\$12	\$12	\$0
Upper Struve Slough Trail	WAT-P65	Construction of 450 foot long pedestrian/bicycle path along upper Struve Slough from Green Valley Road to Pennsylvania Drive. The trail shall consist of a twelve-foot wide by one foot deep aggregate base section with the center eight feet covered with a chip seal. Additional improvements include installing a 130 -length of modular concrete block retaining wall, reinforcing a 160 -foot length of slough embankment with rock slope protection and installing a 175 -foot long by eight foot wide boardwalk.	\$530	\$530	\$0
Upper Watsonville Slough Trail	WAT-P43	Install bicycle/pedestrian trail.	\$770	\$770	\$0
Walker St Modifications (Beach St to Watsonville Slough)	WAT-P48	Repave roadway and bike lanes; repair, replace and install curb, gutter, sidewalk and curb ramps; replace and upgrade signage and striping	\$3,200	\$0	\$3,200
Watsonville Shuttle	WAT-P27	Year round public transit service.	\$300	\$0	\$300
Watsonville-wide HOV priority	WAT-P56	Evaluate HOV priority at signals and HOV queue bypass.	\$60	\$60	\$0
West Beach St (Lee Rd to Ohlone Parkway)	WAT-P66	Repair, reconstruct and/or upgrade pavement, bike lanes, sidewalks, transit facilities, signage and striping	\$2,900	\$0	\$2,900
West Beach St (Ohlone Parkway to Walker St)	WAT-P67	Repair, reconstruct and/or upgrade pavement, bike lanes, sidewalks, transit facilities, signage and striping	\$4,600	\$0	\$4,600
West Lake Ave Modifications (Main St to Rodriguez St)	WAT-P41	Repair, replace and install curb, gutter, sidewalk and curb ramps; replace and upgrade signage and striping	\$240	\$0	\$240
		City of Watsonville Total	\$168,138	\$71,808	\$96,330

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Consolidated Transportation					
Countywide Specialized Transportation	CTSA-P01	Non-ADA mandated paratransit and other specialized transportation service for seniors and people with disabilities. Includes medical service rides, Elderday, out-of-county rides, Sr. Meal Site, Taxi Script, and same day rides etc. Current avg annual need $\$ 2.58 \mathrm{M}$. Constrained=\$2M.	\$56,700	\$46,000	\$10,700
Lift Line Maintenance/Operations Center	CTSA-P02	Construct a permanent maintenance center/consolidated operations facility for paratransit program (currently Lift Line).	\$15,500	\$0	\$15,500
Medical Specialized Transportation for Veterans	CTSA-P06	Non-emergency medical transportation for veterans	\$6,500	\$0	\$6,500
Medically Fragile Specialized Transportation	CTSA-P04	Non-emergency transportation service for medically fragile individuals. Includes operations and capital.	\$5,000	\$0	\$5,000
Non-ADA Paratransit Service Expansion	CTSA-P03	Expansion of non-ADA paratransit system to meet needs of growing elderly and disabled populations. May include pre/post natal transport to medical appointments.	\$21,700	\$0	\$21,700
		Consolidated Transportation Total	\$105,400	\$46,000	\$59,400
County Health Services Agency					
Santa Cruz County Health Service Agency Traffic Safety Education	CO 50	Ongoing education program to decrease the risk and severity of collisions. Includes bicycle and pedestrian programs: Community Traffic Safety Coalition, South County coalition, and Ride n' Stride Bicycle/Pedestrian Education Program.	\$6,500	\$2,200	\$4,300
		County Health Services Agency Total	\$6,500	\$2,200	\$4,300
County of Santa Cruz					
26th Ave Improvements (entire lengthPortola Dr to end)	CO-P31a	Roadway and roadside improvements on various Major Collectors including sidewalks, bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$2,580	\$0	\$2,580
26th to 30th (at Lode/Quartz) Bike/Ped Connection	CO-P78	New bike/ped connection from Lode and Quartz to Moran Trail, which connects to 30th.	\$520	\$0	\$520
37th/38th Ave (Brommer to Eastcliff) Multimodal Circulation Improvements and Greenway	CO-P27a	Evaluate and if feasible improve vehicle and transit access on 38th Avenue from East Cliff to Brommer and develop greenway on 37th Avenue from East Cliff to Portola. Roadway improvements may include roadway and roadside improvements including sidewalks, bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals), transit turnouts, left turn pockets, and intersection improvement.	\$2,070	\$570	\$1,500
41st Ave Improvements Phase 2 (Hwy 1 Interchange to Soquel Dr)	CO-P26a	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,240	\$340	\$900
Airport Blvd Improvements (City limits to Green Valley Rd)	CO-P02	Major rehab, addition of bike lanes, transit facilities, merge lanes, intersection improvements, sidewalks, drainage, and landscaping.	\$1,240	\$1,240	\$0
Alba Rd Improvements (Empire Grade to State Hwy 9)	CO-P30b	Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$1,760	\$0	\$1,760
Amesti Road Multimodal Improvements (Green Valley to Brown Valley Rd)	CO-P03	Roadway rehab and reconstruction, left turn pockets at Green Valley Road, Pioneer Road/Varni Road. Add bike lanes, transit turnouts, sidewalks, merge lanes, landscaping, and intersection improvements.	\$6,200	\$600	\$5,600
Aptos Beach Dr Improvements (Esplanade to Rio Del Mar Blvd)	CO-P27b	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$1,240	\$0	\$1,240

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Aptos Village Plan Improvements	CO 64	Modifications for ped, bike, bus and auto traffic. Add pedestrian facilities and drainage infrastructure on both sides of Soquel Dr; improve bike lanes; new bike parking; new bus pullout and shelter on north side. Trout Gulch: Replace sidewalks with standard sidewalks on east side, ADA upgrades to west side sidewalks. Install traffic signals at Soquel Dr/Aptos Creek Rd (CO 64c) \& Soquel/Trout Gulch. Left turn lanes on Soquel at new street - Parade St and at Aptos Creek Road. RR crossing modifications - new crossing arms, concrete panels for vehicle and pedestrian crossings. New RR xing at Parade St. Phase 1: Trout Gulch Rd improvements w/traffic signal and upgraded RR xg at Soquel Dr. Pavement overlay of Soquel Dr (Spreckels to Trout Gulch) and a portion of Aptos Creek Road.	\$4,100	\$4,100	\$0
Beach Road Improvements (City limits to Pajaro Dunes)	CO-P26b	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,240	\$340	\$900
Bean Creek Rd Improvements (Scotts Valley City Limits to Glenwood Dr)	CO-P28a	Roadway and roadside improvements on various Minor Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,760	\$485	\$1,275
Bear Creek Road Improvements (Hwy 9 to Hwy 35)	CO-P04	Major rehab, add bike lanes, turnouts, merge lanes, and intersection improvements. Some landscaping and drainage improvements also.	\$4,750	\$250	\$4,500
Bonita Dr Improvements (entire length)	CO-P29b	Improvements of roadways and roadsides on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,240	\$0	\$1,240
Bonny Doon Rd Improvements (Hwy 1 to Pine Flats Rd)	CO-P43	Construction of a Class 1 bike lane facility, addition of transit stops, intersection improvements, major road rehabilitation, road maintenance, and drainage improvements.	\$8,260	\$0	\$8,260
Bowker Rd Improvements (entire lengthBuena Vista Dr to Freedom Blvd)	CO-P33a	Roadway and roadside improvements on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$620	\$0	\$620
Branciforte Dr Improvements (City of Santa Cruz to Vine Hill Rd)	CO-P30c	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$1,760	\$0	\$1,760
Branciforte Drive Chip Seal Project (Granite Creek Rd to SC city limits - 1.91mi)	CO 82	Roadway rehabilitation: Digouts, Rubberized Chip Seal, and restriping of a portion of Branciforte Drive	\$433	\$433	\$0
Branciforte Drive Road Recycle \& Overlay (PM 2.4 to Granite Ck Rd)	CO 79	Pavement recycling, asphalt overlay, and restriping of 0.62 miles of Branciforte Drive from Granite Creek to PM 2.4 (0.62 mil). To be constructed with CO 81 (Granite Creek).	\$431	\$431	\$0
Brown Valley Rd Improvements (Corralitos Rd to Redwood Rd)	CO-P26d	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,240	\$340	\$900
Buena Vista Rd Improvements (San Andreas to Freedom Blvd)	CO-P26e	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$3,000	\$825	\$2,175
Bulb Ave Road Improvements (Garden St to Capitola City Limits)	CO-P65	Roadway and roadside improvements including curb, gutter, sidewalk, bike lanes, left turn lanes, intersection improvements and roadway rehabilitation.	\$770	\$0	\$770
Cabrillo College Dr Improvements (Park Ave to Twin Lakes Church)	CO-P30d	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$1,240	\$240	\$1,000
Capital improvement projects consistent with the Sustainable Santa Cruz County Plan	CO-P96	Construct associated multi-modal infrastructure improvements associated with the Sustainable Santa Cruz County Plan	\$22,000	\$11,000	\$11,000

Project Title	ID	Project Description/Scope	$\begin{gathered} \text { Est total } \\ \text { cost } \\ \hline \end{gathered}$	Constrained	Unconstrained
Capitola Rd Ext Improvements (Capitola Rd to Soquel Ave)	CO-P31b	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,240	\$0	\$1,240
Carol Way/Lompico Creek Bridge Replacement	CO-P49	Replace existing single span-two lane bridge construction of steel girders and long deck with new 30 ft wide single span flat sale concrete bridge. Include (2) 11 ft lanes and (2) 4 ft shoulders.	\$1,240	\$0	\$1,240
Casserly Rd Improvements (Hwy 152 to Green Valley Rd)	CO-P26g	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$770	\$208	\$562
Cathedral Dr Improvements (entire length)	CO-P33b	Roadway and roadside improvements on Minor Collector. Roadwork includes major rehabilitation and maintenance of the road.	\$620	\$0	\$620
Center Ave/Seacliff Dr Improvements (Broadway to Aptos Beach Dr)	CO-P26h	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,240	\$340	\$900
Chanticleer Ave Improvements (Hwy 1 to Soquel Dr)	CO-P26i	Roadway and roadside improvements including bike lanes, sidewalks, drainage and intersection improvements.	\$1,240	\$340	\$900
Cliff Dr Improvements (Rio Del Mar to Railroad Crossing)	CO-P29c	Improvements of roadways and roadsides on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$620	\$0	\$620
Clubhouse Drive Improvements (Sumner Av to Rio Del Mar Blvd)	CO-P32a	Road rehabilitation and maintenance. Roadside improvements: left lane pockets, sidewalks, bike lanes and transit turnouts.	\$1,450	\$0	\$1,450
College Road Improvements (Hwy 152 to Lakeview Rd)	CO-P23	Major road rehab, add left turn pocket at Cutter Drive. Also add bike lanes, transit turnouts, sidewalks, landscaping. Drainage improvements, merge lanes, and intersection improvements may also be needed.	\$1,760	\$0	\$1,760
Commercial Way Improvements (Mission Dr. to Soquel Dr.)	CO-P28c	Roadway and roadside improvements on various Minor Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$620	\$170	\$450
Corcoran Ave Improvements (Alice St to Felt St)	CO-P27c	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$620	\$150	\$470
Corralitos Road Rehab and Improvements (Freedom Blvd to Hames Rd)	CO-P08	Major rehab, transit, bike, and ped facilities. May also include drainage, merge lanes, landscaping and intersection improvements.	\$620	\$620	\$0
County wide guardrail	CO-P97	Install guardrail on County roads	\$15,000	\$15,000	\$0
Countywide ADA Access Ramps	CO-P37	Construction of handicapped access ramps countywide.	\$1,240	\$620	\$620
Countywide Bike Projects	CO-P71	Bike projects based on needs identified through the Santa Cruz County Bicycle Plan and plan updates. These are in addition to projects listed individually in the RTP.	\$4,130	\$0	\$4,130
Countywide General Road Maintenance and Operations	CO-P35	Ongoing maintenance, repair, and operation of road/street system within the unincorporated areas of the county.	\$495,000	\$446,857	\$48,143
Countywide Sidewalks	CO-P41	Install sidewalks.	\$72,310	\$7,000	\$65,310
Day Valley Rd Improvements (entire lengthFreedom Blvd to Valencia Rd)	CO-P31c	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,240	\$0	\$1,240
East Cliff (26th to Moran Way) Sidewalk Improvement	CO-P77	Install sidewalk from 26th south to link to Moran Way.	\$410	\$0	\$410

Project Title	ID	Project Description/Scope	$\begin{gathered} \text { Est total } \\ \text { cost } \\ \hline \end{gathered}$	Constrained	Unconstrained
East Cliff Dr Pedestrian Pathway (7th-12th Ave)	CO-P50	Construct pedestrian pathway on East Cliff.	\$1,760	\$1,760	\$0
East Cliff Drive Cape Seal (12th-17th)	CO 66	Pavement maintenance, isolated section digout and asphalt replacement and cape seal on entire roadway.	\$230	\$230	\$0
East Cliff Drive Improvements (32nd Ave to Harbor)	CO-P09	Roadway rehab, add left turn pockets at 26th and 30th Ave, fill gaps in bikeways and sidewalks, add transit turnouts, intersection improvements. Some landscaping and drainage improvements.	\$4,750	\$1,500	\$3,250
East Zayante Rd Improvements (Lompico Rd to just before Summit Rd)	CO-P26j	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,760	\$485	\$1,275
Either Way Ln Bridge Replacement Project	CO-P88	The project will consist of completely replacing the existing narrow one lane structure and roadway approaches with a two lane clear span precast voided concrete slab bridge and standard bridge approaches.	\$2,180	\$2,180	\$0
El Dorado Ave Road Improvements (Capitola Rd to RR)	CO-P67	Roadway and roadside improvements including curb, gutter, buffered sidewalk, bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals), left turn lanes, intersection improvements and roadway rehabilitation.	\$1,810	\$0	\$1,810
El Rancho Dr Improvements (Mt. Hermon/Hwy 17 to SC city limits)	CO-P26k	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$2,380	\$655	\$1,725
Empire Grade Improvements	CO-P10	Road rehab and maintenance, left turn pocket at Felton Empire Road, add bike lanes, transit facilities, some sidewalks, landscaping. Drainage improvements, merge lanes, and intersection improvements may also be needed.	\$4,750	\$1,190	\$3,560
Eureka Canyon Rd Improvements (Hames Rd to Buzzard Lagoon Rd)	CO-P26I	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$2,380	\$655	\$1,725
Felton Empire Road Improvements (entire length to State Hwy 9)	CO-P28d	Roadway and roadside improvements on various Minor Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$2,380	\$655	\$1,725
Fern Dr @ San Lorenzo River Bridge Replacement Project	CO-P90	The project will consist of completely replacing the existing three span single lane structure and roadway approaches with a new two lane clear span reinforced concrete box girder bridge and standard bridge approaches.	\$2,830	\$2,830	\$0
Forest Hill Dr @ Bear Creek Bridge Replacement Project	CO-P86	The Project will consist of completely replacing existing steel girder bridge crossing Bear Creek with a new precast concrete voided slab bridge.	\$2,050	\$0	\$2,050
Freedom Blvd Multimodal Improvements (Bonita Dr to City of Watsonville)	CO-P11	Add bike lanes, sidewalks on some segments, transit turnouts, signalization. Left turn pockets at Bowker, Day Valley, White Rd, and Corralitos Rd. Also includes merge lanes, intersection improvements, landscaping, major rehabilitation and maintenance, drainage improvements.	\$3,100	\$775	\$2,325
Freedom Blvd Pavement Preservation (Hwy 1 to Pleasant Vly Rd)	CO 74	Rehabilitate the roadway surface.	\$1,430	\$1,430	\$0
Glen Arbor Rd Improvements (State Hwy 9 to State Hwy 9)	CO-P30f	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$1,240	\$0	\$1,240
Glen Arbor Road Recycle, Overlay, \& Chip Seal (SR 9-Quail Hallow)	CO 80	Pavement recycling, asphalt overlay, chip seal, and restriping 0.52 miles of Glen Arbor Road from Hwy 9 at bridge to Quail Hollow Rd. The project will also include a subdrain at a point where a natural spring is causing subgrade destabilization and repairs rutting damage adjacent to bus stops.	\$467	\$467	\$0

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Glen Canyon Rd Improvements (Branciforte Dr to City of Scotts Valley)	CO-P26m	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$5,990	\$1,640	\$4,350
Glen Coolidge Drive/Hwy 9 Bike Path	CO-P40	Class 1 bike facility from Glen Coolidge Dr to Hwy 9 to provide eastern access to UCSC.	\$2,380	\$0	\$2,380
Glenwood Cutoff General Improvements (Glenwood Dr to Hwy 17)	CO-P61	Roadway and roadside improvements including bike lanes, left turn lanes, intersection improvements and roadway rehabilitation.	\$3,100	\$0	\$3,100
Glenwood Dr. Improvements (Scotts Valley city limits to State Hwy 17)	CO-P26n	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$3,000	\$825	\$2,175
Graham Hill Road Multimodal Improvements (City of SC to Hwy 9)	CO-P12	Bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes, traffic signals. Major rehabilitation and maintenance. Drainage improvements. Signal upgrade at SR9.	\$7,020	\$1,755	\$5,265
Granite Creek Rd Improvements (Branciforte Dr to City of Scotts Valley)	CO-P30h	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$1,760	\$0	\$1,760
Granite Creek Road Recycle \& Overlay - Part of CO 79B	CO 81	Pavement recycling, asphalt overlay, and restriping of 1.85 miles of Granite Creek Road from Scotts Valley city limits to PM 0.56 .	\$1,100	\$1,100	\$0
Green Valley Rd Bridge Replacement Project	CO-P85	The project will consist of completely replacing the existing two lane structure and roadway approaches with a two lane clear span concrete slab bridge and standard bridge approaches.	\$2,110	\$2,110	\$0
Green Valley Rd Pedestrian Safety Project	CO 42b	Build 6-foot wide sidewalk with some curb and gutter on NW side of Green Valley Rd from Airport Blvd to Amesti Rd (1800 ft).	\$390	\$390	\$0
Green Valley Road Improvements	CO-P13	Add two-way left turn lanes from Mesa Verde to Pinto Lake on Green Valley Rd. Also includes some road rehab and maintenance, bike lanes, sidewalks, transit facilities, landscaping, and merge lanes.	\$4,130	\$1,030	\$3,100
Hames Rd Improvements (entire lengthFreedom Blvd to Eureka Canyon Rd)	CO-P32b	Road rehab and maint. Roadside improvements--left lane pockets, sidewalks, bike lanes and transit turnouts.	\$3,620	\$0	\$3,620
Harkins Slough Rd. Improvements (entire length-Buena Vista Dr to State Hwy 1)	CO-P32c	Road rehab and maint. Roadside improvements--left lane pockets, sidewalks, bike lanes and transit turnouts.	\$1,760	\$0	\$1,760
Harper St Improvements (entire length-El Dorado Ave to ECM)	CO-P33d	Roadway and roadside improvements on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,240	\$310	\$930
Highway 17 To Soquel Corridor Chip Seal Project	CO 83	Roadway rehabilitation: Digouts, Chip Seal, and restriping of Vine Hill Rd (Hwy 17 to B40), Branciforte Dr (Vine Hill to PM 0.7), Mt. View Rd (B40-N. Rodeo Gulch), N. Rodeo Gulch Rd (Mt. View-PM 1.97), Laurel Rd (N. Rodeo-Soquel San Jose Rd), and Soquel-San Jose Rd. (Laurel Glen to Dawn Lane) - 9.90 mi .	\$1,881	\$881	\$1,000
Huntington Dr Improvements (Monroe Ave to Valencia Rd.)	CO-P32d	Road rehab and maint. Roadside improvements--left lane pockets, sidewalks, bike lanes and transit turnouts.	\$2,380	\$0	\$2,380
Hwy 152/Holohan - College Intersection	CO 84	Intersection capacity enhancements and signal modifications, pedestrian and bicycle safety improvements. Add sidewalks and bicycle lanes on Holohan Rd, an additional left-turn lane from Holohan to EB Hwy 152, sidewalk on north side of Hwy 152 from Holohan to Corralitos Creek bridge, adds crosswalks and speed feedback signs.	\$3,150	\$3,150	\$0
Jamison Cr Rd Improvements (entire lengthEmpire Grade to Hwy 236)	CO-P32e	Road rehab and maint. Roadside improvements--left lane pockets, sidewalks, bike lanes and transit turnouts.	\$620	\$0	\$620

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
La Madrona Dr Improvements (El Rancho Dr to City of Scotts Valley)	CO-P14	Bike lanes, sidewalks, transit turnouts, left turn pockets at Sims Road, Highway 17, and El Rancho Road), merge lanes, and intersection improvements. Also includes major rehabilitation, drainage and maintenance.	\$3,620	\$905	\$2,715
Lakeview Road Improvements	CO-P15	Major road rehab, add left turn pocket at College Road, intersection improvements at Carlton Rd. Also add bike lanes, new transit facilities, landscaping. Drainage improvements, merge lanes, and intersection improvements may also be needed.	\$1,240	\$0	\$1,240
Larkin Valley Rd Improvements (San Andreas Rd to Buena Vista Dr)	CO-P30i	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$620	\$0	\$620
Larkspur Bridge @San Lorenzo River	CO-P91	The project will consist of completely replacing the existing narrow one lane structure and roadway approaches with a two lane bridge and standard bridge approaches.	\$3,930	\$3,930	\$0
Laurel Glen Rd Improvements (Soquel-San Jose Rd to Mt. View/Rodeo Gulch Rd)	CO-P30j	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$1,240	\$0	\$1,240
Ledyard Way Improvements (entire lengthSoquel Dr to Soquel Dr)	CO-P31d	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$620	\$0	\$620
Lockhart Gulch Improvements (Scotts Valley City limits to end)	CO-P31e	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,240	\$0	\$1,240
Lockwood Lane Improvements (Graham Hill Rd to SV limits)	CO-P24	Major road rehab, add bicycle lanes, sidewalks, some transit facilities, landscaping, and intersection improvements.	\$881	\$243	\$638
Lompico Rd Bridge Replacement	CO-P95	The project will consist of replacing existing steel stringer bridge with a reinforced concrete slab bridge	\$1,860	\$0	\$1,860
Lompico Rd Improvements (E Zayante Rd. to end)	CO-P30k	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$620	\$0	\$620
Maciel Ave Improvements (Capitola Rd to Mattison Ln)	CO-P29e	Improvements of roadways and roadsides on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,450	\$400	\$1,050
Main St Improvements (Porter St to Cherryvale Ave)	CO-P27e	Roadway and roadside improvements on Major Collector including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$1,760	\$1,760	\$0
Manfre Rd Improvements (entire lengthLarkin Valley Rd to Buena Vista Dr)	CO-P33e	Roadway and roadside improvements on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$620	\$0	\$620
Mar Monte Ave Improvements (San Andreas Rd to State Hwy 1)	CO-P301	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$620	\$0	\$620
Mar Vista Dr Improvements (entire lengthjust before Seacliff Dr to Soquel Dr)	CO-P33f	Roadway and roadside improvements on various Minor Collectors including addition of bike lanes, buffered sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$300	\$0	\$300
Mattison Ln Improvements (Chanticleer Ave to Soquel Ave)	CO-P26p	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,450	\$400	\$1,050

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
McGregor Dr Improvements (Capitola city limits to Searidge Rd)	CO-P33g	Roadway and roadside improvements on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,240	\$0	\$1,240
Mesa Dr Improvements (Vienna Drive to Ledyard Way)	CO-P31f	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,240	\$0	\$1,240
Mill St Improvements (entire length)	CO-P27f	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$360	\$360	\$0
Mountain View Rd Improvements (Branciforte Dr to Rodeo Gulch Rd)	CO-P27g	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$1,240	\$0	\$1,240
Mt. Hermon Rd. Improvements (Lockhart Gulch to Graham Hill Rd)	CO-P26q	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$3,000	\$825	\$2,175
Murphy Crossing Improvements	CO-P39	Bikeway on Murphy Crossing (Hwy 129 to Monterey Co line), major rehabilitation and maintenance of road, drainage improvements may also be needed.	\$1,240	\$0	\$1,240
Opal Cliff Dr Improvements (41st Av to Capitola City Limits)	CO-P31g	Roadway, roadside and intersection improvements including sidewalks, bike treatments (such as buffered and/or painted bike lanes), designed to accommodate the number of users and link to East Cliff Drive.	\$1,240	\$290	\$950
Pajaro River Bike Path System	CO-P38	Construction of a Class 1 bike path along the levees and a Class 2 bikeway on Thurwatcher Road and Beach Road.	\$9,500	\$2,500	\$7,000
Paul Minnie Ave. Improvements (Rodriguez St to Soquel Ave)	CO-P29f	Improvements of roadways and roadsides on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,240	\$340	\$900
Paul Sweet Road Improvements (Soquel Dr to end)	CO-P22	Major road rehab and maintenance. Also adds bike lanes, sidewalks, landscaping. Drainage improvements, merge lanes, and intersection improvements, and new transit facilities may also be needed.	\$1,240	\$310	\$930
Paulsen Rd Improvements (Green Valley Rd to Whiting Rd)	CO-P27h	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$1,240	\$240	\$1,000
Pine Flat Rd Improvements (Bonny Doon Rd to Empire Grade Rd)	CO-P28f	Roadway and roadside improvements on various Minor Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$2,380	\$655	\$1,725
Pinehurst Dr Improvements (entire length)	CO-P27i	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$880	\$180	\$700
Pioneer Rd Improvements (Amesti Rd to Green Valley Rd)	CO-P31h	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$880	\$0	\$880
Polo Dr Improvements (Soquel Dr to end)	CO-P29g	Improvements of roadways and roadsides on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,450	\$0	\$1,450
Porter St Improvements (Soquel Dr to Paper Mill Rd)	CO-P26r	Roadway and roadside improvements including buffered sidewalks and bicycle treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals) to address speed inconsistency between bicyclists and vehicles, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,240	\$340	\$900
Quail Hollow Rd Bridge Replacement Project	CO-P82	The project will consist of completely replacing the existing two lane structure and roadway approaches with a two lane clear span concrete bridge and standard bridge approaches.	\$2,430	\$0	\$2,430

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \end{aligned}$	Constrained	Unconstrained
Quail Hollow Rd Improvements (entire length- East Zayante to Glen Arbor Rd)	CO-P32f	Road rehab and maint. Roadside improvements--left lane pockets, sidewalks, bike lanes and transit turnouts.	\$830	\$0	\$830
Rancho Rio Ave @ Newell Creek Bridge Replacement Project	CO-P87	The project will consist of completely replacing the existing one lane structure and roadway approaches with a two lane clear span concrete slab bridge and standard bridge approaches.	\$1,730	\$0	\$1,730
Redwood Lodge Rd (Entire Length)	CO-P51	Roadway and roadside improvements including curb, gutter, sidewalk, bike lanes, left turn lanes, intersection improvements and roadway rehabilitation.	\$3,100	\$0	\$3,100
Redwood Rd Bridge Replacement Project	CO-P89	The project will consist of completely replacing the existing steel army tread way bridge crossing a tributary of Brown's Creek on Redwood Road with a reinforced concrete slab bridge and standard bridge approaches.	\$1,310	\$1,310	\$0
Rio Del Mar Blvd Improvements (Esplanade to Soquel Dr)	CO-P30n	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$3,000	\$725	\$2,275
Rodeo Gulch Rd Improvements (So \& North: Mt. View/Laurel Glen Rd to Hwy 1)	CO-P31i	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,760	\$0	\$1,760
Roland Dr Improvements (30th to 35th)	CO-P31j	Roadway and roadside improvements and implementation of greenway, which gives priority to bicycles and pedestrians on low volume, low speed streets including, pedestrian facilities, way finding and pavement markings, bicycle treatments to connect to new bike/ped connection to 41st.	\$880	\$0	\$880
San Lorenzo River Valley Trail	CO-P46	15 mile, paved multi-use path for bicyclists and pedestrians from Boulder Creek to Santa Cruz.	\$25,830	\$0	\$25,830
San Lorenzo Valley Trail: Hwy 9 - Downtown Felton Bike Lanes \& Sidewalks	CO-P46a	Install sidewalks and bicycle lanes on Hwy 9 through downtown Felton.	\$2,270	\$2,270	\$0
San Lorenzo Valley Trail: Hwy 9 - North Felton Bike Lanes \& Sidewalks	CO-P46b	Install sidewalk/pedestrian path on west side, shoulder widening to 5^{\prime} for bicycle lanes from Felton-Empire/Graham Hill Rd to Glen Arbor Road, Ben Lomond, including frontage of SLV elementary, middle and high schools. Includes new and replacement bike/ped bridges.	\$7,640	\$7,640	\$0
San Lorenzo Way Bridge Replacement Project	CO-P83	The project will consist of completely replacing the existing one lane structure and roadway approaches with a two lane clear span bridge and standard bridge approaches.	\$3,190	\$3,190	\$0
Scotts Valley Area Routes Chip Seal Project	CO 85	Roadway rehabilitation: Digouts, Chip Seal, and restriping Mt. Hermon Rd (PM 1.31 to SV city limits), Lockewood Ln (GH-SV city limits), and Graham Hill Rd (Sims to Lockewood) - 2.76 mi	\$940	\$940	\$0
Seacliff Dr Improvements (entire length)	CO-P27j	Roadway and roadside improvements on various Major Collectors including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$1,760	\$0	\$1,760
Seacliff Village/State Park Drive Improvements	CO 36	Construct sidewalks, bike lanes, bus turnouts/stops, central plaza, street lighting, EV charging station, parking, landscaping, drainage and roadway overlay in Seacliff core area- consistent with the Seacliff Village Plan adopted by the BOS in 2003.	\$3,400	\$3,400	\$0
Seascape Blvd Improvements (Sumner Ave to San Andreas Rd)	CO-P26s	Roadway improvements and pavement rehabilitation.	\$620	\$170	\$450
Sims Road Improvements (Graham Hill Rd to La Madrona Dr)	CO-P17	Road rehab and maintenance, drainage, intersection improvements, landscaping, add bike, ped, and transit facilities.	\$1,760	\$440	\$1,320
Smith Grade Improvements (entire lengthEmpire Grade to Bonny Doon Rd)	CO-P32g	Road rehab and maint. Roadside improvements--left lane pockets, sidewalks, bike lanes and transit turnouts.	\$2,380	\$0	\$2,380

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \end{aligned}$	Constrained	Unconstrained
Soquel Ave Improvements (City of SC to Gross Rd)	CO-P18	Transit turnouts, two way left turn lanes from Chanticleer to Mattison, merge lanes, signalization and intersection improvements. Signals at Chanticleer and Gross Rd. Roadwork: major rehabilitation and maintenance, perhaps drainage improvements. Roadside: sidewalks, landscaping, and new transit facilities.	\$3,310	\$3,310	\$0
Soquel Dr Improvements (Soquel Ave to Freedom Blvd)	CO-P19	Major rehab, merge lanes, intersections improvements, signal coordination, transit turnouts, fill sidewalk and bike facility gaps, some landscaping.	\$7,540	\$1,885	\$5,655
Soquel Dr Road Improvements (Robertson St to Daubenbiss)	CO-P62	Roadway and roadside improvements including curb, gutter, sidewalk, bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals), left turn lanes, intersection improvements and roadway rehabilitation.	\$410	\$410	\$0
Soquel Dr Traffic Signal and Left Turn Lane (Robertson St)	CO-P58	Install left turn lane at signalized intersection from Soquel Dr to Robertson St and associated roadside improvements	\$1,000	\$0	\$1,000
Soquel-San Jose Rd Improvements (Paper Mill Rd to Summit Rd)	CO-P36	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$2,580	\$580	\$2,000
Soquel-Wharf Rd Improvements (Robertson St to Porter St)	CO-P28g	Roadway and roadside improvements on various Minor Arterials including addition of bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals), transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,030	\$515	\$515
Spreckels Dr Improvements (Soquel Dr to Aptos Beach Dr)	CO-P27k	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$1,240	\$340	\$900
Spreckels Dr/Treasure Island Dr Improvements	CO-P42	Addition of bike lanes, intersection improvements, major road rehabilitation, road maintenance, and possible drainage improvements.	\$620	\$0	\$620
State Park Drive Improvements Phase 2	CO-P20	Transit turnouts, two way left turn, merge lanes, intersection improvements, and fill gaps in bike and ped facilities including pedestrian crossing improvements, bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike signals). Plus, major rehabilitation and maintenance, drainage improvements, landscaping.	\$1,340	\$335	\$1,005
Summit Rd Improvements	CO-P26u	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$5,580	\$1,530	\$4,050
Sumner Ave Improvements (entire lengthRio Del Mar Blvd to end [just past via Novella])	CO-P32h	Road rehab and maint. Roadside improvements--left lane pockets, sidewalks, bike lanes and transit turnouts.	\$1,450	\$0	\$1,450
Swanton Rd Bridge Replacement	CO-P94	The project will consist of replacing existing 3 span steel girder bridge with a single span concrete box girder bridge	\$2,540	\$0	\$2,540
Thompson Ave Improvements (entire lengthCapitola Rd to end)	CO-P33h	Roadway and roadside improvements including major rehabilitation and maintenance of road and includes implementation of greenway, which gives priority to bicycles and pedestrians on low volume, low speed streets including, pedestrian facilities, way finding and pavement markings, bicycle treatments to connect to MBSST.	\$1,240	\$0	\$1,240
Thurber Ln Improvements (entire length)	CO-P28h	Roadway and roadside improvements on various Minor Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,760	\$485	\$1,275
Thurwachter Road Bike Lanes	CO-P68	Install bicycle lanes.	\$50	\$0	\$50

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Trout Gulch Rd Improvements (Soquel Dr. to end)	CO-P30p	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$3,000	\$0	\$3,000
Upper Zayante Rd Improvements	CO-P98	Roadway and roadside improvements including bike lanes, sidewalks, transit turnouts, left turn pockets, merge lanes and intersection improvements.	\$1,500	\$0	\$1,500
Valencia Rd Improvements (Trout Gulch Rd to Valencia School Rd)	CO-P32j	Road rehab and maint. Roadside improvements--left lane pockets, sidewalks, bike lanes and transit turnouts.	\$1,760	\$0	\$1,760
Varni Rd Improvements (Corralitos Rd to Amesti Rd)	CO-P28i	Roadway and roadside improvements on various Minor Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,240	\$340	\$900
Vine Hill Rd Improvements (Branciforte/Mt. View Rd to State Hwy 17)	CO-P30q	Improvements of roadways and roadsides on various Major Arterials including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road and roadsides.	\$1,450	\$0	\$1,450
Wallace Ave Improvements (entire lengthHuntington Dr to end)	CO-P33i	Roadway and roadside improvements on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$880	\$0	\$880
Webster St Improvements (Jose Ave to 16th St)	CO-P29h	Improvements of roadways and roadsides on various Minor Collectors including addition of bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvements. Roadwork includes major rehabilitation and maintenance of the road.	\$1,240	\$0	\$1,240
Winkle Ave Improvements (entire length from Soquel Dr)	CO-P271	Roadway and roadside improvements on various Major Collectors including bike lanes, transit turnouts, left turn pockets, merge lanes and intersection improvement.	\$2,380	\$655	\$1,725
Zayante Road Corridor Chip Seal Project	CO 86	Roadway rehabilitation: Digouts, Chip Seal, and restriping East Zayante \& Upper E. Zayante from Quail Hallow to SR 35 (up to 9.07 mi). Project to be scaled to match available funds	\$1,725	\$1,025	\$700
		County of Santa Cruz Total	\$915,568	\$565,675	\$349,893
Ecology Action					
Bike To Work/School Program	RTC 26	Countywide education, promotion, and incentive program to actively encourage bicycle commuting and biking to school. Coordinates efforts with local businesses, schools, and community organizations to promote bicycling on a regular basis. Provides referrals to community resources. Avg annual cost: $\$ 140 \mathrm{~K} / \mathrm{yr}$-includes in-kind donations and staff time.	\$3,870	\$1,870	\$2,000
Ecology Action Countywide SRTS Youth Pedestrian and Bicycle Safety Education	EA 02	EA will serve approximately 120 second grade classrooms with 'feet on the ground' pedestrian safety education and 88 fifth grade classrooms with bike safety education and 'rodeos' serving a total of 44 local schools.	\$8,360	\$440	\$7,920
Ecology Action Transportation Employer Membership Program	RTC 17	Community organization that promotes alternative commute choices. Work with employers, incentives for travelers to get out of SOVs including: emergency ride home, interest-free bike loans, discounted bus passes. Avg cost: $\$ 90 \mathrm{~K} / \mathrm{yr}$. Coordinates with Bike to Work program.	\$2,320	\$1,135	\$1,185
Every Day is Bike to Work Day	EA 03	Pilot bike commuter initiative to increase bike commuting at 6 large employers in Santa Cruz, Live Oak, and Watsonville areas; includes bike commute and safety workshops, online tracking apps/systems, support/encouragement	\$3,360	\$60	\$3,300

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Monterey Bay Electric Vehicle Alliance (MBEVA)	VAR-P22	Help facilitate this broad collaboration of PEV advocates, businesses, union labor, manufacturers and public agencies to assist the adoption of PEV's in the Monterey Bay region. MBEVA's main goals are to: - Create PEV infrastructure in this region • Educate the public on the benefits of PEV's • Educate gov't agencies on ways to streamline PEV policy, permitting, and implementation and • Help train workforce for PEV related jobs.	\$900	\$200	\$700
		Ecology Action Total	\$18,810	\$3,705	\$15,105
SCCRTC					
Bicycle Route Signage Countywide	RTC 32	Define routes, develop and install signs directing bicyclists to preferred routes to various destinations countywide.	\$600	\$600	\$0
Bike Parking Subsidy Program	RTC 16	Subsidies for bicycle racks and lockers for businesses, schools, government agencies, and nonprofit organizations are all eligible. Recipients are responsible for installation and maintenance of the equipment. Avg annual cost: $\$ 25 \mathrm{~K} / \mathrm{yr}$.	\$550	\$210	\$340
County-wide Bicycle, Pedestrian and Vehicle Occupancy Counts	RTC-P50	Conduct counts to assess mode split over time and assess impact of new facilities.	\$432	\$232	\$200
Cruz511 TDM and Traveler Information	RTC 02a	Transportation demand management including centralized traveler information system and ride matching services. Outreach, education and incentives; multimodal traveler information system on traffic conditions, incidents, road and lane closures; ride matching service for carpools, vanpools, and bicyclists; services and information about availability and benefits of all transportation modes, including sharing rides, transit, walking, bicycling, telecommuting, alternative work schedules, alternative fuel vehicles, and park-n-ride lots. Avg annual cost: \$315k.	\$5,290	\$2,640	\$2,650
Environmental Assessment, Economic and Other Analyses of Options for Rail Corridor	RTC-P02a	Environmental assessment, economic and other analyses of a possible future public transit system and other transportation options on the rail corridor right-of-way.	\$8,000	\$8,000	\$0
Freeway Service Patrol (FSP) on Hwy 1 and Hwy 17	RTC 01	Maintain and expand tow truck patrols on Highways 1 and 17. Work with the CHP to quickly clear collisions, remove debris from travel lanes, and provide assistance to motorists during commute hours to keep incident related congestion to a minimum and keep traffic moving. Avg need: $\$ 300 \mathrm{k} / \mathrm{yr}$ constrained (some from SB1); $\$ 430 \mathrm{k} / \mathrm{yr}$ total cost.	\$9,460	\$6,600	\$2,860
MBSST - North Coast Rail Trail	TRL 5	Monterey Bay Sanctuary Scenic Trail Network (MBSST) sections ph. 1 Wilder Ranch-Coast Dairies (5.1 mi); ph. 2-Yellow Bank Beach/Panther Beach-Davenport (2.1 mi).	\$20,000	\$20,000	\$0
MBSST - Rail and Hwy 1 Bicycle and Pedestrian Crossing at Laguna Creek Beach	RTC 27d	Design, approval of CPUC, environmental clearance, and construction of a bicycle and pedestrian crossing of the rail line and Hwy 1 to provide access between the Coastal Rail Trail at Laguna Creek Beach and the parking area on the inland side of Hwy 1.	\$2,000	\$0	\$2,000
Measure D Administration and Implementation	RTC-P59	SCCRTC administration, implementation and oversight of Measure D and the revenues generated from the 2016 Santa Cruz County Transportation Sales Tax - Measure D. Costs include annual independent fiscal audits, reports to the public, preparation and implementation of state-mandated reports, oversight committee, preparation of implementation, funding and financing plans, and other responsibilities as may be necessary to administer, implement and oversee the Ordinance and the Expenditure Plan.	\$16,500	\$16,500	\$0
Monterey Bay Sanctuary Scenic Trail Network (Coastal Rail Trail) - Trail Management Program	RTC 27c	Coordinate trail implementation as it traverses multiple jurisdictions to ensure uniformity; serve as Project Manager for construction of some segments; handle environmental clearance; coordinate use in respect to other requirements (closures for ag spraying, etc); solicit ongoing funding and distribute funds to implementing entities through MOUs; coordinate with community initiatives; etc.	\$1,030	\$1,030	\$0

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \end{aligned}$	Constrained	Unconstrained
Monterey Bay Sanctuary Scenic Trail Network - Design, Environmental Clearance, and Construction	RTC 27a	Design, environmental clearance and construction of the 32-mile rail component of the 50+ mile network of bicycle and pedestrian facilities on or near the coast, with the rail trail as the spine and additional spur trails to connect to key destinations. (Funded segments listed individually.)	\$80,500	\$41,500	\$39,000
Monterey Bay Sanctuary Scenic Trail Network (Coastal Rail Trail) - Maintenance	RTC 27b	Maintenance of the rail trail component of the Monterey Bay Sanctuary Scenic Trail Network ongoing clean-up, trash/recycling removal, graffiti abatement, brush clearance, surface repairs (from drainage issues, tree root intrusion) etc.	\$9,600	\$4,800	\$4,800
Performance Monitoring	RTC-P51	Transportation data collection and compilation to monitor performance of transportation system to advance goals/targets. Includes travel surveys of commuters, Transportation Demand Management plan, a low-stress bicycle network plan and parking standards plan.	\$1,650	\$220	\$1,430
Planning, Programming \& Monitoring (PPM) - SB45	RTC 04	Development and amendments to state and federally mandated planning and programming documents, monitoring of programmed projects. Avg annual cost: $\$ 250 \mathrm{k} / \mathrm{yr}$.	\$5,680	\$1,870	\$3,810
Rail and Trail Corridor Management and Maintenance	RTC-P03	Operating expenses for rail line oversight. Avg annual cost:\$175K/yr.	\$3,850	\$3,850	\$0
Rail Line: Freight Service Upgrades	RTC-P41	Upgrade rail line to FRA Class 2 to a condition for reasonable ongoing maintenance into the future. Upgrade crossings, replace jointed rail with continuously welded rail, upgrade signals, and replace ties.	\$25,000	\$0	\$25,000
Rail Transit: Watsonville-Santa Cruz Corridor	RTC-P02	Design, construction, and operation of fixed guideway public transit between Santa Cruz and Watsonville. May be a joint project with the SCCRTC, SCMTD, and local jurisdictions. Annual op cost est: $\$ 5-10 \mathrm{M} / \mathrm{yr}$; capital: $\$ 31.5 \mathrm{M}-\$ 133 \mathrm{M}$ depending on service area and frequency (Total cost reflects Scenario G from 2015Rail Transit Study). Cost shown for 15 years of service during RTP period.	\$283,000	\$0	\$283,000
Railroad Infrastructure Maintenance and Rehabilitation	RTC 36	Protect, maintain and rehabilitate the railroad infrastructure on the Santa Cruz Branch Rail Line including bridges, track, drainage, culverts, signals, etc.	\$22,410	\$22,410	\$0
Real-Time Transit Info	RTC-P58	Develop and maintain distribution channel for disseminating real time transit arrival and departure information to Santa Cruz Metro users. To be developed in coordination with Santa Cruz Metro.	\$520	\$220	\$300
Recreational Rail Infrastructure	RTC 25	Seasonal passenger rail service on Santa Cruz Branch rail line. Infrastructure needed for the service is listed here (e.g. platforms, sidings, pedestrian \& disabled access, rail vehicles). Unsubsidized operations will be provided by a private operator and operating costs are therefore not included here. All costs are estimated.	\$5,340	\$0	\$5,340
Regional State Transit Assistance Projects	RTC-P60	State Transit Assistance (STA) eligible transit projects	\$33,220	\$33,220	\$0
RTC Bikeway Map	RTC-P49	Update, print and distribute free SC County Bikeway Map and update GIS files as needed.	\$320	\$320	\$0
SAFE: Call Box System Along Hwys	RTC-P01	Motorist aid system of telephone call boxes along all highways plus maintenance and upgrades. Call boxes may be used to request assistance or report incidents. Avg annual cost: $\$ 245 / \mathrm{yr}$	\$5,390	\$5,390	\$0
Santa Cruz Branch Rail Line Improvements	RTC 03a	Infrastructure preservation for current uses and future transportation purposes.	\$570	\$570	\$0
SCCRTC Administration (TDA)	RTC-P07	SCCRTC as Regional Transportation Planning Agency for Santa Cruz County distributes Transportation Development Act Local Transportation Funds and State Assistance Funds for planning, transit, bicycle facilities and programs, pedestrian facilities and programs and specialized transportation in accordance with state law and the unmet transit needs process. Average annual cost: $\$ 650 \mathrm{~K} / \mathrm{yr}$.	\$14,300	\$14,300	\$0

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
SCCRTC Planning	RTC-P08	SCCRTC Planning Tasks. Includes public outreach, long and short range planning, interagency coordination. Avg annual cost: $\$ 625 \mathrm{k} / \mathrm{yr}$.	\$13,750	\$13,750	\$0
School-Based Mobility/TDM Programs	RTC-P54	Student transportation programs aimed at improving health and well being, transportation safety and sustainability and that facilitate mode shift from driving alone in a motor vehicle to active and group transportation.	\$2,690	\$1,100	\$1,590
Shared Parking Program	RTC-P57	Develop tools to allow adjacent property owners to develop and share parking facilities.	\$150	\$50	\$100
Transportation Demand Management Ordinance and User Guide	RTC-P56	Develop Model TDM Ordinance and User Guide to include provisions for both residential and non-residential projects and address program and facilities improvements in return for reductions in off-street parking requirements.	\$260	\$0	\$260
Vanpool Incentive Program	RTC 15	Assist in start up and retention of vanpools. Includes financial incentives: new rider subsidies, driver bonuses, and empty seat subsidies. Also may include installation of wifi on vans. Avg Annual Cost: $\$ 25 \mathrm{k} / \mathrm{yr}$.	\$670	\$100	\$570
		SCCRTC Total	\$572,732	\$199,482	\$373,250
SCCRTC/Caltrans					
1 - Hwy 1 Corridor Investment Program	RTC 24a	Tier 1 - program level design/environmental analysis to establish a Corridor Investment Program (CIP) to reduce congestion along the 9 mile section of Highway 1 between San Andreas Rd/Larkin Valley Rd (Aptos) and Morrissey Boulevard (Santa Cruz). [Other RTC24_ projects are increments of the Highway 1 CIP.] Caltrans Project ID 05-0C730	\$0	\$0	\$0
2 - Hwy 1: Auxiliary Lanes from 41st Ave to Soquel Ave and Chanticleer Bike/Ped Bridge	RTC 24f	Construct auxiliary lanes and a bicycle/pedestrian overcrossing of Hwy 1 at Chanticleer Ave. Caltrans Project ID 05-0C732	\$32,100	\$32,100	\$0
3 - Hwy 1 Auxiliary Lanes: State Park DrPark Ave and Park Ave-Bay/Porter	RTC 24e	Construct approximately 2.5 miles of auxiliary lanes northbound and southbound between State Park Dr and Park Ave interchange and the Park Ave and Bay/Porter interchange. Includes retaining walls, soundwalls and reconstruction of Capitola Avenue overcrossing with wider sidewalks and bike lanes. [Part of Highway 1 CIP project (RTC 24a)]	\$73,000	\$73,000	\$0
5 - Hwy 1: Reconstruct Morrissey Blvd Interchange	RTC 24h	Reconstruct Morrissey Blvd overcrossing with enhanced pedestrian and bicycle treatments (such as buffered or painted facilities) on both sides of the overcrossing, and/or a bicycle/pedestrian overcrossing at Trevethan Ave, reconfigure ramps and local streets to accommodate the new interchange, and ramp metering.[Part of Highway 1 CIP project (RTC 24a), but listed here as standalone project.]	\$45,800	\$0	\$45,800
6 - Hwy 1: Reconstruct Soquel Avenue Interchange	RTC 24i	Reconstruct the overcrossing with enhanced pedestrian and bicycle facilities on both sides, reconfigure ramps and local streets to accommodate the new interchange, and ramp metering. [Part of Highway 1 CIP project (RTC 24a), but listed here as standalone project.]	\$67,330	\$0	\$67,330
7 - Hwy 1: Reconstruct Bay Ave/Porter St and 41st Avenue Interchange	RTC 24j	Reconstruct highway to operate as a single interchange. Includes construction of a frontage road that includes bike lanes and sidewalks connecting the Bay/Porter and 41st Ave intersections ; reconstruction of the Bay/Porter undercrossing and the 41st Avenue overcrossing with enhanced pedestrian and bicycle treatments on both sides, and reconfiguration of ramps and local streets to accommodate local traffic and ramp metering. [Part of the Highway 1 CIP project (RTC 24a), but is listed here as a standalone project.]	\$113,810	\$0	\$113,810
91 - Hwy 1: Reconstruction of 2 Railroad Crossings in Aptos.	RTC 240	Reconstruct two railroad crossings over Highway 1 in Aptos. [Part of Highway 1 CIP project (RTC 24a), but listed as a standalone project.]	\$41,100	\$0	\$41,100

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
92 - Hwy 1: Auxiliary Lanes from Rio Del Mar Blvd to State Park Dr Including Bridge over Aptos Creek	RTC 24p	Construct auxiliary lanes and reconstruct bridge over Aptos Creek. [Part of Highway 1 CIP project (RTC 24a), but listed as a standalone project.]	\$66,800	\$0	\$66,800
93 - Hwy 1: Auxiliary Lanes from Freedom Blvd to Rio Del Mar Blvd	RTC 24 q	Construct auxiliary lanes. [Part of Highway 1 CIP project (RTC 24a), but listed as a standalone project.]	\$16,700	\$0	\$16,700
94-Hwy 1: Northbound Auxiliary Lane from San Andreas Rd/Larkin Valley Rd to Freedom Blvd	RTC 24r	Construct northbound auxiliary lane. [Note: This project was not included as part of Highway 1 CIP project (RTC 24a).]	\$8,800	\$8,800	\$0
95 - Hwy 1: Reconstruct Remaining Interchanges	RTC 24 k	Interchange modifications not identified as separate projects (San Andreas Rd/Larkin Valley Rd, Freedom Blvd, Rio Del Mar Blvd, State Park Dr, and Park Ave), including reconfiguration of ramps and local streets for ramp meters, enhanced pedestrian and bike treatments (such as buffered or painted facilities) in each direction and sufficient width to allow addition of HOV lanes. [Part of the Highway 1 CIP project (RTC 24a), but is listed here as a standalone project.]	\$127,200	\$0	\$127,200
96 - Hwy 1: Construction of HOV Lanes from San Andreas Rd/Larkin Valley Rd to Morrissey Blvd	RTC 24m	Construction of High Occupancy Vehicle (HOV or Carpool) Lanes on Highway 1 from San Andreas Rd/Larkin Valley Rd to Morrissey Blvd. Cost excludes auxiliary lanes, reconstruction of interchanges for ramp metering, over and under crossings, and traffic operation system (TOS) elements on the corridor. [These costs are listed separately (RTC $24 \mathrm{a}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{l}, \mathrm{j}, \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r})$. Could be expensed under a complete Hwy 1 HOV Lane project (RTC 24, \$603,000) but currently expensed as a standalone project.]	\$61,980	\$0	\$61,980
97 - Hwy 1: HOV Lanes from San Andreas Rd/Larkin Valley to Morrissey Blvd	RTC $24 z$	Construct HOV or Carpool lanes on Highway 1 from San Andreas Rd/Larkin Valley Rd to Morrissey Blvd, including auxiliary lanes, reconstruction of interchanges with enhanced bike and pedestrian facilities, arterial and ramp modifications to allow ramp metering, a new bike/ped crossing at Trevethan, and traffic operation system (TOS) element. [Cost if built in entirety: $\$ 603,000$. See stand alone projects (RTC24f,e $\mathrm{g}, \mathrm{h}, \mathrm{I}, \mathrm{j}, \mathrm{a}, \mathrm{m}$) for cost of incremental implementation.] Caltrans Project ID 05-0C730	\$0	\$0	\$0
98- Hwy 1: TSM Project from Morrissey to San Andreas Rd.	RTC 24n	Construct the TSM project alternative as described in the Tier 1 environmental study to establish a Highway 1 Corridor Investment Program. Project includes auxiliary lanes, modifications of interchanges with enhanced bike and pedestrian treatment, arterial and ramp modifications to allow ramp metering, a new bike/ped crossing at Trevethan, and traffic operation system (TOS) element. [Cost if built in entirety, rather than incrementally: \$249,100. Assumes RTC 24 f has been completed.]	\$0	\$0	\$0
Hwy 1 Bicycle/Ped Overcrossing at Mar Vista	RTC 30	Construct a bicycle/pedestrian overcrossing of Hwy 1 in vicinity of Mar Vista Drive, providing improved access to Seacliff and Aptos neighborhoods and schools.	\$7,800	\$7,800	\$0
Hwy 1 Ramp Metering: Northern Sections Between San Andreas Road and Morrissey Blvd	RTC 34	Reconfiguration of ramps and local streets to allow for ramp metering and installation of ramp meters. Could be expensed under a separate stand alone project (\$6.7 M)	\$0	\$0	\$0
Hwy 1 Ramp Metering: Southern Sections	CT-P01	Reconfigurations of ramps and installation of ramp meters at interchanges from Hwy 129/Riverside Dr to Mar Monte Ave.	\$20,600	\$0	\$20,600
		SCCRTC/Caltrans Total	\$683,020	\$121,700	\$561,320
SCMTD					
ADA Access Improvements	MTD-P51	Add or improve ADA accessibility to all bus stops and METRO facilities.	\$4,222	\$350	\$3,872
ADA Paratransit Service - Continuation of Existing Service	MTD-P10C	Operation \& maintenance cost of existing Paratransit service. Avg Annual Cost: $\$ 5.5 \mathrm{M}$.	\$121,000	\$121,000	\$0

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \end{aligned}$	Constrained	Unconstrained
ADA Paratransit Vehicle Replacements	MTD 02	Replace buses/vans for ADA paratransit fleet (including Accessible Taxi program).	\$14,040	\$6,000	\$8,040
ADA Service Expansion	MTD-P11	Add capacity to meet increased trip demand thru 2040. Assumes 2\% increase/year starting in 2019.	\$2,500	\$1,050	\$1,450
Automatic Vehicle Locator and Automatic Passenger Counter Systems	MTD 24	Automatic Vehicle Locator (AVL), Automatic Passenger Counters, and automatic vehicle announcing systems on METRO buses. Provide real time bus arrival/departure displays at bus stops. Necessary IT upgrades and data collectionfor system operations, security, planning and maintenance.	\$3,200	\$3,200	\$0
Bike Station at Capitola Mall	MTD-P23	Establish bike station at Capitola Mall, especially to serve UCSC. Would be joint mall, UCSC, MTD project.	\$1,030	\$0	\$1,030
Bikes on Buses Expansion	MTD-P20	Add additional space for bikes on articulated buses when/if METRO purchases or leases 60 - ft articulated buses.	\$60	\$0	\$60
Bus on Shoulder	MTD-P57	Plan, design, seek Caltrans approvals, and construct improvements to utilize freeway shoulders to bypass congestion on Highway 1 and possibly Highway 17 to speed inter-city bus service	\$12,000	\$0	\$12,000
Bus Rapid Transit	MTD-P15	Construct park \& ride lots, transit centers and grade-separation where feasible to operate bus rapid transit to reduce congestion on Highway 1.	\$26,780	\$0	\$26,780
Bus Rebuild and Maintenance	MTD-P31	Rebuild engines; Fleet maintenance equipment. Avg. cost is $\sim \$ 250 \mathrm{k} / \mathrm{bus}$, increases useful life up to 8 years at 40% of the cost of new buses.	\$5,250	\$5,250	\$0
Bus Replacements	MTD-P04	Replace fleet at the end of normal bus lifetime (approximately every 12 years; $\$ 675$ each for local fixed route; \$900k each for Hwy 17 Over the Road coaches).	\$142,420	\$73,000	\$69,420
Bus Stop and Station Improvements	MTD-P52	Improve customer access and/or amenities at bus stops; add bus stop pads to preserve pavement.	\$500	\$500	\$0
Commuter/Subscription Bus Program	MTD-P18	Capital and operating for subscription buses to areas not currently served by express buses (similar to large vanpool).	\$2,070	\$0	\$2,070
Customer IT amenities	MTD-P55	Upgrade Hwy 17 Wi-Fi and expand to local routes; real-time bus arrival website.	\$1,010	\$0	\$1,010
Deviated Fixed-Route Pilot Program	MTD-P43	Pilot project allowing buses to make minor route modifications to address needs of senior and disabled riders.	\$100	\$0	\$100
Electric Non-Fleet Vehicles	MTD-P47	Replace non-revenue vehicles to EV.	\$580	\$0	\$580
EV Fast Charging Stations	MTD-P48	Install 5 electric vehicle charging stations at transit centers.	\$1,030	\$0	\$1,030
Hwy 1 Express Buses	MTD-P27	Hwy 1 express bus replacements - 6 Buses @ \$500k ea. Replace every 12 years.	\$6,200	\$0	\$6,200
Hwy 17 Express Service - Continuation of Baseline Service Levels	MTD-P10B	Operation \& maintenance cost of existing Highway 17 Express bus service. Avg annual cost: \$4.5M.	\$99,000	\$99,000	\$0
Hwy 17 Express Service Restoration and Expansion	MTD-P12	Restore Hwy 17 Express service to FY16 levels, then expand service 2\% annually. Restore $\$ 300 \mathrm{~K} / \mathrm{yr}$ operating plus 2% annually plus capital costs (2 buses)	\$10,000	\$4,000	\$6,000
Inter-County Paratransit Connection	MTD-P44	Establish paratransit connection location with Santa Clara County.	\$1,290	\$0	\$1,290
Local Transit - Continuation of Baseline Service Levels 2019-2040	MTD-P10	Operation \& maintenance cost of existing local fixed route bus service. Avg annual cost: \$38M.	\$836,000	\$836,000	\$0

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Local Transit Service Restoration and Expansion	MTD-P14	Restore local service to FY16 levels, then expand service 2\% annually. Restore $\$ 6.2 \mathrm{M} / \mathrm{yr}$ operating plus 2% annually plus capital costs (16 buses)	\$173,000	\$72,000	\$101,000
Maintenance Facility Expansion	MTD-P38	Property acquisition, design, and construction of maintenance facility expansion.	\$15,850	\$0	\$15,850
Metro facilities repair/upgrades	MTD-P36	Maintain and upgrade facilities.	\$6,270	\$4,300	\$1,970
Metro rebranding	MTD-P58	Develop marketing program and establish consistent brand with uniform signage, letterhead, ads.	\$500	\$0	\$500
Non-Revenue Vehicle Replacements	MTD-P32	Replace support vehicles.	\$3,450	\$1,200	\$2,250
Pacific Station- Bike Station	MTD-P49	Establish bike station at Pacific Station.	\$410	\$0	\$410
ParaCruz Mobile Data Terminals; Radios	MTD-P30	Replace mobile data terminals in vehicles	\$760	\$400	\$360
ParaCruz Operating Facility	MTD-P28	Design, Right-of-Way and construction for new ParaCruz Operating Facility.	\$12,400	\$0	\$12,400
Park and Ride Facilities	MTD-P53	Fund purchase and construction or lease of parking areas for commuter bus patrons, either surface lot or parking structure.	\$29,400	\$0	\$29,400
Replacement of Watsonville Transit Center	MTD-P56	Replacement transit center at existing or new location.	\$25,000	\$0	\$25,000
Replacement Transit Fareboxes, Ticket Vending Machines, and Fare System Enhancements	MTD 18	Upgrade GFI Farebox system to enable fare media loading, tracking, registration, interoperability via internet. Necessary IT upgrade. System Integrator to analyze and propose integrated fare media strategy. Replacement fareboxes at end of useful life. Replacement of Ticket Vending Machines at end of useful life.	\$5,550	\$1,000	\$4,550
Santa Cruz Metro Center/Pacific Station Renovation	MTD 13	Renovate Pacific Station or construct new transit center in alternate location.	\$25,000	\$0	\$25,000
Senior/Disabled/Low-Income Fixed-Route Transit Incentives	MTD-P42	Incentives to encourage fixed-route bus ridership. Includes existing discounts for Seniors and persons with disabilities. May include free/reduced rates for seniors during off-peak hours, free bus passes to ADA eligible persons, bus pass subsidies for low income riders transportation to employment, and other incentives to encourage use of fixed-route system.	\$17,125	\$0	\$17,125
Signal Priority/Pre-Emption for Buses	MTD-P21	Enable coach operators to actuate traffic signals to prolong green or change red lights to improve transit running time.	\$2,070	\$0	\$2,070
Small Bus Fleet	MTD-P24	Purchase smaller buses for travel through residential neighborhoods. Cost currently unknown.	\$1,700	\$0	\$1,700
Solar Panels for Souza Operations Facility	MTD-P29	Energy reduction through installation of solar panels on the new Judy K. Souza Operations Facility	\$2,000	\$0	\$2,000
South County Operations and Maintenance Facility	MTD-P54	Acquisition of property and construction of second operations and maintenance facilities to better serve South County.	\$50,000	\$0	\$50,000
Transit Mobility Training Program Expansion	MTD-P19	Expand public outreach and training to encourage fixed route, rather than Paratransit, use. Outreach may also involve other partners (ex. DMV, doctors, senior centers, etc). Avg annual cost: $\$ 80 \mathrm{~K} / \mathrm{yr}$.	\$1,240	\$0	\$1,240
Transit Security and Surveillance Systems	MTD-P33	Enhance passenger safety and facilities security. Emergency response systems.	\$1,140	\$0	\$1,140

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Transit System Technology Improvements	MTD-P35	Automated Data Processing software, telephones, portable computers, servers, Customer Information Kiosks, digital ID processing equipment. Maintain and upgrade office software and hardware, bandwidth, web site, phone network, to enhance productivity, customer service and maintain functionality.	\$5,490	\$1,000	\$4,490
Transit Technological Improvements	MTD-P06	IT software and hardware upgrades for scheduling, customer service, planning systems. Upgrades every 5 years.	\$5,170	\$2,500	\$2,670
Transit/Paratransit Driver Emergency Training	MTD-P45	Provide training equipment for drivers on new mobility devices (scooters, motorized wheelchairs) plus emergency training and biohazard container and clean-up kits for vehicles.	\$260	\$0	\$260
		SCMTD Total	\$1,674,067	\$1,231,750	\$442,317
Seniors Council					
Senior Employment Ride Reimbursement	RTC-P43	Reimburse low income seniors for transit expenses to/from employer sites.	\$1,600	\$1,600	\$0
		Seniors Council Total	\$1,600	\$1,600	\$0
UCSC					
Alternative Fuel Fleet Vehicles	UC-P64	Purchase and upgrade fleet vehicles to alt. fueled vehicles (refuse trucks, street sweepers, fleet cars, etc.)	\$3,100	\$500	\$2,600
Alternative Fuel/Electric Shuttle Vehicles	UC-P22	Capital acquisition of vehicles/conversion of shuttles to EV.	\$10,330	\$0	\$10,330
Bike Shuttle Vehicle Acquisition	UC-P51	Acquire more alt fueled vehicles for bike shuttle (and possible expansion).	\$520	\$0	\$520
Bus Tracking and AVL Transit Programs	UC-P62	GPS bus tracking and Automatic Vehicle Locator programs inform travelling population of transit locations so they can make informed mode choices.	\$260	\$260	\$0
College Nine/Communications Pedestrian Bridge	UC-P39	Construct pedestrian bridge.	\$1,030	\$0	\$1,030
College Nine/Crown College Pedestrian Bridge	UC-P37	Construct pedestrian bridge.	\$1,550	\$0	\$1,550
Coolidge Overlook	UC-P42	Improve overlook for parking, benches and signage for Sanctuary.	\$620	\$0	\$620
Disability Van Service	UC-P75	Operate disability van service ($\$ 240 \mathrm{k} / \mathrm{yr}$).	\$5,450	\$5,450	\$0
East Collector Transit Hub	UC-P46	New transit hub at East Collector (East Remote) lot.	\$5,170	\$0	\$5,170
Electric Vehicle Charging Stations	UC-P65	Add additional electrical infrastructure and install electric vehicle charging stations around campus.	\$810	\$310	\$500
Great Meadow Bike Path Safety Improvements	UCSC 07	Bike path safety and maintenance improvements: Reconstruct and widen Class 1 bike path, separate pedestrian improvements northbound to minimize conflicts.	\$1,135	\$1,135	\$0
Hagar/McLaughlin Intersection Improvements	UC-P10	Signal, pedestrian safety improvements(including new crosswalk) and roadway improvements.	\$520	\$0	\$520
Hagar/Steinhart Intersection Improvements	UC-P14	Signal, pedestrian safety improvements, transit, roadway improvements.	\$1,030	\$0	\$1,030
Hagar-Coolidge Connector Road/Hagar/East Remote Intersection Improvements	UC-P47	New roadway connector, including bicycle lanes, between Hagar Drive and Coolidge, plus Hagar/East Remote Intersection Improvements: signal, pedestrian safety improvements and roadway improvements.	\$3,100	\$0	\$3,100

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Heller Drive Bicycle Lanes (Empire Grade to Porter College)	UC-P56	Add Class II bicycle lanes in downhill direction as feasible.	\$830	\$0	\$830
Kerr/Porter Rd Pedestrian Bridge ADA Upgrades	UC-P72	Modify bridge to improve access.	\$3,100	\$0	\$3,100
Kresge/Core West Pedestrian Bridge: ADA Upgrades	UC-P57	Modify bridge to enhance ADA access.	\$3,100	\$3,100	\$0
McLaughlin Drive Bike Lanes/Pedestrian Enhancements	UC-P30	Install Class 2 bike lanes and enhance pedestrian circulation on University campus roadway.	\$2,580	\$0	\$2,580
Meyer Drive Extension/Jordan Gulch Bridges	UC-P04	Extension of Meyer Drive from existing Meyer Drive to Hagar Drive. Includes potential construction of two bridges, pedestrian, and bicycle facilities.	\$20,660	\$0	\$20,660
Northern Entrance	UC-P08	Construct new access road including Cave Gulch Bridge to Empire Grade and road and bicycle lanes to Northern Heller Dr. for access and fire safety.	\$10,330	\$0	\$10,330
Northern Loop Roadway	UC-P07	Construct new roadway, including bicycle lanes, on upper campus. Will be phased. Phase I: Chinquapin Extension to support Social Science 3.	\$18,590	\$0	\$18,590
Parking Management Technology Improvements	UC-P68	Updating existing parking management technologies to allow for more effective management, additional parking management at Coastal Marine Campus and 2300 Delaware site.	\$410	\$410	\$0
Pedestrian Directional Map/Wayfinding System	UC-P38	Develop and install signs throughout campus.	\$520	\$520	\$0
Porter/Performing Arts Pedestrian Bridge	UC-P36	Construct pedestrian bridge.	\$1,030	\$0	\$1,030
Science Hill/North Academic Core Pedestrian Bridge	UC-P40	Construct pedestrian bridge.	\$1,030	\$0	\$1,030
Sidewalk/Pedestrian Improvements	UC-P50	Widen sidewalks/improve ped access in areas of campus.	\$5,170	\$0	\$5,170
Spring Street Bikeway	UC-P34	Construct bikeway connecting Spring Street to Hagar Ct.	\$310	\$0	\$310
Steinhart Way Multimodal Improvements	UC-P03	Roadway improvements for shuttles, bikes and pedestrians.	\$520	\$0	\$520
Transit Pullouts and Shelters Enhancements	UC-P19	Construction and installation of transit pullouts and reconstruction of shelters throughout campus.	\$1,550	\$0	\$1,550
Transit Vehicles (ongoing)	UC-P23	Ongoing capital acquisition of transit vehicles for on-campus transit and University shuttles.	\$5,170	\$5,170	\$0
Transportation-Related Stormwater Management Projects	UC-P66	Retrofitting existing transportation facilities and developing new facilities with new stormwater management techniques.	\$1,030	\$1,030	\$0
Traveler Safety Education/Information Programs	UC-P61	Bike/pedestrian safety programs; light and helmet giveaways, safety classes, distracted driver programs, bus etiquette program.	\$660	\$100	\$560
UCSC - Metro Station Bus Rapid Transit Improvements	UC-P48	Bus Rapid Transit Improvements between Metro Station, Bay Street Corridor, and UCSC Roadways.	\$5,170	\$0	\$5,170
UCSC Bicycle Facilities	UC-P55	Add bicycle facilities on campus roadways and paths. Lump sum of projects, including but not limited to UCSC Bicycle Plan that are not listed individually elsewhere in the RTP.	\$1,030	\$0	\$1,030
UCSC Bicycle Parking Improvements	UC-P33	Install bicycle parking facilities to serve bicycle commuters to the University.	\$520	\$520	\$0
UCSC Bike Loan Program	UC-P52	Develop and implement a bike loan program for UC students.	\$1,030	\$0	\$1,030

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
UCSC Bike Showers/Storage Lockers	UC-P32	Install showers and storage facilities to serve bicycle commuters to the University.	\$620	\$0	\$620
UCSC Commute Counseling Program	UC-P69	Staffing program development to individually market to UCSC affiliates on more sustainable means of travel to campus.	\$3,100	\$3,100	\$0
UCSC Commuter Incentive Programs	UC-P70	Provide ongoing support and development of new programs to encourage travel to campus via sustainable modes of travel.	\$1,550	\$1,550	\$0
UCSC Lump Sum Roadway Maintenance	UC-P59	Repaving and rehabilitation of roadways on UCSC campus to maintain existing network.	\$10,330	\$3,100	\$7,230
UCSC Main Entrance Improvements	UC-P01	Realign roadway, transit pullout/shelter, relocate bike parking, construct pedestrian path, historic resource analysis. Work may be done in conjunction with City Roundabout project.	\$2,070	\$2,070	\$0
UCSC Parking Operations \& Maintenance	UC-P73	Operate and administer the parking operations for UCSC including planning, TDM, marketing and debt service.	\$70,450	\$70,450	\$0
UCSC Pedestrian/Transit Zone	UC-P44	Pedestrian safety improvements including, colored/textured asphalt and signage at various locations on core campus roadways.	\$1,030	\$0	\$1,030
UCSC Traffic Control	UC-P58	Non-traditional traffic control/crossing guard program at key intersections on UCSC campus to improve pedestrian and vehicle safety, reduce conflicts, improve travel times.	\$2,580	\$2,580	\$0
UCSC Transit Service	UC-P74	Operate the on campus shuttle service and Night Owl (\$3.01m/year).	\$68,410	\$68,410	\$0
UCSC Vanpool Program	UC-P63	Maintain, operate and expand upon UCSC vanpool program.	\$8,680	\$8,680	\$0
Zimride Emergency Preparedness Database	UC-P67	Creating a new database through Zimride to have emergency response evacuation of UCSC campus.	\$310	\$0	\$310
		UCSC Total	\$288,095	\$178,445	\$109,650
Various Agencies					
Active Transportation Plan	VAR-P39	Prepare Active Transportation Plans that address bicycle, pedestrian, safe routes to schools and complete streets facilities within the jurisdictions of Santa Cruz County as well as the Santa Cruz Harbor Port District.	\$2,380	\$2,380	\$0
Bicycle Sharrows	VAR-P03	Install sharrows (shared roadway marking) designating areas where bicyclists should ride on streets, especially when bicycle lanes are not available. To be implemented by local jurisdictions.	\$520	\$520	\$0
Bicycle Treatments for intersection improvements (ADD)	VAR-P32	Add painted bike treatments (such as buffered and/or painted bike lanes, bike boxes, bike detection and signals), at major intersections.	\$4,130	\$4,130	\$0
Bike Share	VAR-P16	Establish and maintain an urban centered bike share program allowing county residents to access loaner bikes at key locations such as downtowns, transit centers, shopping districts, and tourist destinations.	\$5,170	\$5,170	\$0
Bike-Activated Traffic Signal Program	VAR-P05	Provide traffic signal equipment to ensure that the traffic signals will detect bicycles just as cars are detected and ensure that the appropriate traffic signal phase is activated by the bicycles.	\$1,030	\$1,030	\$0

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \end{aligned}$	Constrained	Unconstrained
Cabrillo College TDM Programs	RTC 33	Provide students and employees at all four Cabrillo College campuses with education, promotion, and incentives that support the use of sustainable transportation modes. Develop information, programs and services customized to meet the transportation needs of the Cabrillo College community. 'Provide Sustainable Transportation education, promotion, and Go Green program enrollment to Cabrillo College students and employees. Partner with Cabrillo staff and students to reduce SOV trips to the Aptos, Watsonville and Scotts Valley campuses. Provided targeted information and services to Cabrillo members.	\$1,560	\$780	\$780
Carsharing Program	VAR-P06	Program to assist people in sharing a vehicle for occasional use. Implementing Agency TBD, varies.	\$2,580	\$1,290	\$1,290
Climate Action Transportation Programs	RTC-P48	Projects that reduce greenhouse gas emissions through reducing vehicle trips and vehicle miles traveled, increasing fuel efficiency and expanding use of alternatively fueled vehicles. Includes comprehensive outreach and education campaigns, a countywide emergency ride home for those using alternatives, and TDM incentive programs: $\$ 100 \mathrm{k} /$ year.	\$2,580	\$2,330	\$250
Complete Streets Implementation	VAR-P27	Additional projects for complete streets implementation that would fall under the Complete Streets Guidelines.	\$10,330	\$10,330	\$0
Coolidge Drive Reconstruction	VAR-P23	Reconstruction of roadway and bike lane.	\$3,100	\$0	\$3,100
Countywide Pedestrian Signal Upgrades	RTC-P26	Grant program to fund installation of accessible pedestrian equipment with locator tones including rapid flashing beacons and count down times etc. to facilitate roadway crossings by visually and mobility impaired persons.	\$2,070	\$1,035	\$1,035
Countywide Senior Driving Training	VAR-P24	Coordinate and enhance current programs that help maturing drivers maintain their driving skills and provides transitional info about driving alternatives. (Current programs are run by AARP and CHP.)	\$800	\$80	\$720
Eco-Tourism - Sustainable Transportation	VAR-P17	Provide sustainable transportation information, incentives and promotions to the estimated one million visitors to Santa Cruz County. Work with the Santa Cruz County Conference and Visitors Council, local lodgings, and tourist attractions.	\$1,030	\$515	\$515
Electric Bicycle Commuter Incentive Program	VAR-P44	Financial incentives, promotion and/or education to encourage residents to use electric bikes instead of commuting by car.	\$3,400	\$1,000	\$2,400
Environmental Mitigation Program	VAR-P38	Allocate funds to protect, preserve, and restore native habitat that construction of transportation projects listed in SCCRTC's RTP could potentially impact. EMP funds will be for uses such as, but not limited to, purchasing land prior to project development to bank for future mitigation needs, funding habitat improvements in advance of project development to leverage and enhance investments by partner agencies.	\$5,680	\$5,680	\$0
Hwy 1 Bike/Ped Bridge (Cabrillo-New Brighton)	CT-P07a	Construction of bike/ped bridge connecting New Brighton State Beach and Cabrillo College as part of larger Nisene SP to the Sea trail concept. Lead agency TBD.	\$8,260	\$0	\$8,260
Live Oak Transit Hub	VAR-P46	Transfer node near rail corridor at 17th Ave - may include transit, rideshare, bicycle, bikeshare, pedestrian to provide regional connections to/from other parts of the county.	\$530	\$530	\$0
Local Arterial ITS Infrastructure	VAR-P11	ITS (Intelligent Transportation Systems): advanced electronics and information technologies to increase the safety and efficiency of the surface transportation system, including vehicle detection devices along major arterials in urbanized areas to alert motorists of incidents.	\$620	\$0	\$620
Lump Sum Bridge Preservation	VAR-P14	Painting, Barrier Rail Replacement, Low Water Crossing, Rehab, and Replacement bridges for SHOPP and Highway Bridge Program (HBP).	\$54,500	\$54,500	\$0

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
Lump Sum Emergency Response Local Roads	VAR-P13	Lump sum for repair of local roads damaged in emergency. (Based on average ER/FEMA/CalEMA funds, storm damage, fire, etc. Costs of repairs assumed under lump sum maintenance and operations within local jurisdiction listings.)	\$23,370	\$23,370	\$0
Mission St/Hwy 1 Bike/Truck Safety Campaign	VAR-P18	Partnership with road safety shareholders including Caltrans, UCSC, City of Santa Cruz, Ecology Action, trucking companies and others to improve bike/truck safety along the Mission Street corridor. Provide safety presentations, videos, brochures, safety equipment, etc.	\$520	\$520	\$0
Mobility Management Center	VAR-P04	Centralized one-stop-shop for information and resources on specialized transportation options. May be combined with 511 and local senior information and assistance efforts. Implementing agency TBD. Est. annual cost: $\$ 100-300 \mathrm{k} / \mathrm{yr}$.	\$7,750	\$0	\$7,750
Neighborhood Greenways	VAR-P33	Implement greenways which gives priority to bicycles and pedestrians on low volume, low speed streets including, way finding and pavement markings, bicycle treatments in areas identified for more intensified development in Sustainable Communities Strategy.	\$5,170	\$0	\$5,170
Park and Ride Lot Development	VAR-P26	Upgrade and maintain existing park and ride lots for commuters countywide. Secure additional park and ride lot spaces for motorized vehicles and bicycles. Long range plan: identify, purchase land, construct Park \& Ride lots.	\$8,260	\$2,260	\$6,000
Planning for Transit Oriented Development for Seniors	VAR-P25	Evaluate opportunities for Transit Oriented Development serving seniors including access to medical facilities.	\$80	\$80	\$0
Plug-in Electric Vehicle Access, Education \& Promotion	VAR-P21	Target motorist looking for a cleaner vehicle by providing access, education and promotion on ever evolving plug-in electric vehicles (PEV). Provide PEV car share, rental and demo drives, educational workshops, online, and hard copy information. Promote through current EA groups, partners, media and other available sources.	\$830	\$0	\$830
Public Transit Marketing	VAR-P20	Initiatives that increase public transit ridership including discount passes, free fare days, commuter clubs, and promotional and marketing campaigns.	\$1,550	\$775	\$775
Public/Private Partnership Bicycle and Pedestrian Connection Plan	VAR-P29	Develop model for assisting local jurisdictions in working with private property owners to allow bicycle and pedestrian access through private property in areas identified for more intensified development in Sustainable Communities Strategy.	\$150	\$150	\$0
Public/Private Partnership Transit Stops and Pull Outs Plan	VAR-P30	Develop model for assisting local jurisdictions in working with businesses to install transit pullouts and shelters on property in areas identified as high quality transit corridors in Sustainable Communities Strategy.	\$150	\$150	\$0
Safe Paths of Travel	VAR-P08	Regional program to construct and/or repair pedestrian facilities adjacent to high frequency use origins and destinations, particularly near transit stops.	\$3,100	\$3,100	\$0
Safe Routes to Schools Studies	VAR-P10	Studies to assess pedestrian and bicycle safety near schools.	\$210	\$210	\$0
Safety Plan	VAR-P36	Develop a safety plan that addresses traffic related injuries and fatalities for all modes of transportation.	\$310	\$310	\$0
Santa Cruz County Open Streets	VAR-P40	Community events promoting alternatives to driving alone as part of a sustainable, healthy, and active life-style. Temporarily opens roadways to bicycle and pedestrian travel only, diverting automobiles to other roadways.(Average annual cost - $\$ 100 \mathrm{k} / \mathrm{yr}$)	\$2,000	\$200	\$1,800
School Complete Streets Projects	VAR-P35	Implement ped/bike programs and facilities near schools.	\$10,330	\$10,330	\$0

Project Title	ID	Project Description/Scope	Est total cost	Constrained	Unconstrained
School Safety Programs	VAR-P19	Bicycle and walking safety education and encouragement programs targeting K-12 schools in Santa Cruz County including Ecology Action's Safe Routes to School and Bike Smart programs. Provide classroom and on the bike safety training in an age appropriate method. Provide a variety of bicycle, walking, busing and carpooling encouragement projects ranging from bike to school events, to incentive driven tracking, and educational support activities. Est. annual cost $\$ 150 \mathrm{k}$.	\$3,820	\$1,910	\$1,910
TDM Individualized Employer/Multiunit Housing Program	RTC-P53	Implement individualized employer and multiunit housing TDM programs with incentives for existing development.	\$4,650	\$2,325	\$2,325
Transit Oriented Development Grant Program	RTC-P25	Smart growth grant program to fund TODs that encourage land use and transportation system coordination. May include joint child care/PNR/transit centers.	\$5,170	\$2,570	\$2,600
Transit Priority	VAR-P34	Install transit queues at major intersections.	\$5,170	\$2,585	\$2,585
Transit Service to San Jose Airport	VAR-P43	Provide transit service to San Jose airport from Santa Cruz. Current average annual need \$0.5M	\$11,000	\$0	\$11,000
Transportation Demand Management Plan	VAR-P37	Collaborate with other organizations to develop a coordinated plan for transportation demand management program implementation for Santa Cruz County.	\$310	\$310	\$0
Transportation for Caregivers of Seniors/People with Disabilities	VAR-P42	Transportation service for caregivers of seniors or people with disabilities. Including, but not limited to programs such as, volunteer rides, taxi script, ride to work program. Current avg annual need $\$.5 \mathrm{M}$. Constrained= $=\$ 0 \mathrm{M}$.	\$11	\$0	\$11
Transportation for Low Income Youth	VAR-P15	Safe, reliable transportation services for foster care children to/from school. Avg annual cost: \$100k/yr.	\$2,580	\$0	\$2,580
Transportation for Low-Income Families	VAR-P41	Transportation service for low income families with children. Includes medical service rides, out-of-county rides, volunteer rides, taxi script, ride to work program, etc. Current avg annual need $\$.5 \mathrm{M}$. Constrained=\$0M.	\$11,000	\$0	\$11,000
Transportation System Electrification	VAR-P07	Partnership with local gov't agencies, electric vehicle manufactures, businesses, and Ecology Action to establish electric vehicle charging stations for EV's, plug-in hybrids, NEV's, as well as ebikes and escooters. Work with manufacturers on developing advanced electric vehicles and educating the public regarding the ease of use and benefits of electric vehicles.	\$51,650	\$51,650	\$0
Uncontrolled Pedestrian Crossing Improvements	VAR-P31	Implement improvements to uncontrolled pedestrian crossing such as painted and/or raised crosswalks, flashing beacons and pedestrian islands.	\$5,170	\$2,570	\$2,600
Watsonville Transit Hub	VAR-P47	Expand transportation mode options at transfer node near rail corridor and current transit center to increase use of transit, rideshare, bicycle, bikeshare, pedestrian to provide regional connections to/from other parts of the county.	\$585	\$585	\$0
West Side Transit Hub	VAR-P45	Transfer node near rail corridor at Natural Bridges Dr - may include transit, rideshare, bicycle, bikeshare, pedestrian to provide regional connections to/from other parts of the county and the university.	\$580	\$580	\$0
		Various Agencies Total	\$275,746	\$197,840	\$77,906
Volunteer Center					
Volunteer Center Transportation Program	VC-P1	Program providing specialized transportation to seniors and people with disabilities. Constrained=existing TDA allocations.	\$3,750	\$1,640	\$2,110
		Volunteer Center Total	\$3,750	\$1,640	\$2,110

Project Title	ID	Project Description/Scope	$\begin{aligned} & \text { Est total } \\ & \text { cost } \end{aligned}$	Constrained	Unconstrained
Watsonville Airport					
Lump Sum Watsonville Municipal Airport Capital Projects	AIR-P01	Projects from the Watsonville Airport Capital Improvement Program. Includes new hangers, reconstruction of aviation apron, security features, and runway extensions.	\$21,700	\$21,700	\$0
Watsonville Municipal Airport Operations	AIR-P02	Ongoing operations/maintenance. Average \$2M/year.	\$44,000	\$44,000	\$0
		Watsonville Airport Total	\$65,700	\$65,700	\$0

Total Within Projected Funds (Constrained) \$3,757,313

Minimum New Funds Needed (Unconstrained)
\$3,356,681
*For some projects no cost estinate was available thus was not included in this total

Kimley»)Horn

APPENDIX L. PENDING PROJECTS LIST

Name/ APN	Project Type	\# Units/ Comm. S.F.	Status Discretionary Permit App. P pending A approved	App. No.	Notes
RESIDENTIAL					
$\begin{aligned} & 2340 \text { Harper } \\ & 2917105 \end{aligned}$	Multi Family (MF) + one SFD	11	P	181094	GP, Rezone included
Wells Fargo Bank LD 2606296	Minor Land Division (MLD)	Net 2	P	171063	MLD 1 into 3
Mattison Lane Brunetti 2521102	APTS	22	P	161426	
Bostick Lane 2602113	MLD	Net 2	P	171357	
Jody Court 2503217	MLD	Net 4	P	171353	
$\begin{aligned} & \text { Paul Minnie LD } \\ & 2607119 \end{aligned}$	MLD	Net 3	P	171077	
Capitola Extension 2608109	MF	Net 4	P	171265	Existing duplex into 6
DeFaymoreau MLD	MLD	Net 1	P	151024	2015
$\begin{aligned} & \text { Moana Way } \\ & 3212226 \end{aligned}$	MLD	Net 1	P	171151	$\begin{aligned} & \text { MLD, } 2 \text { SFDs } \\ & 2 \text { ADUs } \end{aligned}$
Workbench 3711326	MF	16	P	181231	GPA, rezone included
$\begin{aligned} & \text { Maciel RDG } \\ & 2912101 \end{aligned}$	Residential Dwelling Group (RDG)	Net 1	P	181055	
Roadhouse LD 3218108	Land Division and SFDs	8 SFDs	A	151204	Building Permits submitted
COMMERCIAL, MIXED USE					
Nissan Dealership	Commercial (C)	$\begin{aligned} & 12,550 \mathrm{SF} \\ & \text { sales } \\ & 10,000 \mathrm{SF} \\ & \text { service } \end{aligned}$	A	171179	EIR completed
Paul Minnie 0264314	Mixed Use (MU)	15 units 3600 sf office	P	181171	

Portola Mixed Use 3205136	MU	23 res, 4 live/work, 29710 office	P	181263	Amendment to approved MU CUP, check SF office
Lumberyard $3209201,05$	MU	8 units, 9600 SF comm	A	141157	
Childcare Porter St. 3015320	C	Increase by 20 children to 50 total	P	171078	Minor variation to existing CUP
Animal Shelter addition 2606301	C	2000 SF add cafe	P	181132	Amend CUP
$\begin{array}{\|l\|} \hline \text { GSAG LLC } \\ 025-131-20 \end{array}$	MU	1, 1800 SF comm	P	181079	confirm net 1
$\begin{aligned} & \text { Herbal Cruz } \\ & 3202223 \end{aligned}$	C	Retail, add 800 SF	P	181026	
Case de Montgomery 10016106	Sanitarium/nursing home	Demolish existing 43 bed, 14,500 SF facility to construct 100 bed, 56,777 SF facility	P	131266	
CONSULTATION AND PREAPPLICATION*					
Mid Penn Capitola and $17^{\text {th }}$ 2674112	MU	58 units 29,696 SF med. clinic and office, 1000 SF retail	NA	PA181013	
$\begin{array}{\|l\|} \hline 87530^{\text {th }} \\ 2809140 \end{array}$	MF	4	NA	PA181021	4 added to existing 9 units
Seaview	Attached condo	15	NA	PA	Number units in flux
Prather Lane MU 02535116	MU medical and senior housing	60 sr. units 20,000 SF med offices	NA	PA181016	

Dominican parking structure					

* Treatment of consultations and early projects to be determined
- Includes only pending discretionary apps with net new units and non -residential SF and selected pre-application projects only.
- Confirm boundaries of search area out to Park Avenue
- "Approved not built" may be augmented

Kimley»)Horn

APPENDIX M.
 DIAGONAL DIVERTER \& WAYFINDING SIGNAGE CONCEPT LAYOUTS AND TRAVEL TIMES

Kimley»"Horn

$\overline{\text { Xx-097XXXXXX } \quad \text { FEBRUARY } 2019}$

Kimley")Horn

$\overline{\text { XX-097XXXXXX } \quad \text { FEBRUARY } 2019}$

Scenario	Distance (feet)	Travel Time (Minutes)
Existing PM^{1}	2050	8.15

1. Travel time measurement was taken from Soquel Ave (just east of Rodeo Gulch Rd) to HWY 1 SB On-Ramp off of 4 1st Ave.

Soquel Ave

Kimley»)Horn

APPENDIX N. HIGHWAY 1 INTERCHANGE LAYOUTS

Kimley»)Horn

APPENDIX 0. HIGHWAY CAPACITY SOFTWARE (HCS) INPUTS AND RESULTS

2018 Exisiting Conditions		Highway 1												Highway 17			
		1. Highway 1Morrissey Blvd to Soquel Dr				2. Highway 1 Soquel Dr to 41st Ave				3. Highway 1 41st Ave to Porter St/Bay Ave				4. Highway 17Pasatiempo Overcrossing to Highway 1 Interchange			
		NORTHBOUND		SOUTHBOUND													
		AM	PM														
	Number of Lanes	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	FF Speed (Measured)	68.1	68.1	68.9	68.9	68.7	68.7	67.1	67.1	67.1	67.1	68.7	68.7	69.3	69.3	63.7	63.7
	Terrain Type	Rolling	Rolling	Rolling	Rolling	Level	Level	Level	Level	Rolling							
	Driver Population	Balanced Mix															
	Weather Factor	Non-Severe															
	Incident Type	No Incident															
	Speed Adjustment Factor	Default															
	Capacity Adjustment Factor	Default															
	Demand Adjustment Factor	Default															
	2018 TDM Flow (veh/3 hour)	3104	4720	3895	4399	3313	4384	3671	4234	3667	4982	3933	4982	2167	3883	3317	3009
	Proportion of flow in peak hour	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
	2018 TDM Hourly Volume	3104	4720	3895	4399	3313	4384	3671	4234	3667	4982	3933	4982	2167	3883	3317	3009
	2018 PeMS Flow (veh/hr)	3563	2193	1832	1559	2429	2326	1739	1775	3157	2553	2754	1883	3018	2996	1706	1950
	2018 PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	2018 PeMS Speed	59.8	42.9	57.4	19.7	52.8	57.0	54.8	9.8	39.2	61.1	61.3	10.1	51.3	52.0	62.6	61.7
	PeMs PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	Oversaturated? (PeMS Speed < $=45 \mathrm{mph}$)	F	T	F	T	F	F	F	T	T	F	F	T	F	F	F	F
	Demand (without site trips)	3563	4720	1832	4399	2429	2326	1739	4234	3667	2553	2754	4982	3018	2996	1706	1950
	PHF (if oversaturated, min 0.95)	0.91	0.95	0.96	0.95	0.99	0.96	0.89	0.95	0.95	0.97	0.84	0.95	0.95	0.98	0.90	0.94
	Trip Distribution (\%)	19\%	19\%	19\%	19\%	0\%	0\%	0\%	0\%	10\%	10\%	10\%	10\%	11\%	11\%	11\%	11\%
	Site Trips	22	70	85	28	0	0	0	0	45	15	12	37	13	42	51	17
HCS Vol. Inputs	Coded HCS Demand	3563	4720	1832	4399	2429	2326	1739	4234	3667	2553	2754	4982	3018	2996	1706	1950
	Heavy Vehicle Percent (from PeMs, min 0.5\%)	2.27\%	0.50\%	6.33\%	0.50\%	0.50\%	0.50\%	0.50\%	1.07\%	1.71\%	3.17\%	1.34\%	2.23\%	2.25\%	2.40\%	5.51\%	7.64\%
	PHF	0.91	0.95	0.96	0.95	0.99	0.96	0.89	0.95	0.95	0.97	0.84	0.95	0.95	0.98	0.90	0.94
$\begin{gathered} \text { HCS } \\ \text { Outputs } \end{gathered}$	Volume/capacity ratio	0.60	0.76	0.49	1.06	0.56	0.55	0.45	1.03	0.91	0.64	0.76	1.24	0.90	0.72	0.49	0.55
	2018 Exisiting Plus Conditions	Highway 1												Highway 17			
		1. Highway 1Morrissey Blvd to Soquel Dr				2. Highway 1Soquel Dr to 41st Ave				3. Highway 141st Ave to Porter St/Bay Ave				4. Highway 17Pasatiempo Overcrossing to Highway 1 Interchange			
		NORTHBOUND		SOUTHBOUND													
		AM	PM														
	Number of Lanes	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	FF Speed (Measured)	68.1	68.1	68.9	68.9	68.7	68.7	67.1	67.1	67.1	67.1	68.7	68.7	69.3	69.3	63.7	63.7
	Terrain Type	Rolling	Rolling	Rolling	Rolling	Level	Level	Level	Level	Rolling							
	Driver Population	Balanced Mix															
	Weather Factor	Non-Severe															
	Incident Type	No Incident															
	Speed Adjustment Factor	Default															
	Capacity Adjustment Factor	Default															
	Demand Adjustment Factor	Default															
	2018 TDM Flow (veh/3 hour)	3104	4720	3895	4399	3313	4384	3671	4234	3667	4982	3933	4982	2167	3883	3317	3009
	Proportion of flow in peak hour	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
	2018 TDM Hourly Volume	3104	4720	3895	4399	3313	4384	3671	4234	3667	4982	3933	4982	2167	3883	3317	3009
	2018 PeMS Flow (veh/hr)	3563	2193	1832	1559	2429	2326	1739	1775	3157	2553	2754	1883	3018	2996	1706	1950
	2018 PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	2018 PeMS Speed	59.8	42.9	57.4	19.7	52.8	57.0	54.8	9.8	39.2	61.1	61.3	10.1	51.3	52.0	62.6	61.7
	PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	Oversaturated? (PeMS Speed < $=45 \mathrm{mph}$)	F	T	F	T	F	F	F	T	,	F	F	T	F	F	F	F
	Demand (without site trips)	3563	4720	1832	4399	2429	2326	1739	4234	3667	2553	2754	4982	3018	2996	1706	1950
	PHF (if oversaturated, min 0.95)	0.91	0.95	0.96	0.95	0.99	0.96	0.89	0.95	0.95	0.97	0.84	0.95	0.95	0.98	0.90	0.94
	Trip Distribution (\%)	19\%	19\%	19\%	19\%	0\%	0\%	0\%	0\%	10\%	10\%	10\%	10\%	11\%	11\%	11\%	11\%
	Site Trips	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HCS Vol. Inputs	Coded HCS Demand	3563	4720	1832	4399	2429	2326	1739	4234	3667	2553	2754	4982	3018	2996	1706	1950
	Heavy Vehicle Percent (from PeMS, min 0.5\%)	2.27\%	0.50\%	6.33\%	0.50\%	0.50\%	0.50\%	0.50\%	1.07\%	1.71\%	3.17\%	1.34\%	2.23\%	2.25\%	2.40\%	5.51\%	7.64\%
	PHF	0.91	0.95	0.96	0.95	0.99	0.96	0.89	0.95	0.95	0.97	0.84	0.95	0.95	0.98	0.90	0.94
$\begin{gathered} \text { HCS } \\ \text { Outputs } \end{gathered}$	Volume/capacity ratio	0.62	0.77	0.51	1.06	0.56	0.55	0.45	1.03	0.92	0.64	0.77	1.25	0.75	0.73	0.50	0.56

2021 Near Term Conditions		Highway 1												Highway 17			
		1. Highway 1Morrissey Blva to Soquel Dr				$\begin{gathered} \text { 2. Highway } 1 \\ \text { Soquel Dr to 41st Ave } \end{gathered}$				3. Highway 141st Ave to Porter St/Bay Ave				4. Highway 17Pasatiempo Overcrossing to Highway 1 Interchange			
		NORTHBOUND		SOUTHBOUND													
		AM	PM														
	Number of Lanes	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	FF Speed (Measured)	68.1	68.1	68.9	68.9	68.7	68.7	67.1	67.1	67.1	67.1	68.7	68.7	69.3	69.3	63.7	63.7
	Terrain Type	Rolling	Rolling	Rolling	Rolling	Level	Level	Level	Level	Rolling							
	Driver Population	Balanced Mix															
	Weather Factor	Non-Severe															
	Incident Type	No Incident															
	Speed Adjustment Factor	Default															
	Capacity Adjustment Factor	Default															
	Demand Adjustment Factor	Default															
	2021 TDM Flow (veh/3 hour)	3140	4763	3955	4430	3358	4397	3712	4240	3694	4996	4000	4991	2214	3916	3358	3055
	Proportion of flow in peak hour	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
	2021 TDM Hourly Volume	3140	4763	3955	4430	3358	4397	3712	4240	3694	4996	4000	4991	2214	3916	3358	3055
	2018 PeMS Flow (veh/hr)	3563	2193	1832	1559	2429	2326	1739	1775	3157	2553	2754	1883	3018	2996	1706	1950
	2018 PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	2018 PeMS Speed	59.8	42.9	57.4	19.7	52.8	57.0	54.8	9.8	39.2	61.1	61.3	10.1	51.3	52.0	62.6	61.7
	PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	Oversaturated? (PeMS Speed < $=45 \mathrm{mph}$)	F	T	F	T	F	F	F	T	T	F	F	T	F	F	F	F
	Demand (without site trips)	3563	4763	1832	4430	2429	2326	1739	4240	3694	2553	2754	4991	3018	2996	1706	1950
	PHF (if oversaturated, min 0.95)	0.91	0.95	0.96	0.95	0.99	0.96	0.89	0.95	0.95	0.97	0.84	0.95	0.95	0.98	0.90	0.94
	Trip Distribution (\%)	19\%	19\%	19\%	19\%	0\%	0\%	0\%	0\%	10\%	10\%	10\%	10\%	11\%	11\%	11\%	11\%
	Site Trips	22	70	85	28	-	0	0	0	45	15	12	37	13	42	51	17
HCS Vol. Inputs	Coded HCS Demand	3563	4763	1832	4430	2429	2326	1739	4240	3694	2553	2754	4991	3018	2996	1706	1950
	Heavy Vehicle Percent (from PeMs, min 0.5\%)	2.27\%	0.50\%	6.33\%	0.50\%	0.50\%	0.50\%	0.50\%	1.07\%	1.71\%	3.17\%	1.34\%	2.23\%	2.25\%	2.40\%	5.51\%	7.64\%
	PHF (min 0.92)	0.92	0.95	0.96	0.95	0.99	0.96	0.92	0.95	0.95	0.97	0.92	0.95	0.95	0.98	0.92	0.94
HCS Outputs	Volume/capacity ratio	0.61	0.77	0.49	1.06	0.56	0.55	0.43	1.03	0.92	0.64	0.70	1.24	0.75	0.72	0.48	0.55
	2021 Near Term Plus Conditions	Highway 1												Highway 17			
		1. Highway 1Morrissey Blvd to Soquel Dr				2. Highway 1 Soquel Dr to 41st Ave				3. Highway 141st Ave to Porter St/Bay Ave				4. Highway 17Pasatiempo Overcrossing to Highway 1 Interchange			
		NORTHBOUND		SOUTHBOUND													
		AM	PM														
	Number of Lanes	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	FF Speed (Measured)	68.1	68.1	68.9	68.9	68.7	68.7	67.1	67.1	67.1	67.1	68.7	68.7	69.3	69.3	63.7	63.7
	Terrain Type	Rolling	Rolling	Rolling	Rolling	Level	Level	Level	Level	Rolling							
	Driver Population	Balanced Mix															
	Weather Factor	Non-Severe															
	Incident Type	No Incident															
	Speed Adjustment Factor	Default															
	Capacity Adjustment Factor	Default															
	Demand Adjustment Factor	Default															
	2021 TDM Flow (veh/3 hour)	3140	4763	3955	4430	3358	4397	3712	4240	3694	4996	4000	4991	2214	3916	3358	3055
	Proportion of flow in peak hour	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
	2021 TDM Hourly Volume	3140	4763	3955	4430	3358	4397	3712	4240	3694	4996	4000	4991	2214	3916	3358	3055
	2018 PeMs Flow (veh/hr)	3563	2193	1832	1559	2429	2326	1739	1775	3157	2553	2754	1883	3018	2996	1706	1950
	2018 PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	2018 PeMS Speed	59.8	42.9	57.4	19.7	52.8	57.0	54.8	9.8	39.2	61.1	61.3	10.1	51.3	52.0	62.6	61.7
	PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	Oversaturated? (PeMS Speed < $=45 \mathrm{mph}$)	F	T	F	T	F	F	F	T	T	F	F	T	F	F	F	F
	Demand (without site trips)	3604	4763	1860	4430	2462	2333	1758	4240	3694	2560	2801	4991	3083	3022	1727	1980
	PHF (if oversaturated, min 0.95)	0.91	0.95	0.96	0.95	0.99	0.96	0.89	0.95	0.95	0.97	0.84	0.95	0.95	0.98	0.90	0.94
	Trip Distribution (\%)	19\%	19\%	19\%	19\%	0\%	0\%	0\%	0\%	10\%	10\%	10\%	10\%	11\%	11\%	11\%	11\%
	Site Trips	22	70	85	28	0	0	0	0	45	15	12	37	13	42	51	17
HCS Vol. Inputs	Coded HCS Demand	3626	4833	1945	4458	2462	2333	1758	4240	3739	2575	2813	5028	3096	3064	1778	1997
	Heavy Vehicle Percent (from PeMs, min 0.5\%)	2.27\%	0.50\%	6.33\%	0.50\%	0.50\%	0.50\%	0.50\%	1.07\%	1.71\%	3.17\%	1.34\%	2.23\%	2.25\%	2.40\%	5.51\%	7.64\%
	PHF (min 0.92)	0.92	0.95	0.96	0.95	0.99	0.96	0.92	0.95	0.95	0.97	0.92	0.95	0.95	0.98	0.92	0.94
HCS Outputs	Volume/capacity ratio	0.62	0.78	0.52	1.07	0.57	0.55	0.44	1.03	0.93	0.64	0.71	1.25	0.77	0.74	0.50	0.57

2040 Cumulative Conditions		Highway 1														way 17	
		1. Highway 1Morrissey Blvd to Soquel Dr				2. Highway 1 Soquel Dr to 41st Ave				3. Highway 141st Ave to Porter St/Bay Ave				4. Highway 17Pasatiempo Overcrossing to Highway 1 Interchange			
		NORTHBOUND		SOUTHBOUND													
		AM	PM														
	Number of Lanes	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	FF Speed (Measured)	68.1	68.1	68.9	68.9	68.7	68.7	67.1	67.1	67.1	67.1	68.7	68.7	69.3	69.3	63.7	63.7
	Terrain Type	Rolling	Rolling	Rolling	Rolling	Level	Level	Level	Level	Rolling							
	Driver Population	Balanced Mix															
	Weather Factor	Non-Severe															
	Incident Type	No Incident															
	Speed Adjustment Factor	Default															
	Capacity Adjustment Factor	Default															
	Demand Adjustment Factor	Default															
$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \\ & \frac{0}{5} \\ & \frac{3}{0} \\ & 0 \\ & 0 \\ & \frac{5}{0} \\ & 0 \end{aligned}$	2040 TDM Flow (veh/3 hour)	3365	5034	4333	4627	3641	4479	3971	4275	3863	5158	4424	5047	2509	4126	3618	3347
	Proportion of flow in peak hour	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
	2040 TDM Hourly Volume	3365	5034	4333	4627	3641	4479	3971	4275	3863	5158	4424	5047	2509	4126	3618	3347
	2018 PeMS Flow (veh/hr)	3563	2193	1832	1559	2429	2326	1739	1775	3157	2553	2754	1883	3018	2996	1706	1950
	2018 PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	2018 PeMS Speed	59.8	42.9	57.4	19.7	52.8	57.0	54.8	9.8	39.2	61.1	61.3	10.1	51.3	52.0	62.6	61.7
	PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	Oversaturated? (PeMS Speed < $=45 \mathrm{mph}$)	F	T	F	T	F	F	F	T	T	F	F	T	F	F	F	F
	Demand (without site trips)	3862	5034	2038	4627	2669	2377	1881	4275	3863	2643	3098	5047	3494	3184	1861	2169
	PHF (if oversaturated, min 0.95)	0.91	0.95	0.96	0.95	0.99	0.96	0.89	0.95	0.95	0.97	0.84	0.95	0.95	0.98	0.90	0.94
	Trip Distribution (\%)	19\%	19\%	19\%	19\%	0\%	0\%	0\%	0\%	10\%	10\%	10\%	10\%	11\%	11\%	11\%	11\%
	Site Trips	20	68	86	24	0			0	45	13	11	36	12	41	51	14
HCS Vol. Inputs	Coded HCS Demand	3862	5034	2038	4627	2669	2377	1881	4275	3863	2643	3098	5047	3494	3184	1861	2169
	Heavy Vehicle Percent (from PeMs, min 0.5\%)	2.27\%	0.50\%	6.33\%	0.50\%	0.50\%	0.50\%	0.50\%	1.07\%	1.71\%	3.17\%	1.34\%	2.23\%	2.25\%	2.40\%	5.51\%	7.64\%
	PHF (min 0.92)	0.92	0.95	0.96	0.95	0.99	0.96	0.92	0.95	0.95	0.97	0.92	0.95	0.95	0.98	0.92	0.94
HCS Outputs	Volume/capacity ratio	0.66	0.81	0.54	1.11	0.61	0.56	0.47	1.04	0.96	0.66	0.78	1.26	0.87	0.77	0.52	0.61
	2040 Cumulative Plus Conditions	Highway 1												Highway 17			
		1. Highway 1Morrissey Blvd to Soquel Dr				2. Highway 1Soquel Dr to 41st Ave				3. Highway 141st Ave to Porter St/Bay Ave				4. Highway 17Pasatiempo Overcrossing to Highway 1 Interchange			
		NORTHBOUND		SOUTHBOUND													
		AM	PM														
	Number of Lanes	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	FF Speed (Measured)	68.1	68.1	68.9	68.9	68.7	68.7	67.1	67.1	67.1	67.1	68.7	68.7	69.3	69.3	63.7	63.7
	Terrain Type	Rolling	Rolling	Rolling	Rolling	Level	Level	Level	Level	Rolling							
	Driver Population	Balanced Mix															
	Weather Factor	Non-Severe															
	Incident Type	No Incident															
	Speed Adjustment Factor	Default															
	Capacity Adjustment Factor	Default															
	Demand Adjustment Factor	Default															
	2040 TDM Flow (veh/3 hour)	3365	5034	4333	4627	3641	4479	3971	4275	3863	5158	4424	5047	2509	4126	3618	3347
	Proportion of flow in peak hour	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
	2040 TDM Hourly Volume	3365	5034	4333	4627	3641	4479	3971	4275	3863	5158	4424	5047	2509	4126	3618	3347
	2018 PeMS Flow (veh/hr)	3563	2193	1832	1559	2429	2326	1739	1775	3157	2553	2754	1883	3018	2996	1706	1950
	2018 PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	2018 PeMS Speed	59.8	42.9	57.4	19.7	52.8	57.0	54.8	9.8	39.2	61.1	61.3	10.1	51.3	52.0	62.6	61.7
	PeMS PHF	0.91	0.97	0.96	0.96	0.99	0.96	0.89	0.93	0.92	0.97	0.84	0.84	0.95	0.98	0.90	0.94
	Oversaturated? (PeMS Speed < $=45 \mathrm{mph}$)	F	T	F	T	F	F	F	T	T	F	F	T	F	F	F	F
	Demand (without site trips)	3862	5034	2038	4627	2669	2377	1881	4275	3863	2643	3098	5047	3494	3184	1861	2169
	PHF (if oversaturated, min 0.95)	0.91	0.95	0.96	0.95	0.99	0.96	0.89	0.95	0.95	0.97	0.84	0.95	0.95	0.98	0.90	0.94
	Trip Distribution (\%)	19\%	19\%	19\%	19\%	0\%	0\%	0\%	0\%	10\%	10\%	10\%	10\%	11\%	11\%	11\%	11\%
	Site Trips	20	68	86	24	0	0	0	0	45	13	11	36	12	41	51	14
HCS Vol. Inputs	Coded HCS Demand	3882	5102	2124	4651	2669	2377	1881	4275	3908	2656	3109	5083	3506	3225	1912	2183
	Heavy Vehicle Percent (from PeMS, min 0.5\%)	2.27\%	0.50\%	6.33\%	0.50\%	0.50\%	0.50\%	0.50\%	1.07\%	1.71\%	3.17\%	1.34\%	2.23\%	2.25\%	2.40\%	5.51\%	7.64\%
	PHF	0.92	0.95	0.96	0.95	0.99	0.96	0.92	0.95	0.95	0.97	0.92	0.95	0.95	0.98	0.92	0.94
\square Outputs	Volume/capacity ratio	0.67	0.82	0.56	1.12	0.61	0.56	0.47	1.04	0.97	0.66	0.79	1.27	0.87	0.78	0.53	0.62

Kimley»)Horn

APPENDIX P.
 SR 1 HOV LANE WIDENING PROJECT SUPPLEMENTAL REPORT (MAY 2010)

DRAFT PROJECT REPORT

TO AUTHORIZE PUBLIC RELEASE
 OF
 THE DRAFT ENVIRONMENTAL DOCUMENT
 FOR
 OPERATIONAL IMPROVEMENTS

On Route 1 in Santa Cruz County in and near Capitola and Santa Cruz

Between 41st Avenue Overcrossing
And Soquel Avenue/Drive Overcrossing

I have reviewed the right-of-way information contained in this Draft Project Report and the R / W Data Sheet attached hereto, and find the data to be complete, current, and accurate:

APPROVAL RECOMMENDED:

APPROVED:

PI \# 05-0000-0023
Program Code 20.XX. 075.600 (STIP RIP) \&
400.100 (Local)

September 2015

VICINITY MAP

This Draft Project Report has been prepared under the direction of the following registered civil engineer. The registered civil engineer attests to the technical information contained herein and the engineering data upon which recommendations, conclusions, and decisions are based.

Table of Contents

1. INTRODUCTION 3
2. RECOMMENDATION 4
3. BACKGROUND 4
3.1 Project History 4
3.2 Community Interaction 6
3.3 Existing Facility 7
4. NEED AND PURPOSE 8
4.1 Problem, Deficiencies, Justification 8
4.2 Regional \& System Planning 12
4.3 Traffic 15
5. ALTERNATIVES 23
5.1 Viable Alternatives 23
5.1.1 No-Build Alternative 23
5.1.2 Auxiliary Lane Alternative. 23
5.2 Non-standard Mandatory and Advisory Design Features 26
5.3 High Occupancy Vehicle (HOV) (Bus and Carpool) Lanes 27
5.4 Ramp Metering 27
5.5 Park and Ride Facilities 28
5.6 Utility and Other Owner Involvement 28
5.7 Highway Planting 28
5.8 Erosion Control 29
5.9 Storm Water Compliance 29
5.10 Noise Barriers 30
5.11 Non-Motorized and Pedestrian features 30
5.12 Needed Roadway Rehabilitation and Upgrading 31
5.13 Needed Structure Rehabilitation and Upgrading 31
5.14 Cost Estimate 31
5.15 Effect of Projects-Funded-by-Others on State Highway 31
5.16 Rejected Alternatives 31
6. CONSIDERATIONS REQUIRING DISCUSSIONS 31
6.1 Hazardous Waste 31
6.2 Value Analysis 32
6.3 Resource Conservation 32
6.4 Right-of-way Issues 33
6.5 Environmental Issues 33
6.6 Air Quality Conformity 40
6.7 Noise Abatement Decision 40
7. OTHER CONSIDERATIONS AS APPROPRIATE 43
7.1 Public Hearing Process 43
7.2 Route Matters 43
7.3 Permits 43
7.4 Cooperative Agreements 43
7.5 Transportation Management Plan for Use During Construction 44
7.6 Stage Construction 44
7.7 Graffiti Control 44
7.8 Oversize Loads. 45
7.9 Life Cycle Cost Analysis 45
8. FUNDING/PROGRAMMING 46
9. SCHEDULE 50
10. RISKS 50
11. FHWA COORDINATION 51
12. PROJECT REVIEWS 51
13. PROJECT PERSONNEL 51
14. LIST OF ATTACHMENTS 52

1. INTRODUCTION

The project site extends approximately 1.4 miles along State Route 1 in Santa Cruz County, between the 41 st Avenue and Soquel Drive interchanges. The "build" alternative proposes to widen State Route 1 by adding auxiliary lanes to the north and southbound sides between the $41^{\text {st }}$ Avenue and Soquel Drive Interchanges (PM13.5-PM14.9). A new bike and pedestrian overcrossing is proposed at Chanticleer Avenue to improve bicycle and pedestrian access across State Route 1. The estimated construction cost of this alternative, including right-of-way, is \$17.9 million. Right-of-way would be acquired for the construction of the bike and pedestrian overcrossing approach ramps. The project is proposed to be funded from the Santa Cruz County Regional Transportation Commission's Regional Surface Transportation Program (RSTP), State Transportation Improvement Program (STIP), and Regional Improvement Program (RIP) funds over 4 years. PS\&E for this project will be developed under EA 05-0C732.

This is a Project Development Category 4B type project, because it does not require substantial new right of way and does not substantially increase traffic capacity.

Environmental analysis and documentation for this project is found in the Tier I/Tier II Draft Environmental Impact Report / Environmental Assessment (DEIR/EA) (Attachment G) entitled, "Santa Cruz Route 1 HOV Tier I Corridor Analysis of High Occupancy Vehicle (HOV) Lanes and Transportation System Management (TSM) Alternatives and Tier II Build Project Analysis, 41st Avenue to Soquel Avenue/Drive Auxiliary Lanes and Chanticleer Avenue Pedestrian Overcrossing", which will identify a Tier I preferred alternative for a "program" of future construction projects to be implemented within the 8.9 mile corridor over multiple years. This Project Report is for the Tier II project of the title and is analyzed at a project level in the DEIR/EA. Any additional Tier II projects will be cleared environmentally with their own Project Report and Environmental Document when their scope is determined and funds become available.

The two alternatives under consideration are the No Build Alternative and the Auxiliary Lane Alternative. The No Build alternative assumes no major construction on State Route 1 through the project limits other than continued routine maintenance. If the auxiliary lane project is selected, construction is assumed to begin in July 2019.

Project Limits	$05-\mathrm{SCr}-1$ - PM 13.5/14.9
Number of Alternatives	1 build alternative
Current Capital Outlay Support Estimate	$\$ 5.4$ million
Current Capital Outlay Construction Estimate	$\$ 16.6$ million
Current Capital Outlay Right-of-Way Estimate	$\$ 1.3$ million
Funding Source	 400.100 (Local)
Funding Year	$2013-2017$

Type of Facility	4-lane freeway
Number of Structures	1 bicycle/pedestrian overcrossing
Environmental Determination or Document	Tier I/Tier II Draft Environmental Impact Report / Environmental Assessment (DEIR/EA)
Legal Description	On Route 1 in Santa Cruz County in and near Capitola and Santa Cruz_between 41st Avenue Overcrossing and Soquel Avenue/Drive Overcrossing
Project Development Category	4B

2. RECOMMENDATION

It is recommended that the Draft Environmental Document (DED) be publicly circulated and a public hearing be scheduled.

It is recommended that a cooperative agreement for the Plan, Specifications and Estimate (PS\&E) phase be negotiated with Santa Cruz County Regional Transportation Commission (SCCRTC), and that the County/State cooperative storm drain features be approved and an agreement be negotiated with the County of Santa Cruz during PS\&E phase.

3. BACKGROUND

3.1 Project History

This project originated as a Santa Cruz County State Route 1 corridor improvement project. The study segment is heavily congested during morning and evening commute times. The congestion has extended the peak operating hours to approximately 4 hours for morning and evening commutes. Summer weekends have been especially impacted as increasing tourist traffic compounds the local congestion.

A Project Study Report - Project Development Support (PSR-PDS) approved August 2002 discussed three "build" alternatives for improvements to the Santa Cruz County State Route 1 corridor between State Park Drive and Morrissey Boulevard:

- High Occupancy Vehicle (HOV) striped/separated lanes with standard median width and braided or collector ramps
- HOV striped/separated lanes with non-standard median width
- Two additional mixed-flow lanes with a standard median and ramp meters with HOV bypass lanes on all ramps

Another Caltrans-prepared PSR-PDS, approved October 2002, and a consultant-prepared Supplemental PSR-PDS, approved April 2006, both focused on operational improvements and neither addressed HOV lanes. One of the alternatives in the April 2006 supplemental PSR-PDS was the Morrissey Boulevard to Soquel Avenue Auxiliary Lanes Project (EA 05-0F650, SR1 14.9/15.9).

The State Route 1/State Route 17 Merge Lane Project and the Morrissey Boulevard to Soquel Avenue Auxiliary Lanes Project are both included as part of this project's "No Build" scenario because both of these projects have been completed.

Between 2003 and 2011, two build alternatives were developed from those proposed in the Caltrans-prepared August 2002 and October 2002 PSR-PDSs, which address this project purpose:
"The purpose of the Highway 1 HOV Lane Widening Project is to reduce congestion, improve safety, and encourage carpooling and use of alternative transportation modes as the means to increase transportation system capacity"

The two build alternatives were developed with intent to gain project approval and proceed with final design, taking into account previous project efforts, potential environmental impacts and early public outreach efforts. Local officials were involved via meetings with individuals, boards, and commissions.

The two "build" alternatives previously on the Project Approval / Environmental Documentation (PAED path) were:

HOV Lane Alternative: This alternative proposes to modify or reconstruct all nine interchanges between Larkin Valley Road and Morrissey Boulevard to improve merging operations and to widen the existing four-lane highway to a six-lane facility by adding an HOV lane next to the median in both the northbound and southbound directions. Existing bridge structures, including the two Santa Cruz Branch Line railroad structures and the Capitola Avenue overcrossing, are proposed to be modified or replaced to accommodate highway widening to match the ultimate six-through-lane concept. New and widened highway crossing structures (including the two Santa Cruz Branch Rail Line crossings) are proposed to include shoulder and sidewalk facilities to accommodate pedestrians and bicycles. The HOV Lane Alternative includes new ramp structures at Soquel Creek and Porter Street/Bay Avenue. The HOV Lane Alternative proposes to include three new bicycle/pedestrian overcrossings of State Route 1 and also include ramp metering, HOV by-pass lanes onramps, auxiliary lanes between interchange ramps, and Transportation Operation Systems (electronic equipment such as changeable message signs and vehicle detection systems). No auxiliary lane is proposed to be constructed northbound between San Andreas Road and Freedom Boulevard, nor between State Park Drive and Park Avenue. Bus pads with pedestrian access to local streets are proposed at Park Avenue, Bay Avenue/ Porter Street, and $41^{\text {st }}$ Avenue to facilitate faster and easier highway access for buses. Retaining walls are proposed to be constructed to minimize right-of-way acquisition, and to minimize or avoid environmental impacts.

Transportation System Management Alternative: The Transportation System Management Alternative was developed as a minimum footprint alternative, since this project is subject to formal environmental consideration. This alternative proposes ramp metering and HOV by-pass lanes on all onramps within the limits of the project. Construction of auxiliary lanes is proposed between the following interchanges:

1. Freedom Boulevard and Rio Del Mar Boulevard
2. Rio Del Mar Boulevard and State Park Drive
3. State Park Drive and Park Avenue
4. Park Avenue and Bay Avenue-Porter Street.
5. 41st Avenue and Soquel Avenue-Soquel Drive

The Transportation System Management Alternative also proposes to include Transportation Operation Systems. The north and south Santa Cruz Branch Line railroad structures and the State Park Drive, Capitola Avenue, $41{ }^{\text {st }}$ Avenue and Soquel overcrossings are proposed to be reconstructed to allow for standard geometrics on State Route 1. Ramps at all nine interchanges would be improved. The Aptos Creek bridge is proposed to be widened. Pedestrian/bicycle overcrossings are proposed to be constructed across State Route 1 at Mar Vista Drive, Chanticleer Avenue, and Trevethan Avenue. This alternative does not propose HOV lanes or any additional through lanes on the mainline.

Because neither alternative was likely to be funded in the near-term, the Project Development Team proceeded to lay out a phasing plan that both prioritized the proposed auxiliary lane portion of the projects by their operational benefits and effects, and presented a multi-year possible funding plan. The prioritization study is now a chapter of the project's Traffic Operations Report (TOR). However, in May 2011, Federal Highway Administration (FHWA) officials reported that they could not approve a final environmental document for either of the corridor alternatives under study in the HOV Lanes and Transportation System Management Alternatives project unless a committed source of funding was identified.

In response to FHWA's decision, the project team and FHWA agreed that a transition to a tiered environmental document would allow full disclosure at a planning level of the HOV Lanes and Transportation System Management Alternatives as they had been defined, including the project's impacts, costs, and benefits (Tier I) and also provide environmental documentation of a project deemed financially feasible from existing funding sources (Tier II). The Tier I/Tier II Draft Environmental Impact Report / Environmental Assessment (DEIR/EA) will be used to identify a preferred alternative for a "program" of future construction projects to be implemented within the 8.5 mile corridor over multiple years. As funding becomes available, projects within the program would become Tier II construction-level projects and would be subject to separate environmental review.

To identify an initial Tier II project, the team used the auxiliary lane prioritization study developed as part of the effort to develop a funding plan for the entire corridor. Through this process the project team recommended designating the $41^{\text {st }}$ Avenue/Soquel Avenue/Drive Auxiliary Lanes and the Chanticleer bicycle/pedestrian overcrossing as the Tier II project for environmental analysis and project approval.

3.2 Community Interaction

Local jurisdictions' elected representatives have been kept informed about the progress and design features of the 41st Avenue to Soquel Avenue Auxiliary lanes project by their Santa Cruz County Regional Transportation Commission (SCCRTC) representative, and through project presentations to their councils, boards or commissions. The most recent presentation of the 41st Avenue to Soquel Avenue Auxiliary lanes project to the SCCRTC board (a public meeting) was May 2, 2013.

The Chanticleer Overcrossing was presented to SCCRTC's Bicycle Committee in February, 2012 and March, 2013.Throughout the design development process of the Tier 1 HOV Lanes and Transportation System Management project alternatives, community involvement has been solicited by Santa Cruz County Regional Transportation Commission (SCCRTC) and jurisdictions represented on the Project Development Team (PDT). Upon the initiation of the Tier 1 HOV Lanes and Transportation System Management project study in April 2004, a series of Open Houses were held where the corridor project was presented and comments from the community regarding project scoping were obtained, including discussion of the need for and potential locations of bicycle/pedestrian crossings over State Route 1. Meetings were subsequently held with the public and targeted "special interest" groups on May 19 and 24, 2005, to discuss and refine the design considerations and the locations of three proposed pedestrian/bicycle crossing structures within the Tier 1 HOV Lanes and Transportation System Management, of which only the Chanticleer Avenue overcrossing is part of the Tier II 41st Avenue to Soquel Avenue Auxiliary lanes project. Groups representing cyclists, pedestrians, seniors, neighboring schools, and the disabled were invited to meetings to share their trip routes, their ideas and their concerns.

An SCCRTC representative regularly attends the Bicycle, Interagency, and the Elderly and Disabled Technical Advisory Committees to offer updates on the project.

The CHP is regularly notified of PDT meetings and receives PDT minutes. Discussions occur asneeded between SCCRTC and the CHP, and other emergency response groups.

3.3 Existing Facility

State Route 1 in the project area is a four-lane divided freeway. Lanes are $12-\mathrm{ft}$ wide.
The existing median in the project area is a combination of paved and graded shoulder with a thrie beam or concrete barrier, and varies in width from approximately 37 ft to 21 ft . In the southbound direction, the existing inside paved shoulder width varies from approximately 4 ft to 18 ft and in the northbound direction, the existing inside paved shoulder width varies from 18 ft to 7 ft .

In the southbound direction between the project limits, the outside shoulder width varies from 8 ft to 12 ft . In the northbound direction between the project limits, the outside shoulder width varies from 6 ft to 8 ft .

The interchange configuration between $41^{\text {st }}$ Avenue and Soquel Drive is shown in Figure 5-1.
The posted speed limit in both directions is 65 mph . The segment alignment is straight except for one $1000-\mathrm{ft}$ curve of radius $4000-\mathrm{ft}$, beginning approximately $1150-\mathrm{ft}$ north of the 41 st Avenue overcrossing. The terrain is relatively level, rising from $41^{\text {st }}$ Avenue at a rate of 0.5% to approximately PM 14.4 and gradually sloping down towards Soquel Avenue at a rate of 1.2%. This segment drains to inlets and ditches at the edge of pavement on both sides as well as to the median, and then through pipes and culverts to adjacent County facilities.

North of the project limits in the northbound direction, State Route 1 has two through lanes and an auxiliary lane between Soquel Drive and Morrissey Boulevard. In the southbound direction,

State Route 1 has two through lanes and an auxiliary lane from Morrissey Boulevard to Soquel Avenue. South of the project limits, State Route 1 is a four-lane divided freeway, with auxiliary lanes between $41^{\text {st }}$ Avenue and Bay Avenue/Porter Street.

The existing 41st Avenue and Soquel Drive interchanges have single-lane on- and off ramps. The 41st Avenue interchange is a Type L-9. The Soquel Drive interchange is a Type L-9 in the northbound direction. The northbound diagonal off ramp includes an option to exit onto Commercial Way prior to the ramp terminus at a signalized intersection at Soquel Drive. In the southbound direction, the off ramp passes under the Soquel Drive overcrossing to meet Soquel Avenue at a signalized intersection. Traffic turning right onto Soquel Avenue can merge onto Soquel Avenue at a free right turn. At the same signalized intersection is the entrance to the existing hook-onramp to southbound State Route 1.Right-of-way limits vary from148 ft to 255 ft along this portion of State Route 1.

Existing constraints include low-quality wetlands (see project plans, Attachment C) at the existing edges of pavement on the northbound side, Soquel Avenue on the southbound side, and proposed support piers for the bicycle/pedestrian overcrossing in the median and at the outside shoulder on the northbound side.

The arterials and main local streets in the project area vicinity are described below. Each of the arterials described below feeds into State Route 1. In addition, Soquel Drive, Soquel Avenue, and $41^{\text {st }}$ Avenue are striped with Class II bicycle lanes.

Soquel Drive crosses State Route 1 in the project area. It runs south beyond the project area parallel to State Route 1 approximately eight (8) miles, two lanes in each direction, starting at its intersection with Soquel Avenue and ending at Freedom Boulevard.

Soquel Avenue serves the southwestern part of the project area. To the east, it begins at Pacific Avenue and crosses over the San Lorenzo River. Just south of State Route 1, Soquel Avenue turns right and continues along south of the highway to Gross Road. Also at this junction, Soquel Avenue feeds into Soquel Drive, crossing over the highway and paralleling it on the north side. It is a three-and-a-half mile, primarily two-lane road that widens in some sections.

41st Avenue is the most heavily traveled of all of the arterials in the study area. It travels north and south in two directions for two miles between Soquel Drive and East Cliff Drive on the waterfront. It is two lanes in most locations, but it is as wide as six lanes in sections between Soquel Drive and Capitola Road. The City of Capitola's main retail corridor is comprised of $41^{\text {st }}$ Avenue.

4. NEED AND PURPOSE

4.1 Problem, Deficiencies, Justification

The HOV and Transportation System Management alternatives discussed in the "Background" section of this report include auxiliary lanes between the interchanges along the corridor. In April 2010, a traffic operations analysis was performed to prioritize the auxiliary lane improvements, independent of the HOV lanes and ramp metering, on their potential to relieve congestion and at the same time minimize "hot spots" along the corridor. Each auxiliary lane reach was analyzed
independently and ten Measures of Effectiveness were compared. Traffic condition discussion in this section is based upon the April 2010 analysis and Chapter 8 of April 2012 TOR.

The purpose of the 41st Avenue to Soquel Avenue/Drive Auxiliary Lanes and Chanticleer Overcrossing Project is to reduce congestion, improve safety and to promote the use of alternative transportation modes as a means to increase transportation system capacity.

The Tier II project purpose matches that of the Santa Cruz County Route 1 Tier I HOV Lanes and Transportation System Management Alternatives project, that is, reducing congestion and encouraging use of alternative transportation modes as a means to increase system capacity, except that encouraging carpooling is not a part of this Tier II project purpose. State Route 1 in Santa Cruz County is congested in the northbound direction during the AM peak hour, and in the southbound direction during the PM peak hour. During AM peak hour, the mainline segment between the Soquel Drive and $41^{\text {st }}$ Avenue interchanges currently operates at LOS F northbound and LOS C southbound. During the PM peak hour, the segment operates at LOS F in both directions.

The 2010 phased implementation analysis that examined ten Measures of Effectiveness (MOE) for auxiliary lanes between the interchanges in Santa Cruz County prioritized the northbound and southbound auxiliary lanes independently.

There are currently auxiliary lanes in both directions in the segments north and south of this proposed project, (between the 41st and Bay Street/Porter Avenue interchanges and between Soquel Drive to Morrissey Boulevard). The implementation of the proposed auxiliary lane along northbound State Route 1 between 41st Avenue and Soquel Drive interchanges would remove the bottleneck located between westbound 41st Avenue on ramp and Soquel Drive off ramp and would relieve the congestion it causes. While it would not create a new bottleneck between the Park Avenue on ramp and the Bay Avenue/Porter Street off ramp, the project would expose and lengthen in duration the bottleneck now hidden under the long queues formed because of the existing bottleneck located between westbound 41 st Avenue on ramp and Soquel Drive off ramp. Although the hidden bottleneck would be exposed, the construction of this auxiliary lane would have operational benefits compared to the No Build scenario during the AM peak period ${ }^{1}$:

- It would remove the bottleneck located between westbound $41^{\text {st }}$ Avenue onramp and Soquel Drive off ramp.
- Of the auxiliary lanes studied, it would provide the most congestion relief in the northbound State Route 1 corridor (Aptos to Santa Cruz) operations by:
- Reducing the average travel time along the corridor by 22 percent during the AM peak hour and 14 percent during the AM peak period.
- Increasing the average travel speed along the corridor by 8 mph to 37 mph during the AM peak hour and by 6 mph to 42 mph during the AM peak period.
- Increasing the overall vehicle and person trips by 5 percent during the AM peak hour and 1 percent during the AM peak period.
- Improving the LOS of the corridor from LOS F to LOS E during the AM peak period.
- Reducing the average travel time along the corridor by 1 percent during the PM peak hour and 6 percent during the PM peak period.

[^36]- Increasing the average travel speed along the corridor by 3 mph to 56 mph during the PM peak period.

In the northbound direction, LOS would be unchanged. Average travel speed during PM peak hour would stay approximately the same, as would person throughput.

The auxiliary lane between $41^{\text {st }}$ Avenue and Soquel Drive interchanges would provide the most benefit to the operating conditions of northbound State Route 1 of the auxiliary lanes studied.

In the southbound direction, the Soquel Avenue to $41^{\text {st }}$ Avenue auxiliary lane was rated fifth priority. It would not create or expose any bottlenecks.

The study shows that this auxiliary lane would provide negligible improvement in the southbound PM period State Route 1 corridor operations by:

- Reducing the average travel time along the corridor by 8 percent during the PM peak hour and 4 percent during the PM peak period.
- Increasing the overall vehicle and person trips by 1 percent during the PM peak period.

Average speed would be reduced from 15 mph to 14 mph during peak hour and from 25 mph to 24 mph during peak period, and LOS would be the same as No Build: F.

In the northbound direction during the AM peak hour, No-Build travel time along the Santa Cruz County Corridor (Aptos to Santa Cruz) is forecasted be 24 minutes at an average speed of 29 mph .

In the southbound direction during PM peak hour, No-Build travel time is forecasted to be 46 minutes at an average speed of 15 mph , Aptos to Santa Cruz.

Weave analysis results are shown in the table below.
Table 4.1 Weave Analysis

		LOCATION			Wemposite SR 1 Direction	Peak Period
	From	To	Composite LOS	LOS without Aux Lane		
Southbound	AM Peak	Soquel Avenue Onramp	41 st Avenue off ramp	A	D	B
Southbound	PM Peak	Soquel Avenue Onramp	41st Avenue off ramp	A	F	D
Northbound	AM Peak	41 st Avenue Onramp	Soquel Avenue off ramp	A	F	D
Northbound	PM Peak	41st Avenue Onramp	Soquel Avenue off ramp	A	F	D

Within the project limits, there is no opportunity for vehicles, pedestrians, or cyclists to cross State Route 1 except at 41 st Avenue and Soquel Interchanges - the busiest interchanges in the County serving the most traveled section of State Route 1 in the County. The Soquel Drive overcrossing, just west of the project, has sidewalk only on the north side. The 41st Avenue overcrossing has sidewalks and bike lanes on both sides. At both interchanges, pedestrians and cyclists use crosswalks to navigate high-speed free right turns as vehicles enter and exit the highway.
The Chanticleer Avenue overcrossing is one of three proposed over State Route 1 between Larkin Valley Road/San Andreas Road and Morrissey Boulevard in response to ongoing community requests for safe and convenient non-motorized crossing of State Route 1, and in support of SCCRTC's goal of promoting alternative transportation modes. The overcrossing locations were initially selected based on input received from local agency and project related agency staff on November 18, 2004, to begin to address the needs of the bicycle and pedestrian community related to crossing SR 1 given current and long-range land use plans. On May 16, 2005, prior to holding public meetings, SCCRTC met with planning and redevelopment staff from the City and County of Santa Cruz who were not able to attend the November 18, 2004 meeting. Meetings were subsequently held with the public and targeted "special interest" groups on May 19 and 24, 2005, to discuss and refine the design concepts and the locations of three proposed pedestrian/bicycle crossing structures at Mar Vista Drive, Chanticleer Avenue, and Trevethan Avenue. Groups representing cyclists, pedestrians, seniors, neighboring schools, and the disabled were invited to meetings to share their trip routes, their ideas and their concerns.

Following local agency, community, and stakeholder interest group meetings the recommended bicycle/pedestrian crossing locations were reviewed and approved by the SCCRTC's Board of Directors in September 2005, following presentation before the SCCRTC's advisory bodies, including: the Interagency Technical Advisory Committee, Bicycle Committee, and the Elderly and Disabled Transportation Advisory Committee.

As previously presented, the area around this section of State Route 1 is currently and will, through long range plans, continue to be to be the highest density urban development in the county served by the highest volume interchanges along State Route 1:41st Avenue and Soquel Drive. Recognition of the increasing density has led to local interest in establishing in a safe crossing for non-motorized travelers now and into the future as urban development will adapt and adopt to non-motorized modes of travel. Chanticleer Avenue south of State Route 1 currently has pedestrian facilities and a north/south bike lane that connects to a network of east/west bike lanes on Soquel Avenue, Rodriquez Street, Capitola Road, and Brommer Street. Chanticleer Avenue north of the State Route 1 has pedestrian facilities proximate to Soquel Drive, which is a major east/west pedestrian and bicycle route that connects medical facilities, located along Chanticleer with those clustered around Dominican Hospital, the regional medical center for Santa Cruz County.
Currently there is no credible source for projecting long term bike and pedestrian traffic across State Route 1 at this location. The Association of Monterey Bay Governments (AMBAG) is preparing a bike model, however the model is not yet calibrated for application in this area.
Throughout this area are residential neighborhoods and schools, commercial and recreational destinations on both sides of State Route 1. Destinations within one-half mile of State Route 1 and between Soquel Avenue/Soquel Drive and 41st Avenue include:

- Good Shepherd School
- Green Acres Elementary
- Tierra Pacifica Charter School
- Ocean Alternative Education Center
- Chanticleer Park
- Sutter Hospital
- Dominican Hospital
- Winkle Farm Park
- Coffee Lane Park

4.2 Regional \& System Planning

State Route 1 is a High Emphasis Corridor and serves as the primary route connecting communities in the southern and central areas of Santa Cruz County. As the only continuous route through the County, State Route 1 serves as the commuter spine linking Watsonville, Aptos, Santa Cruz and the University of California at Santa Cruz. Approximately one quarter (1/4) of commuters using State Route 1 continue on State Route 17, also a High Emphasis Corridor, to Santa Clara County job sites. State Route 1 is also the southern terminus for State Routes 9 and 17, both of which bring heavy tourist traffic to coastal destinations in Santa Cruz and Monterey Counties.

The study segment is on the National Highway System (NHS), a national network of routes interconnecting the major urban areas of the nation. In addition to serving as the primary route in Santa Cruz County, State Route 1 is also a High Emphasis Route in the Caltrans Interregional Transportation Strategic Plan, and is part of the Surface Transportation Assistance Act (STAA) National Network (Truck Terminal Access). Within the project area, State Route 1 does not intersect any other truck routes, however, State Route 9 just north of Morrissey Boulevard, is a California Legal Advisory Route.

While the August 2006 Ramp Meter Development Plan (RMDP) identifies State Route 1 from Larkin Valley Road to Morrissey Boulevard for the inclusion of ramp meters, this project does not modify or construct a new interchange and thus would not include ramp meters. Widening of State Route 1 was first introduced as a long-range project in the 1986 Regional Transportation Plan (RTP). The highest priority State Route 1 projects were the Mission Street widening project, which was completed in May 2002, and the State Route $1 / 17$ Merge Lane Project which was completed in December 2008. High occupancy vehicle (HOV) lanes on State Route 1 remain listed on SCCRTC's draft project list for the 2014 RTP. SCCRTC recognizes that the cost of completing the entire HOV Lanes and Transportation System Management Alternatives project on State Route 1 is beyond the amount of discretionary funding that is reasonably expected for the region over the life of the 2014 RTP (22 years). The approach approved by the SCCRTC is to prioritize funding for the initial phases of the project. Before the HOV lanes can be built, the following work must be completed to provide the width necessary for additional lanes and to ensure motorist safety:

- Construction of auxiliary lanes for most of the distance between Morrissey Rd. and Larkin Valley Rd, which includes this project.
- Reconstructing most of the interchanges
- Replacing the railroad bridges in Aptos

The auxiliary lanes between Morrissey and Soquel are built and three more auxiliary lane projects, including the 41st Avenue to Soquel Avenue Auxiliary Lanes project, are on SCCRTC's priority list for completion over the lifespan of the RTP, based on foreseeable funding. From 1994 to 1998, the SCCRTC conducted a Major Transportation Investment Study (MTIS) on the Watsonville- Santa Cruz- University of California Santa Cruz (UCSC) corridor which encompasses State Route 1. Following public hearings on options identified in the MTIS, the SCCRTC Board adopted a program of projects including a project to widen a segment of the highway for High Occupancy Toll (HOT) Lanes. Subsequently, SCCRTC requested Caltrans to prepare a Project Study Report to explore alternatives that would reduce congestion, including HOT Lane alternatives. The 2001 Regional Transportation Plan identified widening State Route 1 as the highest priority project. The April 2006 Transportation Concept Report (TCR) for this segment proposes a six-through-lane facility to obtain a future LOS D within twenty years. Traffic analysis shows that auxiliary lanes are warranted in this segment in addition to the six through lanes in twenty years. The proposed Chanticleer Avenue bicycle/ pedestrian overcrossing and Retaining walls 2, 3 and 4 would be in their future Transportation Concept locations, and would accommodate six standard through lanes and two auxiliary lanes. Retaining wall 1 is considered "throwaway" and in conflict with ultimate improvements, because it would be demolished when the $41^{\text {st }}$ Avenue interchange is rebuilt to accommodate the TCR segment. See Attachment C for location of Retaining Walls 1, 2, 3 and 4.

The operational improvements expected from this project would provide incremental relief for transit, and would not preclude any future transit improvements such as ramp metering, ramp by-pass lanes or HOV lanes.

The District System Management Plan (DSMP) for District 5 is the 20-year vision document for carrying out its responsibilities as owner/operator of the State transportation system. It is a strategic planning document describing how the State corridors will be managed and developed through the
year 2025. While the DSMP is essentially an internal document, it has been developed to incorporate local and regional policies and goals, such as those in the RTP and TCR.

The 2006 DSMP describes six key strategies for transportation system management in District 5. This project considers and supports these strategies:

Strategy 1 - Improve safety and security, all modes: This project conforms to the Highway Design Manual (HDM), addresses weaving and merging operations, includes sidewalk along Soquel Avenue and adds a lighted overcrossing for bikes and pedestrians.

Strategy 2 - Maintain and preserve transportation systems: This operational improvement project would maximize use of existing infrastructure, life cycle cost has been considered.

Strategy 3 - Improve mobility through improved multimodal system: The overcrossing proposed with this project would provide a safe crossing of the highway for bikes and pedestrians.

Strategy 4 -Support economic vitality: This project is part of a plan for a comprehensive transportation system capable of meeting the travel and access needs of the general public, including local business access, commuting, tourism and goods movement.

Strategy 5 - Preserve and enhance the environment: This project's development examines environmental impacts, and proposes mitigations such as landscape replacement and aesthetic treatment of structures.

Strategy 6 - Reflect community values: This project is a part of the larger State Route 1 HOV Lanes and Transportation System Management Alternatives Project, whose progress and design features have been presented to and discussed with elected officials, commissions and the public.

Local planning jurisdictions are members of the PDT. Two of the jurisdictions, the City of Capitola and Santa Cruz County, have adopted general plans with which this project is considered compatible, although the adopted plans do not currently show the proposed geometrics. The traffic analysis was based on the balanced traffic forecasts generated by the Year 2030 Association of Monterey Bay Area Governments (AMBAG) Regional Travel Demand Model, which maintains current regional development data. California Coastal Commission staff have been involved in the planning process.

There are Class 2 bike lanes in the project area on Soquel Avenue, west and parallel to State Route 1: on Soquel Drive over the highway; on Chanticleer Avenue, running south of Soquel Avenue to Brommer Street; on $17^{\text {th }}$ Avenue, Commercial Way and Chanticleer Avenue and on $41^{\text {st }}$ Avenue south of and across the interchange. The proposal is compatible with Santa Cruz County's regional bike plan. Section 4.1 discusses community involvement in selecting the location of the Chanticleer Avenue pedestrian and bicycle overcrossing.

4.3 Traffic

A detailed traffic operations report entitled, "State Route 1 HOV Widening Project, from Morrissey Boulevard to San Andreas Drive Traffic Operations Report" was prepared in July 2007 for the SCCRTC. The July 2007 report was supplemented in May 2010 and August 2011, to address proposed design changes at several locations along the corridor and provide traffic operations analysis of potential Tier II projects. These reports include analysis of the State Route 1 within the project limits. The approved traffic operations report is dated April 2012.

Where this document refers to existing traffic volumes or conditions, it refers to traffic data collected in 2001 and 2003. The project team conducted a series of traffic counts within the study corridor, twice in 2001 and once in 2003. The forecast for opening yearwas estimated using the AMBAG travel demand forecasting model, and included the improvements constructed as part of the State Route 1/17 Widening for Merge Lanes Project and the Soquel to Morrissey Auxiliary Lanes Project. The AMBAG model assumes growth in population, housing and employment based on approved jurisdictional plans. The travel demand model synthesized the land use, socioeconomic/demographic, and roadway networks into future travel patterns as well as traffic volumes.

Based on 2012 data from the Department of Transportation's (DOT) website, Annual Average Daily Traffic (AADT) along State Route 1 in this segment is approximately 89,000 vehicles per day.

According to Appendix K of SCCRTC’s 2005 RTP, "Truck Traffic and Vehicle Occupancy Counts" two-axle truck volumes are 3% of morning traffic on State Route 1 in both directions.

An Accident Analysis Summary was generated from the Traffic Accident Surveillance and Analysis System (TASAS) for the highway segment Santa Cruz Route 1, PM 13.5 to 14.9 over the time period of July 1, 2008 to June 30, 2011. 166 collisions were reported during this period. Primary collision factors include: speeding (90), following too closely (21), improper turning (20), driving under the influence of alcohol (12), and 12 were other violations. Types of collisions include: rear ending (113), hitting an object (28), sideswiping (15), overturning (5), broadsiding (1), and 4 were other violations or not stated. 78% of collisions occurred during daylight and 87% occurred in dry conditions. Weave length can be a factor in the incidence of rear-ending and sideswiping, which represent 77% of the collisions in the three years reported. Increasing weave length by adding an auxiliary lane can be expected to reduce the rate of rearend and sideswipe collisions.

The fatal and injury accident rate is higher than average for facilities of this type based on accident data for the years 2008 through 2011.

Table 4.2: Three-Year Accident Data - State Route 1 PM 13.5 to 14.9 (07/01/2008 - 06/30/2011)(Accidents per Million Vehicle Miles)

	FATAL	FATAL + INJURY	TOTAL
ACTUAL	0.007	0.38	$\mathbf{1 . 1 8}$
AVERAGE	0.008	0.30	0.82

An Accident Analysis Summary was generated from the Traffic Accident Surveillance and Analysis System (TASAS) for the Santa Cruz Route 1 southbound off ramp to $41^{\text {st }}$ Avenue, PM 13.8 over the time period of July 1, 2008 to June 30, 2011. 14 collisions were reported during this time period. Primary collision factors include: speeding (3), driving under the influence of alcohol (1), and 10 were other violations. Types of collision include: broadsiding (7), sideswiping (4), rear ending (2), and one was not stated. 79% of collisions occurred during daylight and 57% occurred in dry conditions. 11 of these accidents were on $41^{\text {st }}$ Avenue near the ramp terminus, two were at the ramp terminus, and one occurred in the middle of the ramp. The southbound off ramp to $41^{\text {st }}$ Avenue meets the standards specified in the Caltrans Highway Design Manual $6^{\text {th }}$ edition. The project would provide speed-reduction warning signage at this ramp.

The fatal and injury accident rate is higher than average for facilities of this type based on accident data for the years 2008 through 2011.

Table 4.3: Three-Year Accident Data - SB Off Ramp to 41st Ave (07/01/2008 - 06/30/2011)(Accidents per Million Vehicles)

	FATAL	FATAL + INJURY	TOTAL
ACTUAL	0.000	0.30	$\mathbf{1 . 4 1}$
AVERAGE	0.003	0.35	1.01

An Accident Analysis Summary was generated from the Traffic Accident Surveillance and Analysis System (TASAS) for the Santa Cruz Route 1 northbound off ramp to Soquel Drive, PM 14.7 over the time period of July 1, 2008 to June 30, 2011 and is included in Attachment L. 7 collisions were reported during this time period. Primary collision factors were speeding (6) and one was other violation. Types of collision include: rear ending (3), hitting an object (3), and one was a sideswipe. 86% of collisions occurred during daylight and 43% occurred in dry conditions. Three of these accidents were at the off ramp gore, two were in the middle of the ramp, one was at the ramp terminus, and one was on Soquel Drive near the ramp terminus. The northbound off ramp to Soquel Drive is a non-standard design with a curve beginning at the start of the gore pavement and access to a local street from the ramp. Although ramp realignment is beyond the project scope, the project would provide speed-reduction and curve warning signage at this ramp.

The fatal and injury accident rate is higher than average for facilities of this type based on accident data for the years 2008 through 2011.

Table 4.4: Three-Year Accident Data - NB Offramp to Soquel Drive (07/01/2008-06/30/2011)(Accidents per Million Vehicles)

	FATAL	FATAL + INJURY	TOTAL
ACTUAL	0.000	0.10	$\mathbf{0 . 7 2}$
AVERAGE	0.001	0.17	0.54

The Accident Analysis Summary generated from the Traffic Accident Surveillance and Analysis System (TASAS), over the time period of July 1, 2008 to June 30, 2011 shows collision rates below state average at the following ramp locations: the Santa Cruz Route 1 southbound onramp from Soquel Drive, the Santa Cruz Route 1 northbound onramp from northbound $41^{\text {st }}$ Avenue, and the Santa Cruz Route 1 northbound onramp from southbound $41^{\text {st }}$ Avenue.

Table 4.5: Three-Year Accident Data - SB Onramp from Soquel Drive (07/01/2008 - 06/30/2011)(Accidents per Million Vehicles)

	FATAL	FATAL + INJURY	TOTAL
ACTUAL	0.000	0.13	0.26
AVERAGE	0.001	0.13	0.46

Table 4.6: Three-Year Accident Data - NB Onramp from NB 41st Ave (07/01/2008-06/30/2011)(Accidents per Million Vehicles)

	FATAL	FATAL + INJURY	TOTAL
ACTUAL	0.000	0.00	0.15
AVERAGE	0.002	0.21	0.73

Table 4.7: Three-Year Accident Data - NB Onramp from SB 41st Ave (07/01/2008-06/30/2011)(Accidents per Million Vehicles)

	FATAL	FATAL + INJURY	TOTAL
ACTUAL	0.000	0.00	0.36
AVERAGE	0.003	0.18	0.57

To improve safety, this project proposes to improve the weave/merge geometry by adding speed reduction signage, auxiliary lanes, and to standardize shoulder widths to 10 - ft allowing for evasive movements and better refuge for disabled vehicles.

2008 ADT:	92,000
2035 ADT:	124,300
DHV:	9,950
ESAL:	$8,302,900$
D:	60%
T:	3%
V:	65 mph
T1 120	11.5

ENGINEERS
PLANNERS
ENGINEERS
PLANNERS
ECONOMITST
ECONOMISTS
Wilbur Smith Associates

STATE ROUTE 1 FREEWAY AND RAMP VOLUMES YEAR 2015 NO BUILD CONDITIONS (AM PEAK)

Figure 4-1: State Route 1 Freeway and Ramp Volumes Year 2015 No Build Conditions (AM Peak)

LEGEND

\#\#\# Volumes During timeperiod 3-4:00 PM
\#\#\# Volumes During timeperiod 4-5:00 PM
\#\#\# Volumes During timeperiod 5-6:00 PM
NORTH
\#\#\# Volumes During timeperiod 6-7:00 PM
NOTTO SCALE

STATE ROUTE 1 FREEWAY AND RAMP VOLUMES
YEAR 2015 NO BUILD CONDITIONS (PM PEAK)

Figure 4-2: State Route 1 Freeway and Ramp Volumes Year 2015 No Build Conditions (PM Peak)

LGEND
\#\#\# Volumes During timeperiod 6-7:00 AM
\#\#\# Volumes During timeperiod 7-8:00 AM
\#\#\# Volumes During timeperiod 8-9:00 AM
\#\#\# Volumes During timeperiod 9-10:00 AM

Figure 4-3: State Route 1 Freeway and Ramp Volumes Year 2015 with Project (AM Peak)

LEGEND

\#\#\# Volumes During timeperiod 3-4:00 PM
\#\#\# Volumes During timeperiod 4-5:00 PM
\#\#\# Volumes During timeperiod 5-6:00 PM
\#\#\# Volumes During timeperiod 6-7:00 PM

ENGINEERS
PLANNERS
PCONOMITS
ECONOMISTS
STATE ROUTE 1 FREEWAY AND RAMP VOLUMES YEAR 2015 CONDITIONS (PM PEAK)

Figure 4-4: State Route 1 Freeway and Ramp Volumes Year 2015 with Project (PM Peak)

5. ALTERNATIVES

5.1 Viable Alternatives

5.1.1 No-Build Alternative

The No-build Alternative would not address the project purpose and need, but offers a basis for comparison with the Build Alternative. It assumes no major construction on Highway 1 through the project limits other than planned and programmed improvements and continued routine maintenance. The only planned and programmed improvements accounted for are the recently completed Soquel to Morrissey Auxiliary Lanes Project and the Highway 1/17 Merge Lanes Project.

Figure 5-1: No Build Alternative (Existing condition)

5.1.2 Auxiliary Lane Alternative

General Description:

This alternative proposes to add a standard $12-\mathrm{ft}$ auxiliary lane with standard $10-\mathrm{ft}$ shoulders between $41^{\text {st }}$ Avenue and Soquel Avenue/Drive in each direction. Figure 5-2 shows the proposed lane configuration. Attachments B and C show the proposed typical sections and horizontal layout. The southbound auxiliary lane would be 0.9 mile long, and the northbound would be 1.1 mile long. To achieve a standard section of $10-\mathrm{ft}$ median shoulder, $12-\mathrm{ft}$ lanes, and $10-\mathrm{ft}$ outside shoulders, and to allow for three through lanes in each direction per the Transportation Concept Report, the existing centerline of State Route 1 would be shifted 5 - ft to the north. The taper of the centerline shift would begin just north of the $41^{\text {st }}$ Avenue interchange and end just south of the Soquel Drive interchange. The balance of the new lane and increased shoulder width would come from widening the northbound side of State Route 1. Except near the on- and off ramps, this alternative would maintain the existing outside shoulder for the majority of the southbound side. The ramps on the southbound side would not be altered; the ramps on the northbound side
would be shifted to accommodate a widened State Route 1 alignment. A new concrete median barrier would be constructed.

Watsonville
Santa Cruz
Figure 5-2: $\mathbf{4 1}^{\text {st }}$ Ave to Soquel Drive/Avenue Auxiliary Lane Project Build Alternative

Soquel Avenue frontage road parallels State Route 1 along the southbound side and is separated from the highway by landscaping, elevation grade change, and chain link fence. The separation between the traveled ways varies from $35-\mathrm{ft}$ to $50-\mathrm{ft}$. Shifting the centerline of State Route 1 five ft to the northbound side would reduce the need for retaining walls and right-of-way acquisition for State Route 1 both for this project and in the future, for the Transportation Concept section.

The existing profile is generally flat and would be maintained. Between access ramps, existing right of way width varies from 150 ft to 210 ft , with the prevailing width approximately 160 ft .

This project is an operational improvement and would not increase capacity. Forecast Levels of Service are discussed in Section 4.1.

Cut slopes for this alternative have been designed at a 2:1 slope to the proposed edge of pavement. Fill slopes for this alternative have been designed at a $4: 1$ slope with a 3 ft graded shoulder to the edge of pavement.

The widened section would require modification of the existing storm drain system at Sta. $490+00$, as well as extension of a 36 in . culvert at Sta. $520+00$ and a 4 ft x 4 ft culvert at Sta. $535+00$. Treatment BMPs would be installed as part of the project.

Right of way acquisition would be required to accommodate the new overcrossing ramps along the opposite side of Soquel Avenue and at the Chanticleer Avenue cul-de-sac north of State Route 1. Access fencing would be modified at the Chanticleer Avenue cul-de-sac ramp landing.

Retaining walls are proposed at several key locations to reduce the amount of earthwork required, keep the improvements within the existing highway right-of-way and minimize impacts to wetlands and other waters of the U.S. Retaining walls would range in height up to $18-\mathrm{ft}$ above grade in fill sections of the roadway and 5 - ft above grade in the cut section. Retaining walls constructed in fill areas would be located to accommodate the Transportation Concept section for State Route 1 in this area. The wall at northbound Sta $493+50$ to Sta $495+00$ would be demolished along with the 41st/SR 1 interchange for the future Transportation Concept section.

Table 5-1 below shows the wall locations, the slopes behind them, and accompanying descriptions of use.

Table 5-1 Retaining Wall Locations

Wall Number	Location/STA	Length (ft)	Wall Ht	Slope behind wall	Cut/Fill Section	Retaining Wall notes
1	NB Sta 493+50 to Sta $495+00$	150	$2-5 \mathrm{ft}$	$2: 1$	Cut Section	Throw-away wall
2	NB Sta 504+13 to Sta $507+88$	375	$2-18 \mathrm{ft}$	na	Fill Section	Minimizes wetland impact at Rodeo Gulch
3	SB Sta. 504+00 to Sta. 507+50	350	$2-7 \mathrm{ft}$	na	Fill section	Avoids impact to Soquel Avenue
4	NB Sta. 519+42 to Sta. 523+50	408	$2-7 \mathrm{ft}$	na	Fill section	Minimizes wetland impact

$\mathrm{NB}=$ northbound; $\mathrm{SB}=$ southbound
In addition to improvements on State Route 1, a bicycle and pedestrian overcrossing would be built across State Route 1 and Soquel Avenue connecting Chanticleer Avenue on each side of State Route 1. Right of way acquisition would be required along the south side of Soquel Avenue to accommodate the overcrossing ramp. The horseshoe-shaped bicycle/pedestrian overcrossing outside width would vary from 14 ft along the ramps to 16 ft around the curves(12-14-ft clear path) The ramps grades would be 4.95% with landings, and would be constructed on fill up to a height of approximately 10 ft , beyond which the overcrossing would be supported by columns. On the northbound side of State Route 1, the walls retaining the portion of the ramp on fill and the overcrossing columns would be positioned to accommodate the future Transportation Concept facility width, including a safety-shape barrier at the base of the retaining walls. The footprint of the existing Chanticleer cul-de-sac would be adjusted to accommodate the bicycle/pedestrian overcrossing ramp on the north side of the highway. A new 6 - ft sidewalk would be constructed along Soquel Avenue adjacent and parallel to the new bicycle/pedestrian overcrossing, connecting existing sidewalk at the corner of Chanticleer and Soquel Avenues and at the commercial development north of the bicycle/pedestrian overcrossing. A Conceptual Layout of the overcrossing is included in Appendix J.

The structure itself would drain to State drainage facilities via pier and abutment down drains; the ramps would drain to the Santa Cruz County's storm drainage system.

As a part of this project, landscaping would be installed to the extent feasible in unpaved areas where existing vegetation has been removed or disturbed.

As discussed in the Section 8, Programming, SCCRTC may elect to construct the project in three construction contracts: Northbound auxiliary lane, bicycle/pedestrian overcrossing, and southbound auxiliary lanes.

5.2 Non-standard Mandatory and Advisory Design Features

A mandatory design exception is required for the proposed Chanticleer Avenue bicycle/ pedestrian overcrossing stopping sight distance based on a design speed of 10 miles per hour. Section 1003.1(10) states the minimum stopping sight distance based on design speed shall be $\mathbf{1 2 5}$ feet for $\mathbf{2 0}$ miles per hour. The proposed stopping sight distance is $\mathbf{6 6} \mathbf{f t}$.

The non-standard stopping sight distance reduces right of way acquisition, visual impact, and project cost.

An advisory design exception is required for the proposed median width of $22-\mathrm{ft}$. Section 305.1(1) (a) of the HDM states: Where managed lanes (HOV, Express, etc) or transit facilities are planned, the minimum median width should be 62 feet.

The $22-\mathrm{ft}$ median width minimizes wetland, right-of-way and community impacts and tree removal. A 22 ft wide median would also avoid reconstruction of Soquel Avenue, avoid retaining walls in cut sections and would continue the median width constructed under the $1 / 17$ Merge Lane and Soquel to Morrissey Auxiliary Lane projects.
An advisory design exception is required for proposed Chanticleer Avenue overcrossing columns and retaining walls at the locations in the Table 5-2. Section 309.1(2) of the HDM states that on freeways and expressways, a Clear Recovery Zone (CRZ) width of $30-f t$ is the minimum desirable and that consideration should be given to increasing this width based on traffic volumes, operating speeds, terrain, and cost.

Fixed objects including bridge piers, abutments, retaining walls, and noise barriers closer to the edge of traveled way than the distances listed above should be eliminated, moved, or redesigned to be made yielding.
The proposed retaining wall locations would avoid impacts to the wetlands, avoid reconstruction of Soquel Avenue, avoid additional right-of-way take and reduce construction costs. Where the CRZ is proposed to be less than $30-\mathrm{ft}$ at columns or retaining walls, concrete barrier at 7 - ft from edge of pavement would be included in the project to shield the proposed obstruction and to meet the traffic safety recommendation of a 17 ft CRZ.

A mandatory design exception fact sheet was approved on 2/13/2014 and an advisory design exception fact sheet was approved on $2 / 13 / 2014$.

Table 5-2 Retaining Wall Location and Clear Recovery Zone Distances

Wall No.	Location	Length (ft)	CRZ Distance	Cut/Fill Section	Comments	Remove for Transportation Concept?
1	$\begin{aligned} & \text { NB Sta } 493+50 \\ & \text { to Sta } 495+00 \end{aligned}$	150	10-ft from ETW	Cut Section	Minimizes ROW take. Construction of an additional lane would require removal of this wall.	Yes
2	NB Sta $504+13$ to Sta $507+88$	375	22-ft from ETW	Fill Section	Inside Rodeo Gulch wetland area. This wall location meets mandatory standards for clearance to fixed objects for the future transportation concept section.	No
3	SB Sta. $504+00$ to Sta. $507+50$	350	22-ft from ETW	Fill section	Avoids impact to Soquel Avenue. This wall location meets mandatory standards for clearance to fixed objects for the future transportation concept section.	No
4	$\begin{aligned} & \text { NB Sta. } 519+42 \\ & \text { to Sta. } 523+50 \end{aligned}$	408	22-ft from ETW	$\begin{gathered} \text { Fill } \\ \text { section } \end{gathered}$	Inside wetland area. This wall location meets mandatory standards for clearance to fixed objects for the future transportation concept section.	No

5.3 High Occupancy Vehicle (HOV) (Bus and Carpool) Lanes

There are no special features for bus and carpool lanes proposed in this project. The proposed bicycle/pedestrian overcrossing and retaining walls 2,3 , and 4 are designed to accommodate the future addition of a through lane in each direction and maintain standard lane and shoulder widths. See Table 5-2, above, for a tabulation of which of the walls would be removed if State Route 1 were widened for additional through lanes.

5.4 Ramp Metering

No ramp metering is proposed with this project.

5.5 Park and Ride Facilities

There are no new park and ride facilities proposed as part of this project. There is an existing park and ride lot at Soquel Drive, just north of State Route 1.

5.6 Utility and Other Owner Involvement

There are approximately 19 utility lines within the project area that include overhead electrical and transmission, underground gas, sanitary sewer, storm drain, TV/cable, telephone, and fiber optic lines. Pacific Gas \& Electric (PG\&E) provides gas and electricity service in the project area. SBC/AT\&T maintains the local telephone service and Comcast provides cable service.

No longitudinal encroachments are proposed.
It is expected that the project will impact two 18 -in and one 36 -in reinforced concrete storm drains, one 48 -in box culvert, one 108 -in concrete arch culvert, three 10 -in sanitary sewer lines, five electrical facilities, including both poles and lines (21 kV transmission), one high pressure gas facility (to be potholed and protected in place), and one cable facility. Utility relocation may require scheduled short-term interruption of electrical service. See utility impact plans in Attachment H.

The project would pay only for temporary relocations required for construction phase, if any, and owners would be liable for permanent relocation costs. An example of a temporary relocation would be a pole that would interfere with construction of the Chanticleer Avenue Pedestrian Overcrossing (POC) but that could return to its original location post-construction. Owners would be liable for permanent relocation cost.

The PG\&E poles in conflict with the Chanticleer Avenue overcrossing are in Santa Cruz County right of way, and their relocation would follow Santa Cruz County utility protocol. The relocation of the existing underground cable line just south of Chanticleer Avenue that encroaches on State right of way both transversely and longitudinally would follow Caltrans relocation procedures. No cost would be borne by the State.

Project would comply with high/low risk procedures.

5.7 Highway Planting

Highway planting is proposed to be a part of this project. Retaining walls would be used to preserve existing vegetation in fill areas. Native plants that are identified to be beneficial to erosion control would be protected as much as possible. Fencing would also be used during construction to protect native vegetation and wetlands during construction.

All areas with existing vegetation that are disturbed by construction would be replanted, if feasible. Replacement planting would include ground covers, large shrubs and trees, including large plants where immediate size is desired. Wood chip mulch would be included to provide an attractive surface treatment, suppress weed growth and improve soil conditions in landscaped areas. Plant species would be selected that are low maintenance, pest resistant and water thrifty.

An automated irrigation system would be installed to water plants individually, conserving water and discouraging invasive weeds.

Environmentally Sensitive Area (ESA) type fencing would be used during construction to protect native vegetation and wetlands during construction.

5.8 Erosion Control

Cut slopes on the project would be $2: 1$ or flatter and fill slopes would be $4: 1$ or flatter. All disturbed areas would be stabilized with fiber rolls, compost and native plant seeding. Existing slopes are generally $2: 1$ or flatter, and are vegetated. To minimize retaining wall height, slopes behind proposed retaining walls would be regraded at approximately a $2: 1$ slope. Slope maintenance is discussed in Section 7.9, "Maintenance Issues".

Where concentrated surface flow is expected, hydraulic conveyance systems would be constructed and the outlets of these systems would be treated to provide energy dissipation and to reduce erosion potential. Concentrated flow conveyance systems include ditches, berms, dikes, and swales.

Existing vegetation that is beneficial to erosion prevention would be identified and would be preserved as much as possible. Retaining walls and fences would help preserve vegetation after and during construction.

Erosion control issues are addressed in more detail in the Storm Water Data Report.

5.9 Storm Water Compliance

The project would discharge to Arana Gulch, Rodeo Gulch, and Soquel Creek.
The project's design goal is to treat 95% of water quality volume (WQV)/Water Quality Flow (WQF) of the added impervious area by metering or detaining flow prior to discharge into receiving waters. Increased roadway runoff will be addressed by outlet protection, velocity dissipation devices, and possible peak flow attenuation basins. Most of the runoff flows to Monterey Bay and eventually into the Pacific Ocean.

Disturbed Areas Within Project

Total Disturbed Area	18.5 acres
Additional Impervious Surface	4.9 acres
Estimated Treated Area	4.7 acres

Treatment Best Management Practices(BMPs) are anticipated to include biofiltration swales and strips, Austin sand filters, detention devices and/or infiltration devices.

Construction phase BMPs to be included in plans and specifications are expected to include temporary erosion control (move-in/move-out) and covers, fiber rolls, silt fence, inlet protection, concrete washout facility, gravel construction entrances, dewatering discharge treatment, ESA fencing around jurisdictional areas.

A Stormwater Data Report (SWDR) (see Attachment F for signed cover) was prepared for this project that specifies which Best Management Practices (BMPs) would be incorporated into the project plans and specifications.

Since this project proposes to add more than 1 acre of new impervious surfaces, permanent storm water treatment BMPs will be incorporated into this project to the maximum extent practicable.

A preliminary project risk level assessment, as required by the Construction General Permit Order 2009-0009-DWQ, has determined that this project is a Risk Level 2 project. A final risk level determination will be made at PS\&E.

Preliminary calculations of Net New Impervious Surfaces (NNI) have shown that the existing impervious surfaces will be increased 14% by this project. Since the project proposes to add less than 50% of the existing impervious surfaces, all new impervious surfaces will be evaluated for storm water treatment BMPs.

5.10 Noise Barriers

Due to constrained right of way, no berms for reducing noise levels are proposed. The Noise Abatement Decision Report (NADR) under Section 6.8 indicates that there were no reasonable cost effective sound walls within the limits of the project.

Additionally, there is one severe receptor identified within the project that the NADR references. Building acoustic treatment is recommended for this residence preliminarily pending reevaluation of conditions and costs during final design.

5.11 Non-Motorized and Pedestrian features

A bicycle and pedestrian overcrossing would be built across State Route 1 and Soquel Avenue frontage road connecting Chanticleer Avenue on each side of State Route 1. The bicycle/ pedestrian overcrossing would be $12-\mathrm{ft}$ wide ($10-\mathrm{ft}$ clear path) on the ramp and two feet wider along the horseshoe curve. The footprint of the existing cul-de-sac would be adjusted to accommodate the bicycle/pedestrian overcrossing ramps on the north side of the highway. $400-\mathrm{ft}$ of 6 - ft wide sidewalk would be constructed along Soquel Avenue adjacent and parallel to the new bicycle/pedestrian overcrossing, connecting existing sidewalk at the corner of Chanticleer and Soquel Avenues and at the commercial development north of the bicycle/pedestrian overcrossing. The bicycle/pedestrian overcrossing would require City and State right-of-way acquisition to construct and maintain.

The bicycle/pedestrian overcrossing and new sidewalk would be American with Disability Act (ADA) compliant. An extensive outreach program as well as a bicycle and pedestrian study were performed to identify and prioritize needed and desired facilities within the State Route 1 corridor. As a result of this effort, three bike and pedestrian crossings at Mar Vista Drive, Chanticleer Avenue, and Trevethan Avenue have been identified to provide more bike access for local residents. These new crossings would also serve to mitigate some roadway conflicts by reducing non-motorized volumes traveling through the interchange areas. Only the Chanticleer Avenue bicycle/pedestrian overcrossing is within the Tier II project limits, and is proposed as part of this project.

5.12 Needed Roadway Rehabilitation and Upgrading

The project proposes to determine and correct the cause of the pavement failure at Rodeo Gulch in the northbound direction. It is anticipated that a portion of the subgrade would be replaced at the failure site. Correction of this failure may include a new roadway drainage system at this location. Proposed Retaining Wall 2 will help prevent loss of subgrade.

The proposed widening would use the same roadbed structural section as used in the Soquel to Morrissey Auxiliary Lanes project. The existing pavement was overlaid with asphalt under Caltrans maintenance program in 2007.

An overlay 0.10^{\prime} thick has been assumed for rehabilitation of existing adjacent lanes. During the design phase, the pavement condition will be assessed to determine the appropriate rehabilitation strategy to be included in the proposed construction.

5.13 Needed Structure Rehabilitation and Upgrading

No significant existing structure rehabilitation or upgrading is anticipated for this project.

5.14 Cost Estimate

The preliminary cost for the Auxiliary Lane alternative is $\$ 16.6$ million which includes $\$ 13.9$ million in roadway items, $\$ 2.7$ million for the bike and pedestrian overcrossing, and $\$ 1.3$ million in utility relocations and right-of-way acquisitions. The Project Report Cost Estimate is included in Attachment D.

5.15 Effect of Projects-Funded-by-Others on State Highway

Effects of the build alternative on highway operations are discussed in section 4.1. A summary of impacts and mitigations is included in section 6.5.

5.16 Rejected Alternatives

The Tier II build alternative is the only alternative considered by the Project Design Team to be viable for comparison to No Build, and for environmental evaluation. There were no rejected alternatives.

6. CONSIDERATIONS REQUIRING DISCUSSIONS

6.1 Hazardous Waste

A Phase I Initial Site Assessment was prepared by Parsons Group for State Route 1 including the project area, in late 2006 and early 2007. No hazardous waste sites with potential to affect the Soquel to Morrissey Auxiliary Lanes project were identified in the Initial Site Assessment.

Aerially deposited lead (ADL) conditions for this project are assumed to be similar to the segment of State Route 1 immediately north of this project, between Soquel Avenue and Morrissey Boulevard. In late 2008, the soil was tested in the Soquel Avenue to Morrissey

Boulevard segment and a Limited Site Investigation Report prepared. Borings indicate that in general, there is ADL contamination extending from the existing edge of pavement to 20-22-ft out on both sides of the roadway, and up to $4-\mathrm{ft}$ deep on the northbound side and $2-\mathrm{ft}$ deep on the southbound side. The ADL material was characterized as reuseable under the terms of the Variance issued to Caltrans by the Department of Toxic Substances Control (DTSC), although it was not reused. Assuming a similar contamination pattern, little ADL-contaminated material would be generated along the southbound side of the project area because most of the excavation is in the median and on the northbound side. Assuming that the median area is also contaminated to a depth of 2 - ft along the superelevated curve, there would be approximately 3300 cubic yards of ADL-contaminated roadway excavation. Although the material is likely to be characterized as reusable, there is little fill on the project. The cost estimate assumes that all of the contaminated material must be offhauled at $\$ 200$ per cubic yard, because as was the case on the adjacent project, much of the required fill would be inside sensitive jurisdictional areas and the Class 1 landfill may be out of state. In the cost estimate, the cost for roadway excavation of ADLcontaminated material is part of the Environmental Mitigation line item.

Additional soil testing would be a part of the Plans, Specifications and Estimate (PS\&E) phase, in order to quantify the volume to be removed and determine disposal or reuse requirements. It is expected that additional soil testing would be a part of the construction contract, to verify ADL concentrations and confirm that excavated soil is correctly characterized and disposed of. A lead compliance plan would be required to minimize worker exposure to lead-impacted soil.

All existing paint in the project area, including traffic striping, would be treated as leadcontaining, based on the fact that lead was a common paint ingredient in pre-1978 paints. The February 2013 Draft Phase I Initial Site Assessment (Parsons) recommends testing for Asbestos Containing Material in the abandoned house to be demolished to make way for the Chanticleer Avenue Bicycle/pedestrian overcrossing. Such testing would take place during PS\&E phase.

If any dewatering is to be performed during project construction activities, then prior consultation with representatives of the Soquel Creek Water District, Santa Cruz Environmental Health Department, and Central Coast Regional Water Quality Control Board is recommended. This consultation would be helpful in determining the degree of water treatment and water disposal options during dewatering activities, as well as groundwater investigation/sampling requirements prior to dewatering activities.

During construction, unknown hazardous materials could be encountered, or materials could be accidentally spilled. Best Management Practices would minimize or avoid these risks.

6.2 Value Analysis

Value analysis of this project will take place as a first order of work following PAED.

6.3 Resource Conservation

The proposed project would minimize the use of energy and nonrenewable resources. No major facilities can be salvaged or relocated from this project. However, whenever possible, existing roadway items such as signs, light standards, guardrails, and other associated hardware would be relocated or stockpiled for future use. Asphalt concrete pavement and concrete removed from
existing roadways and structures may be reused as either base material or embankment material on this project. Measures to conserve energy and nonrenewable resources during construction would be assessed during the design phase of the project and would include materials, solar features, views, and construction operations.

The potential for using recycled asphalt concrete would be determined during the design phase. Climatic conditions in Santa Cruz County do not allow successful installation of rubberized asphalt concrete.

The following measures would be investigated and incorporated into the project as much as feasible:

1. Use of reclaimed water-currently 30 percent of the electricity used in California is used for the treatment and delivery of water. Use of reclaimed water helps conserve this energy, which reduces greenhouse gas emissions from electricity production.
2. Landscaping-reduces surface warming and through photosynthesis decreases carbon dioxide. Landscaping concepts for the project are currently being investigated.
3. Use of energy efficient lighting.
4. Idling restrictions for trucks and equipment during construction.

6.4 Right-of-way Issues

The project is in an area of mixed zoning and uses. The predominant uses are low to medium density residential, commercial, and some industrial. There are a total of 5 privately owned and 1 publically owned parcels impacted by the project. No temporary construction easements would be required. The project requires acquisition of a total of 0.31 acres of public and privately owned property. The property would be acquired in fee for the project. The impacted parcels are improved with typical residential and commercial site improvements and one abandoned house would require demolition. This alternative has minimal impact on adjacent properties.

Right-of-way costs include environmental mitigation costs incurred prior to construction, such as off-site compensatory mitigation and permit fees. Right-of-way cost is estimated to be $\$ 1,276,000$ including utilities, compensatory environmental mitigation and permit fees.

The SCCRTC would fund right-of-way work along with construction and other project support costs.

The Right-of-way Data Sheets, and the Right-of-way Impact and Utility Impact Plans are included in Attachment H.

6.5 Environmental Issues

The TIER I and TIER II Draft Environmental Impact Report / Environmental Assessment has been prepared in accordance with Caltrans' environmental procedures, as well as State and Federal environmental regulations. The attached DEIR/EA is the appropriate document for the proposal. The following table contains a summary of the major environmental impacts of the project.
\{This page is left blank intentionally

Table 6.1: Summary of Environmental Impacts Tier II Auxiliary Lane Alternative

Potential Impact		Tier II Auxiliary Lane Alternative	No Build Alternative
Permanent Impacts			
Land Use		Would convert 0.28 -acre of land from one commercial parcel and from one residential parcel to transportation use.	No Impacts.
Consistency with State, Regional, and Local Plans		Project would be consistent with local planning goals and policies.	No Impacts.
Coastal Zone		The Tier II project is located outside of coastal zone jurisdiction; no coastal zone determinations will be required.	No Impacts.
Growth		Proposed project would serve existing growth already planned and projected for the corridor and would not stimulate unplanned residential or related commercial growth.	No Impacts.
Environmental Justice		Tier II Auxiliary Lane Alternative would not cause disproportionately high and adverse effects on any minority or low-income populations per Executive Order 12898 regarding Environmental Justice.	No Impacts.
Relocations	Business	One partial acquisition of a commercial parcel would be required.	No Impacts.
	Residential	No relocations.	No Impacts.
Utilities		Fifteen utility lines would likely require relocation. Utility relocations may require shortterm, limited interruptions of service. Potential for emergency service delays during construction. Coordination with providers would avoid unscheduled interruptions in service.	No Impacts.
Emergency Services		Would improve the capacity of Route 1 within this segment, allowing emergency service providers to improve response times.	No Impacts.
Traffic and Transportation		The addition of auxiliary lanes on Route 1 between Soquel Avenue and $41^{\text {st }}$ Avenue would improve the ability of Route 1 to meet future demand within the traffic study area. When compared to the No Build Alternative, traffic conditions would improve substantially in the northbound direction during the morning peak hour and marginally in the reverse commute directions (southbound in the morning peak hour and northbound in	No improvements would occur on the facility, resulting in worsening traffic conditions.

	the evening peak hour); however, additional traffic along with the already-congested conditions in the southbound direction during the evening peak hour would lead to a slight decline in traffic operating condition.	
Pedestrian and Bicycle Facilities	The new pedestrian and bicycle overcrossing at Chanticleer Avenue would have a positive impact on multimodal connectivity by providing a new dedicated crossing of the freeway between Soquel Avenue and 41 ${ }^{\text {st }}$ Avenue.	No improvements would occur on the facility, resulting in worsening traffic conditions.
Parking	No parking impacts.	Incremental relief would be provided for transit due to improvement of highway operations under the Tier II Auxiliary Lane Alternative.
Transit	Substantial visual changes from highway widening/addition of lanes and removal of trees and mature vegetation, as well as increase in hardscape such as pavement, overcrossing structure and walls	No Impacts. area.
Visual/Aesthetics	No anticipated adverse effect to historic or archaeological resources.	The lack of improvements would worsen travel conditions and would depress transit ridership throughout the study
Cultural Resources	See construction impact for Tier II Auxiliary Lane Alternative below.	No Impacts.
Hazardous Materials	Would result in reduction in most criteria pollutants and a negligible increase in one criteria pollutant.	Reductions in most criteria pollutants, with a minor increase in PM ${ }_{10}$ and PM 2.5 emissions.
Air Quality	Portions of the project are located within the fringe of the 100-year floodplain, with resulting	No Impacts.
unavoidable impacts to the floodplain. Impact is minor with no increase in flood risk.		

Paleontology	High potential for fossil remains that could be scientifically important to be uncovered by excavations during project construction.	No Impacts.
Noise	Five receivers approach noise abatement criteria for which it has been determined abatement in the form of soundwalls is feasible, but not reasonable and is therefore not recommended. Abatement in the form of noise insulation is recommended for the one residence that will realize a severe noise increase,	No Impacts.
Natural Communities	Permanent effects to the following natural communities would occur: Riverine/ Freshwater Marsh (0.02-acre), Riparian Forest (0.13-acre), Coast Live Oak Woodland (0.001-acre), Ruderal/Disturbed (0.19-acre) and Landscaped/ Developed communities (5.55 acres). Impact avoidance, minimization, and mitigation measures are proposed.	No Impacts.
Wetlands and other Waters	Project would permanently impact 0.02-acre of United States Army Corps of Engineers other waters at Rodeo Gulch, and $0.13-a c r e ~ o f ~ C a l i f o r n i a ~ D e p a r t m e n t ~ o f ~ F i s h ~ a n d ~$ Wildlife jurisdiction wetland area at the Drive-in roadside ditch. Proposed permanent and temporary impact areas at the Drive-in roadside ditch consist of roadway widening and retaining wall construction that would encroach into the active channel of this seasonal roadside ditch. Proposed permanent and temporary impact areas at the Rodeo Gulch consist of roadway widening and retaining wall construction on existing road berm areas directly above and draining into the channel of Rodeo Gulch. No project work is proposed in the active channel.	No Impacts.
Special-Status Species	No impacts on special-status plant species are anticipated; however, there is a potential that special-status species could become established before project construction and additional surveys may be required. Potential impacts to California red-legged frog and tidewater goby could result, as discussed under Threatened and Endangered Species.	No Impacts.
Threatened and	Permanent impacts to California red-legged frog could occur due to habitat loss at Rodeo Gulch and the Drive-in ditch. Potential impacts to tidewater goby would occur due to habitat loss at Rodeo Gulch. Formal consultation with the United States Fish and Wildlife Service will be required for these species.	No Impacts.

Traffic and Transportation/ Pedestrian and Bicycle Facilities	Short term and intermittent delays in traffic due to construction. Bicycle and pedestrian access to be maintained.	No Impacts.		
Visual/Aesthetics	Construction activities would involve use of equipment, stockpiling of soils and materials, and other visual signs of construction.	No Impacts.		
Hydrology, Water Quality and Stormwater Runoff	Construction activities will have a temporary impact on water quality and stormwater runoff.	No Impacts.		
Hazardous Waste/ Materials	High potential of encountering aerially deposited lead in soils. Existing structures may have asbestos-containing materials and lead-based paint.	No Impacts.		
Air Quality	Standard Caltrans construction management practices will ensure that air quality impacts associated with construction will be minimal. These include requiring emission controls on construction equipment and spraying water on exposed surfaces to minimize dust.	No Impacts.		
Emergency Services	Project would have the potential for emergency service delays during construction. Implementation of the Traffic Management Plan in compliance with Caltrans and local policies would involve planning with emergency service providers throughout the project construction to avoid emergency service delays.	No Impacts.		
Noise	There would be short-term and intermittent increases in noise levels due to construction activities.	No Impacts.		
Natural Communities	Temporary effects to the following natural communities would occur: Riverine/ Freshwater Marsh (0.06-acre), Riparian Forest (0.09-acre), Coast Live Oak Woodland $(0.012-a c r e), ~ R u d e r a l / D i s t u r b e d ~(0.07-a c r e) ~ a n d ~ L a n d s c a p e d / D e v e l o p e d ~ c o m m u n i t i e s ~$			
$(5.22$ acres). Impact avoidance, minimization, and mitigation measures are proposed.			\quad No Impacts. $\quad . \quad$	No Impacts.
:---				
Wetlands and other Waters				
Project would temporarily impact 0.06-acre of United States Army Corps of Engineers other waters at Rodeo Gulch, and 1.5 acres of California Department of Fish and Wildlife jurisdiction wetland area at the Drive-in ditch. Proposed permanent and temporary impact areas at the Drive-in roadside ditch consist of roadway widening and retaining wall construction that would encroach into the active channel of this seasonal roadside ditch. Proposed permanent and temporary impact areas at the Rodeo Gulch consist of roadway widening and retaining wall construction on				

	existing road berm areas directly above and draining into the channel of Rodeo Gulch. No construction work is proposed in the active channel.	
Special-Status Species	Construction noise, movement of workers, and tree/vegetation removal could disturb nesting birds. Construction activities at the Drive-in roadside ditch and Rodeo Gulch have the potential to affect tidewater goby and California red-legged frog.	No Impacts.
Threatened and Endangered Species	Construction noise, movement of workers, and tree/vegetation removal could disturb nesting birds. Construction activities at the Drive-in roadside ditch and Rodeo Gulch have the potential to affect tidewater goby and California red-legged frog. Potential Impacts to the California red legged frog and tidewater goby will require consultation with the United States Fish and Wildlife Service.	No Impacts.

Impact to jurisdictional areas (Rodeo Gulch, STA 504+00 to 508+00 and narrow ditch at Sta $520+00$ to $523+00$) would be minimized by construction of retaining walls, and ESA fencing would be installed to protect sensitive area during construction.

Visual impacts due to the improvements proposed as part of the Build Alternative include loss of vegetation and increase in hardscape such as pavement, overcrossing structure and walls. Measures recommended for visual impacts, include:

- Developing the specifics of aesthetic enhancements, including texture and color, with community involvement during final design.
- Including architectural treatment, such as texture and/or color, shadow lines for caps, and other aesthetic enhancements on retaining walls and Chanticleer Bicycle/pedestrian overcrossing
- Preserving existing desirable vegetation would be preserved to the greatest extent feasible, and plant new landscaping in all plantable areas.
- Designing treatment features so that they appear to be a natural part of the landscape

Drainage systems would be modified to connect to MS4 areas in order to meter and detain flows so that pre-construction storm water discharge is maintained. Stainless steel markers are proposed for new inlets needing stenciling.

Storm water treatment measures include biofiltration strips, biofiltration swales, and detention devices. Strips and swales filter pollutants via vegetation; they are mainly effective at removing debris and solid particles, and together with Austin sand filters are most feasible for the project. Detention devices are basins or tanks that temporarily detain runoff under quiescent conditions; they are not as cost-effective as strips and swales, but are still being considered until more geotechnical information for the project is obtained.

The attached DEIR/EA detailed mitigation measures for both temporary (construction) and permanent impacts.

6.6 Air Quality Conformity

The project area is in the North Central Coast Air Basin under the jurisdiction of the Monterey Bay Unified Area Air Pollution Control District.

Because the project is located in an attainment/unclassified area for all current federal air quality standards, regional conformity requirements do not apply.

6.7 Noise Abatement Decision

This Noise Abatement Decision Report (NADR) (section 6.7 of the Draft Project Report) is an evaluation of the reasonableness and feasibility of incorporating noise abatement measures into this project; Constitutes the preliminary decision on noise abatement measures to be incorporated into the DED (if applicable); and is required for Caltrans to meet Title 23, Code of Federal Regulation, Part 772 of the Federal Highway Administration noise standards.

The NADR does not present the final decision regarding noise abatement; rather, it presents key information on abatement to be considered throughout the environmental review process, based
on the best available information at the time the DED is published. If a project is subject to federal review, but does not have a circulated ED, the NADR section documents the final noise abatement decision.

The NADR does not address noise barriers or other noise-reducing treatments required as mitigation for significant adverse environmental effects identified under the California Environmental Quality Act (CEQA).

The tables included here show the sound walls that have been identified to be acoustically feasible, and whether they are considered to be reasonable to construct as part of the project.

Results of the Noise Study Report

The Noise Study Report for this project was prepared by Parsons Transportation Group in April 2013 and approved by Vladimir Timofet, District 5 Environmental Engineering-Oversight on May 23, 2013.

The Noise Study Report evaluated noise impacts at various frequent outdoor use areas in the project area and identified feasible abatement for noise impacts in two locations. North of Route 1, between Rodeo Gulch Creek and Mattison Lane, two masonry block soundwalls with a combined length of $1145-\mathrm{ft}$ (soundwalls S154 and S158) would work as a system to provide noise abatement for the outdoor use areas of three single-family residences. South of Route 1, between $17^{\text {th }}$ Avenue and the Soquel interchange, a masonry block soundwall with a length of 178 - ft (soundwall S165) would provide noise abatement for the outdoor use areas of two singlefamily residences.

Table 6.2 - Summary of Barrier Evaluation from Noise Study Report

Barrier	Location	Station	Height (ft)	Acoustically Feasible?	Number of Benefited Residences	Reasonable Allowance per Residence	Total Reasonable Allowance
 S158	Shoulder \& R/W	Sta 506+54 to $520+00$	8	Yes	1	$\$ 55,000$	$\$ 55,000$
			10	Yes	1	$\$ 55,000$	$\$ 55,000$
			12	Yes	2	$\$ 57,000$	$\$ 114,000$
			14	Yes	5	$\$ 57,000$	$\$ 285,000$
S165	R/W	Sta 539+50 to $546+06$	8	Yes	1	$\$ 45,000$	$\$ 45,000$
			10	Yes	2	$\$ 45,000$	$\$ 90,000$
			12	Yes	2	$\$ 47,000$	$\$ 94,000$
			14	Yes	2	$\$ 47,000$	$\$ 94,000$
		16	Yes	2	$\$ 47,000$	$\$ 94,000$	

Factors in the Noise Abatement Decision Report

Key information used in making the preliminary noise abatement decision is summarized below in Table 2 - Summary of Abatement Key Information.

Table 6.3 - Summary of Abatement Key Information

Barrier	Height (ft)	Acoustically Feasible?	Number of Benefited Residences	Total Reasonable Allowance	Estimated Construction Cost	Cost Less than Allowance?
 S158	8	Yes	1	$\$ 55,000$	$\$ 368,000$	No
	10	Yes	1	$\$ 55,000$	$\$ 459,000$	No
	12	Yes	2	$\$ 114,000$	$\$ 551,000$	No
	14	Yes	5	$\$ 285,000$	$\$ 643,000$	No
S165	8	Yes	5	$\$ 285,000$	$\$ 735,000$	No
	10	Yes	1	$\$ 45,000$	$\$ 210,000$	No
	12	Yes	2	$\$ 90,000$	$\$ 262,000$	No
	14	Yes	2	$\$ 94,000$	$\$ 314,000$	No
	16	Yes	2	$\$ 94,000$	$\$ 367,000$	No
		$\$ 94,000$	$\$ 419,000$	No		

Nonacoustical Factors Relating to Feasibility

There are no apparent nonacoustical factors relating to the feasibility of the above mentioned sound walls. The feasible walls are proposed to be located at either the edge of pavement or the right-of-way line and have no effect on the geometry of State Route 1, are under no geotechnical restrictions, and do not affect any utilities.

Preliminary Noise Abatement Decision

There are no reasonable cost effective sound walls within the limits of the project.
Soundwall S158 is feasible, but does not appear to meet reasonableness criteria. Model data indicate that with no barrier, one single-family residence would experience a traffic noise level of 76 dBA ; therefore, it is considered to be severely impacted. Where severe impacts are identified, unusual and extraordinary abatement must be considered. If a noise barrier is determined to be unreasonable based on cost, or cannot be constructed for some reason, or is unable to provide feasible traffic noise abatement, it should still be considered or alternative noise abatement measures such as building acoustic treatment may be provided. Partial construction of an $8-\mathrm{ft}$ high soundwall from Station $514+90$ to $518+00(310-\mathrm{ft})$ would provide feasible noise abatement only for this severely impacted house, but it would be short $\$ 44,200$ between the estimated construction cost and the total reasonable allowance of Soundwall S158.

Building acoustic treatment is recommended for this residence preliminarily pending reevaluation of conditions and costs during final design.

The preliminary noise abatement decision presented in this report is based on preliminary project alignments and profiles, which may be subject to change. As such, the physical characteristics of noise abatement described herein also may be subject to change. If pertinent parameters change substantially during the final project design, the preliminary noise abatement decision may be changed or eliminated from the final project design. A final decision to construct noise abatement will be made upon completion of the project design.

The preliminary noise abatement decision presented here will be included in the DED, which will be circulated for public review.

Secondary Effects of Abatement

There are no secondary effects of abatement as no feasible walls within the project limits are reasonable to construct, and thus are not recommended for the project.

7. OTHER CONSIDERATIONS AS APPROPRIATE

7.1 Public Hearing Process

A public hearing shall be scheduled to present the developed viable alternatives for public comment. The SCCRTC has already held multiple public outreach efforts to discuss improvements along the State Route 1 corridor, including open houses in Spring 2004 and Fall 2006.

7.2 Route Matters

A superseding freeway agreement with Santa Cruz County would be required to cover the addition of the Chanticleer Avenue Bicycle/pedestrian overcrossing.

7.3 Permits

Permits from the U.S. Army Corps of Engineers (404), State Department of Fish and Game (1602), and the Regional Water Quality Control Board (401) would be required. Additional permits for the materials site and disposal site may be required.

7.4 Cooperative Agreements

Caltrans and the Regional Transportation Commission have a cooperative agreement for the PA/ED phase for this project, executed in October 2002. This agreement would be updated for future phases of the project and is expected that responsibilities would be assigned similarly to the Soquel to Morrissey Auxiliary Lane project. The PS\&E phase agreement would stipulate that:

- SCCRTC or its consultants will prepare project plans, specifications and estimates at SCCRTC's expense.
- The SCCRTC or its consultants will develop utility relocation plans, perform right-ofway engineering and prepare plats and legal maps and other right-of-way submittals at the SCCRTC's expense.
- The State will prepare the utility relocation agreements and right-of-way appraisals and perform acquisition as required for obtaining the property rights necessary for the construction of this project.
- SCCRTC and Caltrans will share responsibility for coordinating with a resource agency such as Resource Conservation District of Santa Cruz to develop an environmental mitigation plan which SCCRTC will fund.
- SCCRTC will prepare permit applications and pay permit fees.

A separate, future cooperative agreement will be required to cover responsibilities for the construction phase of the project, as well as for maintenance of the Chanticleer Avenue Bicycle/pedestrian overcrossing, its right-of-way, and its drainage facilities.

7.5 Transportation Management Plan for Use During Construction

A Transportation Management Plan (TMP) has been prepared and is included here as Attachment E. The TMP provides advance notice to transportation and emergency service providers of construction activities and durations, detours, and access issues during each stage of construction. The TMP identifies strategies to facilitate safe implementation of traffic handling during construction, such as increased California Highway Patrol presence during critical construction operations, and increased Freeway Service Patrol during peak travel periods. It also includes a public information program to provide motorists with advance notice of construction activities and durations, temporary closures and detours.

7.6 Stage Construction

If completed as one construction contract, the Route 1 41st to Soquel Auxiliary Lane Project would be constructed in three major stages: widening on the northbound side and shifting of the centerline 5 - ft to the north; the Chanticleer Avenue Bicycle/pedestrian overcrossing; and the southbound median paving and lane shifting.

Most of the work would be done during the daytime, but some night work is likely, to permit temporary closures for tasks that could interfere with mainline traffic or create safety hazards. Such tasks include placing and removing temporary construction barriers, erecting structure falsework over the mainline or Soquel, striping, or connecting or conforming ramps to the mainline or local streets.

After the bridge work in the median is complete, and when most of the new retaining walls have been installed, traffic in both directions would be shifted toward the median to allow the widening work north and south of the new overcrossing. Four traffic lanes would be open during the day.

7.7 Graffiti Control

State Route 1 in the project area is graffiti-prone. Graffiti abatement is expected to consist of prompt painting-over of graffiti by State maintenance crews, which discourages tagging by demonstrating vigilance and attentive maintenance. Graffiti-resistant coating is considered
undesirable because of cost and effort in application, re-application and power-washing. In PS\&E phase, access control design would consider graffiti prevention.

7.8 Oversize Loads

The project area is bounded by the 41 st Avenue and Soquel Avenue overcrossings, with vertical clearances of 17 ft 6 in and 15 ft 10 in , respectively, which prevent unrestricted height loads from reaching the project area via State Route 1.

The proposed Chanticleer Avenue bicycle/pedestrian overcrossing would have standard vertical clearance. If the POC were constructed, a vehicle approaching State Route 1 from local streets (Soquel Avenue or 41 st Avenue) requiring more than standard vertical clearance would have to avoid State Route 1 and travel parallel to State Route 1 along Soquel Avenue through the project area. A vehicle of unrestricted height moving in and out of Santa Cruz County on local roads is likely to require special accommodations such as temporary relocation of overhead utilities to reach the project area.

7.9 Life Cycle Cost Analysis

A Life Cycle Cost Analysis (LCCA) was performed to determine the most cost effective structural section for this project. The LCCA was performed for the 9-mile HOV Lanes and Transportation System Management Alternatives Project, and it was based on Caltrans LCCA Procedures Manual (Updated August 2010) and using RealCost 2.2 software downloaded from Caltrans website.

Because the Tier 2 Auxiliary Lanes Project is encompassed within the limits of the 9-mile HOV Lanes and Transportation System Management Alternatives project, it is assumed that the majority of the assumptions and the overall results of the analysis would be the same. Although the cost estimates for the two projects are different, the relative scale of the estimates will also be the same. Thus, the results of the analyses would match between the two projects.

The LCCA was performed for the auxiliary lane and for the maintenance/rehabilitation on the existing two lanes. A summary of the LCCA for the different pavement structure alternatives considered for the auxiliary lanes and the maintenance/rehabilitation can be seen in Attachment K . The following is a summary of these two different analyses.

Two different pavement structure (PS) alternatives were considered in the analyses:
Alternative 1 consists of 0.65 ft Rubberized Hot Mix Asphalt (RHMA), 0.55 ft Aggregate Base (AB) and 1.15 ft Aggregate Subbase (AS) - 20 year design life.

Alternative 2 consists of $0.10 \mathrm{ft} \mathrm{RHMA} \mathrm{Open} \mathrm{Graded} \mathrm{Friction} \mathrm{Course} \mathrm{(OGFC)}$,0.50 ft RHMA, 0.50 ft Lean Concrete Base (LCB) and 1.15 ft AS - 20 year design life.

A 40 year design life alternative was not considered as the basis of the analyses was determined from Table 1 of the LCCA Manual (Updated August 2010). For the type of pavement project (Widening) and the document being submitted (Project Report), the analysis was limited to the 20 year design life.

Cost calculations resulted in the following overall life-cycle costs (for HOV Lanes and Transportation System Management Alternatives Project):

Table 7.1-Life-cycle Cost Summary

PS Alternative Number	Total Agency Cost	User Cost	Life-cycle Cost
1	$\$ 170,068$	$\$ 1,431$	$\$ 171,499$
2	$\$ 168,806$	$\$ 8,436$	$\$ 177,242$

Even though PS Alternative \#1 has an initial agency cost higher than PS Alternative \#2, it is considered the preferred alternative for the following reasons: a) the overall life-cycle cost is lower for Alternative \#1, b) the user cost is over 80% lower than Alternative \#2 and c) future maintenance costs are lower, minimizing the exposure of maintenance crews to traffic hazards.

8. FUNDING/PROGRAMMING

The Santa Cruz Highway 1 HOV Lanes and Transportation System Management Alternatives Project discussed in the Introduction and Project History section of this report is included in the 2010 Regional Transportation Plan as a financially constrained project, reflecting SCCRTC's commitment to this project as one of the County's highest transportation priorities. A combination of federal, state, and local funds, including a future local tax and/or fee measure dedicated to transportation improvements, is identified in the Regional Transportation Plan to fund the HOV Lanes and Transportation System Management Alternatives project. To facilitate project phasing, the RTP also identifies separate phases that are shown in the Project Implementation Plan. Consistent with this approach the Tiered environmental document allows the SCCRTC to make incremental improvements in the corridor as future funding opportunities allow.

Tier I (EA 05- 0C730) - Funding Scenarios for Incremental Development of the Highway 1 Corridor

Projections of available future funding for transportation projects are difficult to make given uncertainties associated with State and federal legislation and economic conditions. With the Tiered environmental approach, the Tier I environmental document will be used as a planning level study of cumulative impacts from which smaller future projects (Tier II projects, of which the Highway 1 41st/Soquel Auxiliary Lanes and Chanticleer Overcrossing Project is one) may be identified and analyzed within available resources. Following is an overview of potential revenue sources projected over a 25 -year period for incremental development of the Tier I improvement program for Highway 1 Corridor.

Existing Revenue Sources

This projection is based on historical revenues from funding sources currently available. California State Transportation Improvement Program (STIP) funds, made up primarily of revenues from the State excise tax on gasoline, are generally considered most appropriate for
larger, regional projects on the State highway system. STIP funds are programmed every two years and can vary from approximately \$3.0-5.0 million per year, which means that 25 years (approximately 12 STIP cycles) would yield about \$75.0-125.00 million (unescalated).

The SCCRTC has also historically received \$2.5-3.0 million annually in federal Regional Surface Transportation (RSTP) funds. These funds are more flexible than STIP funds, and have traditionally been applied to a wide range of project types including local road improvements, bike and pedestrian projects, State highway projects, rail and transit projects. Because the demand on these funds is great and not likely to diminish soon, this scenario assumes that no RSTP funds will be directed to any Tier II projects on the Route 1 corridor.

Local Sales Tax and other Revenue Generating Measures

In November 2004, SCCRTC sponsored a local $1 / 2$-cent sales tax ballot measure dedicated to certain transportation projects. That measure failed to get the $2 / 3$ majority vote needed to pass. In 2007, SCCRTC sponsored outreach efforts to generate community support for another sales tax measure, but in early 2008, those plans were put on hold due to a weakening economy. The SCCRTC is monitoring legislative proposals to lower the voter threshold to 55 percent for new local revenues, including vehicle registration fees and sales tax measures to address the backlog of transportation needs in Santa Cruz County, as was done successfully for education purposes. For this discussion, it is assumed that this measure will be taken to the voters in 2016. Based on past polling of likely county voters, the expenditure plan for such a measure would include a mix of transportation projects and programs to gain sufficient broad-based voter support. For this analysis only, a future hypothetical expenditure plan would include some funds for Route 1.

A $1 / 2$-cent sales tax in Santa Cruz County would currently generate approximately $\$ 15$ million annually. Although this amount might grow with inflation, so would the costs for projects and programs. For simplicity, this analysis does not include inflation in this estimate or assume any economic growth. If one-third of revenues from the measure were dedicated to Route 1, available funds would be $\$ 5$ million per year, or $\$ 125$ million over a 25 -year period. This revenue is added to the estimated yield from the State Transportation Improvement Program (\$75 million to $\$ 125$ million), resulting in a total of approximately $\$ 200$ million to $\$ 250$ million available for incremental development of the Capital Investment Program for the Route 1 corridor.

Other potential local revenue sources include a vehicle registration fee, which might generate approximately $\$ 2.3$ million per year, and a regional traffic impact fee, which might generate $\$ 4$ million annually.

Other Potential Funding

From time to time opportunities arise to fund projects that are essentially "one time" events. California Proposition 1B passed in 2006 is an example, which provided $\$ 4.5$ billion in funding for transportation projects statewide that could be delivered quickly, including $\$ 13.8$ million from the Prop 1B Corridor Mobility Improvement Account (CMIA) for the Highway 1 SoquelMorrissey Auxiliary Lanes project, now under construction. Another example would include federal sources such as the American Recovery and Reinvestment Act (ARRA) of 2009, which provided over $\$ 12.0$ million for transportation projects in Santa Cruz county. Additionally, federal earmarks and special grant programs have historically provided funds for highway projects nationwide.

Tier II (EA 05- 0C732) - Funding for Highway 1 41st/Soquel Auxiliary Lanes and Chanticleer Overcrossing Project

In December 2011, the SCCRTC designated $\$ 4.0$ million of the region's share of 2012 STIP funds for final design and right-of-way phases of the Highway 141 st Ave/Soquel Ave Auxiliary Lanes and Chanticleer Overcrossing project, subsequently approved by the California Transportation Commission (CTC) in the adopted 2012 State Transportation Improvement Program. Work on the final design and right-of-way phase of the project development process is anticipated to begin in winter 2017, following state and federal approval of the Tiered Environmental Document, and is anticipated to take one year to complete.
Funding the construction phase of the Tier II project will be considered by the SCCRTC in forthcoming funding cycles. Preliminary construction cost estimates for the Tier II project total approximately $\$ 23.0$ million (including construction management and support). Given the historic level of transportation revenue streams summarized above it may be necessary to build the Tier II project in phases. Below is a breakout of the Tier II project into individual project elements and preliminary cost estimates.

Table 8.1 Highway 1 41st Ave/Soquel Ave Auxiliary Lanes and Chanticleer Overcrossing Project Funding

PROJECT ELEMENTS	CONSTRUCTION support)
Northbound Auxiliary Lane between $41^{\text {st }}$ Avenue and Soquel Avenue	$\$ 11,000,000$
Southbound Auxiliary Lane between $41^{\text {st }}$ Avenue and Soquel Avenue	$\$ 7,000,000$
Bicycle/Pedestrian Overcrossing of Hwy 1 at Chanticleer Avenue	$\$ 5,000,000$
Estimated Total	$\mathbf{\$ 2 3 , 0 0 0 , 0 0 0}$

The northbound auxiliary lane construction must precede the bicycle/pedestrian overcrossing and the southbound auxiliary lane because the northbound work shifts the route centerline and allows room for the bicycle/pedestrian overcrossing center pier and the southbound widening.
It has been determined that this project is eligible for federal-aid funding.

Table 8.2 Capital Outlay Support and Project Estimates

Fund Source				
20.XX.075.600 (STIP RIP)	Prior	FY 16/17	FY 18/19	Total
Component				
PA\&ED Support*	$\$ 12,709$			$\$ 12,709$
PS\&E Support		$\$ 2,538$		$\$ 2,538$
Right-of-Way Support		$\$ 133$		$\$ 133$
Construction Support			$\$ 3,000$	$\$ 3,000$
Right-of-Way		$\$ 1,376$		$\$ 1,376$
Construction			$\$ 18,119$	$\$ 18,119$
Total	$\mathbf{\$ 1 2 , 7 0 9}$	$\mathbf{\$ 4 , 0 4 7}$	$\mathbf{\$ 2 1 , 1 1 9}$	$\mathbf{\$ 3 7 , 8 7 5}$

*For tiered environmental documentation of entire State Route 1 corridor
The PS\&E, right-of-way, and construction support cost ratios are $14 \%, 10 \%$ and 15%. Construction cost escalation assumed as 3%.
Note: Project Support and Capital Costs prepared by Consultant

9. SCHEDULE

Project Milestones		Scheduled Delivery Date (Month/Day/Year)
PROGRAM PROJECT	M015	2002
BEGIN ENVIRONMENTAL	M020	June 23, 2003
CIRCULATE DED EXTERNALLY	M120	November, 2015
PA \& ED	M200	October, 2016
PROJECT PS\&E	M380	October, 2018
RIGHT OF WAY CERTIFICATION	M410	October, 2018
READY TO LIST	M460	December, 2018
AWARD	M495	February, 2019
APPROVE CONTRACT	M500	March1, 2019
CONTRACT ACCEPTANCE	M600	December, 2019
END PROJECT	M800	May 30, 2020

10. RISKS

Project risks are summarized in the Risk Register in Attachment I, and have been collected from PDT members throughout the PAED process. They span the planning, design and construction phases and are of varying impacts. Risk control strategies include transference, acceptance and avoidance. In general the risks would impact project cost and schedule if they were realized.
The only risk with impact rated "high" is related to project funding, and the fact that this project is not fully programmed. RTC's strategies for avoiding this risk are described Section 8 "Programming".
Two "moderate" risks are related to highway maintenance, with acceptance strategies that recommend involvement of maintenance staff early in PS\&E phase so that maintenance requirements can be incorporated.
Two "moderate" risks are related to utility relocation, with avoidance strategies that recommend careful adherence to owner notification, involvement and milestones.
While the project cost estimate includes a conservative estimate for ADL-contaminated soil, it is accepted that future testing during PS\&E and construction may identify additional contamination. ADL handling costs trends will be tracked, and additional funding or cost-trade-offs would be sought if this risk were realized.
The only risk considered to affect project quality is related to project aesthetics, and the possibility of community input leading to aesthetic treatment that exceeds project budget. RTC plans to control this risk by guiding visual mitigation via an aesthetics review board, formed as part of the HOV Lanes and Transportation System Management Alternatives project planning.

11. FHWA COORDINATION

This project is considered to be a High Profile Project (HPP) in accordance with the current Federal Highway Administration (FHWA) and Department of Transportation (Caltrans) Joint Stewardship and Oversight Agreement.

12. PROJECT REVIEWS

Scoping team field review \qquad N/A Date \qquad Scoping team field review attendance roster attached. District Program Advisor \qquad Date \qquad Headquarters SHOPP Program Advisor N/A Date District Maintenance

Tom Barnett Date 2/13/2014 \qquad
Headquarters Design Coordinator Christine Inouye Date 2/13/2014 Project Manager Luis Duazo Date 08/27/2015 \qquad

	Gary Sweeten, Dominic Hoang	Date $08 / 27 / 2015$
FHWA	Scott Morris	Date $2 / 13 / 2014$
District Safety Review	Mike Dubin	Date $5 / 25 / 2012$
Constructability Review N/A Date Other		

13. PROJECT PERSONNEL

Table 10.1: Project Personnel Information

NAME	ROLE	PHONE
Luis Duazo	Caltrans Project Manager	$(805) 542-4678$
John Fouche	Oversight Design Manager/Oversight Engineer	$(805) 549-3330$
Matt Fowler	Caltrans Environmental Unit Supervisor	$(805) 542-4603$
Lara Bertaina	Caltrans Senior Environmental Planner	$(805) 542-4610$
Nick Dumas	Caltrans Right-of-Way Manager	$(559) 445-6195$
George Dondero	SCCRTC Executive Director	$(831) 460-3202$
Kim Shultz	SCCRTC Senior Transportation Planner	$(831) 460-3208$
Parag Mehta	Kimley-Horn, Project Manager	$(925) 965-7703$

14. LIST OF ATTACHMENTS

Attachment A - Vicinity Map
Attachment B - Typical Cross Sections
Attachment C - Layouts
Attachment D - Draft Project Report Cost Estimate
Attachment E - TMP and TMP Checklist
Attachment F - SWDR Cover
Attachment G - DED
Attachment H - Right-of-way and Utility Plans
Attachment I - Risk Management Plan
Attachment J - Chanticleer Bicycle/Pedestrian Overcrossing Advance Planning Study
Attachment K - Life Cycle Cost Analysis
Attachment L - Accident Summary
Attachment M - District Distribution List

ATTACHMENT A

VICINITY MAP

ATTACHMENT B

TYPICAL CROSS SECTIONS

ATTACHMENT C

LAYOUTS

ATTACHMENT D

DRAFT PROJECT REPORT COST ESTIMATE

PRELIMINARY PROJECT COST ESTIMATE SUMMARY

	DIST-CO-RTE	05-SCr-1
	PM:	13.5/14.9
	EA:	05-0C7300
	PROG CODE: $20 . X \times .075 .600$ (STIP RIP)	400.100 (Local)
	PI:	05-0000-0023
	OVERSIGHT UNIT:	06-1449
Project Description:		

Limits: In Santa Cruz County, on SR 1, from 41st Avenue IC to Soquel Drive IC

Proposed Improvement: Tier 2 Project: Auxiliary Lanes from 41st Avenue to Soquel Drive
(Scope) Pave median and widen outside to add auxiliary lanes
to improve highway operations

SUMMARY OF PROJECT COST ESTIMATE	
TOTAL ROADWAY ITEMS	$2015 \$$
TOTAL STRUCTURE ITEMS	$\$ 13,911,000$
SUBTOTAL CONSTRUCTION COSTS	$\$ 2,670,000$
TOTAL RIGHT OF WAY ITEMS	$\$ 16,581,000$
TOTAL ALTERNATIVE CAPITAL OUTLAY COSTS	$\$ 1,276,000$
	$\$ 17,857,000$

Sheet: 1 of 6

PRELIMINARY PROJECT COST ESTIMATE SUMMARY

	DIST - CO-RTE	05-SCr-1
	PM:	13.5/14.9
	EA:	05-0C7300
PROG CODE:	20.XX.075.600 (STIP RIP)	400.100 (Local)
	PI:	05-0000-0023
	OVERSIGHT UNIT:	06-1449

Rubberized Hot Mix Asphalt (Type A)	16,800	TON	\$105	\$1,764,000
Lean Concrete Base	5,060	CY	\$105	\$531,300
Aggregate Base (Class 2)	1,000	CY	\$35	\$35,000
Aggregate Subbase (Class 1)	13,100	CY	\$35	\$458,500

Subtotal Pavement Structural Section $\quad \$ 2,788,800$
Section 3 - Drainage
Drainage
Subtotal Sections 1-2, 4, \& 5
Stormwater management
Subtotal Sections 1-2, 4, 5 \& II.

7,162,840	X	10\%	\$716,284
9,832,840	X	9\%	\$884,956

Subtotal Drainage \qquad

SUBTOTAL SECTIONS 1-3: \qquad

Sheet: 2 of 6

PRELIMINARY PROJECT COST ESTIMATE SUMMARY

	DIST - CO-RTE	05-SCr-1
	PM:	13.5/14.9
	EA:	05-0C7300
PROG CODE:	20.XX.075.600 (STIP RIP)	400.100 (Local)
	PI:	05-0000-0023
	OVERSIGHT UNIT:	06-1449

Section 4 - Specialty Items
Retaining Wall
Concrete Barrier
Temporary Barrier (K-Rail)
Environmental Mitigation (ADL+)
Noise abatement/building acoustics Erosion Control
Lead Compliance Plan
Planting/Irrigation
Rodeo Gulch roadway repair

$\$ 648,000$
$\$ 385,000$
$\$ 375,000$
$\$ 1,009,000$
$\$ 5,000$
$\$ 85,000$
$\$ 5,000$
$\$ 225,000$
$\$ 200,000$

Total Specialty Items \$2,937,000

Section 5 - Traffic Items
Pavement Delineation Modify Signals/Lighting Electrical
TMS Elements
CCTV System
Traffic Management Plan
Traffic Items (5\% of Section 2)

58,000	LF	\$0.50
1	LS	\$300,000
1	LS	\$175,000
1	LS	\$100,000
1	LS	\$100,000
1	LS	\$650,000
1	LS	\$139,400

$\$ 29,000$
$\$ 300,000$
$\$ 175,000$
$\$ 100,000$
$\$ 100,000$
$\$ 650,000$
$\$ 139,400$

Total Traffic Items \qquad

Sheet: 3 of 6

PRELIMINARY PROJECT COST ESTIMATE SUMMARY

	DIST - CO-RTE	05-SCr-1
	PM:	13.5/14.9
	EA:	05-0C7300
PROG CODE:	20.XX.075.600 (STIP RIP)	\& 400.100 (Local)
	PI:	05-0000-0023
	OVERSIGHT UNIT:	06-1449

				$\underline{\text { Unit Cost }}$	Section Cost
Section 6 - Minor Items					
Subtotal Sections 1-5	\$9,024,080	X	10\%	\$902,408	
				Subtotal Minor Items:	\$903,000
Section 7 - Roadway Mobilization					
Subtotal Sections 1-5	\$9,024,080				
Minor Items	\$903,000				
	\$9,927,080	X	10\%	\$992,708	
				Subtotal Mobilization:	\$993,000
Section 8 - Roadway Additions					
Supplemental Work					
Subtotal Sections 1-6	\$9,927,080	X	10\%	\$992,708	
Contingencies					
Subtotal Sections 1-6	\$9,927,080	X	20\%	\$1,985,416	
				Subtotal Additions:	\$2,979,000
				TOTAL ROADWAY ITEMS (Total of Sections 1-6)	\$13,911,000
Estimate Prepared by:	Charmaine Zamora	(408) 392-7200			09/22/15
	(Print Name)	(Phone)			(Date)
Estimate Approved by:	Parag Mehta	(925) 965-7703			09/22/15
	(Print Name)	(Phone)			(Date)

PRELIMINARY PROJECT COST ESTIMATE SUMMARY

\author{

DIST - CO - RTE	$05-\mathrm{SCr}-1$
EA:	$\frac{13.5 / 14.9}{05-0 \mathrm{C} 7300}$

}

II. STRUCTURES ITEMS

Bridge Name	Chanticleer POC
	(New)
Structure Type	CIP Box
Additional Width (FT)	16.00
Span Lengths (FT)	979.00
Total Area (SQ FT)	15664
Footing Type (pile/spread)	pile
Cost per Sq. Ft.Including:\quad Mobilization: 10%Contingency: 25%	
Other*	
Total Cost For Structure	\$2,670,000

SUBTOTAL THIS PAGE | $\$ 2,670,000$ |
| :---: |

COMMENTS:

Estimate Prepared By:	Charmaine Zamora	(408) 392-7200	(Phone)
(Print Name)	(Date)		
Estimate Approved By:	Parag Mehta	$(925) 965-7703$	(Phone)
	(Print Name)	9/22/2015	

PRELIMINARY PROJECT COST ESTIMATE SUMMARY

	DIST - CO-RTE	05-SCr-1
	PM:	13.5/14.9
	EA:	05-0C7300
	PROG CODE: 20.XX. 075.600 (STIP RIP)	400.100 (Local)
	PI:	05-0000-0023
	OVERSIGHT UNIT:	06-1449
Project Description:		

Limits: In Santa Cruz County, on SR 1, from 41st Avenue IC to Soquel Drive IC
Proposed Improvement: Tier 2 Project: Auxiliary Lanes from 41st Avenue to Soquel Drive
(Scope) Pave median and widen outside to add auxiliary lanes to improve highway operations

SUMMARY OF PROJECT COST ESTIMATE	
TOTAL ROADWAY ITEMS	$2015 \$$
TOTAL STRUCTURE ITEMS	$\$ 13,911,000$
SUBTOTAL CONSTRUCTION COSTS	$\$ 2,670,000$
TOTAL RIGHT OF WAY ITEMS	$\$ 16,581,000$
TOTAL ALTERNATIVE CAPITAL OUTLAY COSTS	$\$ 1,276,000$
$17,857,000$	

Reviewed by		$(408) 392-7200$	$9 / 22 / 2015$
Project Engineer	Charmaine Zamora	(Phone)	(Date)
Approved by		$(925) 965-7703$	(Date)
Project Manager	Parag Mehta	(Phone)	
Approved by		$831-460-3208$	(Phone)

Sheet: 1 of 6

PRELIMINARY PROJECT COST ESTIMATE SUMMARY

DIST - CO - RTE 05-SCr-1
PM: 13.5/14.9
EA: 05-0C7300
PROG CODE: 20.XX. 075.600 (STIP RIP) $\& \overline{400.100 \text { (LOCal) }}$
PI: 05-0000-0023
OVERSIGHT UNIT: 06-1449

III. RIGHT OF WAY

Right-of-Way estimates should consider the probable highest and best use and type and intent of improvements at the time of acquisition. Assume acquisition including utility relocation occurs at the right of way certification milestone as shown in the Funding and Scheduling Section of the PSR. For further guidance see Chapter 1, Caltrans Right of Way Procedural Handbook.

	Current Values (Future Use)	Escalation Rate (\%/yr)	Escalated Value *
Acquisition, including excess lands and damages to remainders ***	\$824,000	3\%	\$902,000
Environmental Mitigation \& Permit Fees	\$200,000	1\%	\$206,000
Utility Relocation	\$176,000	2\%	\$187,000
Relocation Assistance	\$20,000	3\%	\$22,000
Clearance / Demolition	\$25,000	2\%	\$28,000
Title and Escrow	\$6,000	0\%	\$6,000
SB 1210 Costs	\$25,000	0\%	\$25,000

TOTAL RIGHT OF WAY ** $\$ 1,276,000$
(CURRENT VALUE)
TOTAL ESCALATED $\quad \$ 1,376,000$
RIGHT OF WAY

* - Escalated to assumed year of ROW Acquisition: \qquad
** - Current total value for use on sheet 1 of 6 , does not include value enhancement cost

Estimate Prepared by:	Michael Lahodny/Charmaine Zamora	(408) 392-7200	09/22/15
	(Print Name)	(Phone)	(Date)
Estimate Approved by:	Parag Mehta	(925) 965-7703	9/22/2015
	(Print Name)	(Phone)	(Date)

ATTACHMENT E

TMP
AND

TMP CHECKLIST

TRANSPORTATION
 MANAGEMENT
 PLAN

State Route 1
State Route 1 HOV - Tier 2 Project $41^{\text {st }}$ Avenue to Soquel Drive Auxiliary Lanes

Santa Cruz County
(SCr -1 PM 13.5/14.9)
EA No. 05-0C7300

Santa Cruz Regional Transportation Commission
DISTRICT 5
July 2013

Table of Contents

1.0 PROJECT DESCRIPTION 5
1.1 Overview 5
1.2 Proposed Traffic Handling During Stage Construction 5
1.3 Effects on Traffic During Construction 5
2.0 TRANSPORTATION MANAGEMENT PLAN (TMP) SUMMARY 6
2.1 TMP Team: Members, Roles and Responsibilities 6
3.0 TRANSPORTATION MANAGEMENT PLAN STRATEGIES 7
3.1 Public Information 8
3.1.1 Internet Website: PIO 8
3.1.2 Flyers, Mailers or Brochures 8
3.1.3 Press Release 8
3.1.4 Telephone Hotlines 8
3.2 Motorist Information 8
3.2.1 Changeable Message Signs (Portable and Fixed CMS) 8
3.2.2 Ground Mounted Signs 8
3.3 Incident Management 9
3.3.1 Freeway Service Patrol (FSP) 9
3.3.2 Construction Zone Enhanced Enforcement Program (COZEEP) 9
3.3.3 Traffic Monitoring 9
3.4 Contingency Plans 9

List of Attachments

\qquad1. Closure ChartsPS\&E

1.0 PROJECT DESCRIPTION

1.1 Overview

a. Purpose: Improve traffic conditions for weaving and merging movements on Highway 1 (designated State Route 1) between $41^{\text {st }}$ Avenue and Soquel Drive and improve pedestrian and bicycle access and safety.
b. Scope: Add auxiliary lanes for approximately 1.4 mile of Highway 1 from the $41^{\text {st }}$ Avenue Interchange to the Soquel Drive Interchange in the City and County of Santa Cruz; construct a pedestrian overcrossing connecting Chanticleer Avenue on both sides of the highway; construct retaining walls.
c. Process: Construct retaining walls in fill areas; widen roadway to the outside; then construct center column for Chanticleer OC in median and construct new concrete median barrier, shoulders and roadway section in median.
d. Cost: $\$ 16.6$ million construction cost ($\$ 13.9$ million in roadway items, $\$ 2.7$ million for the Chanticleer OC, and $\$ 1.3$ million in utility relocations
e. Status: Construction to begin no earlier than 2015.
f. Duration: 18 to 24 months

1.2 Proposed Traffic Handling During Stage Construction

a. It is expected that like on the Soquel to Morrissey Auxiliary Lane Project and the $1 / 17$ Merge Lane project, traffic counts would show that traffic volumes are such that two lanes of traffic must be open in both directions all day during construction. Striping operations, traffic control set-up, installation of a storm drain crossing, HMA-OG overlay, and short-term overcrossing falsework erection would occur at night, using lane and mainline closures, as allowed on the closure charts that would be prepared during PS\&E.
b. Temporary ramp closures would be limited to hours where traffic volumes show closure is acceptable. Ramp closures are expected during striping operations.
c. Lane and ramp closure charts would be included in the final TMP and in the project specifications..
d. In Stage 1 of construction, the two through lanes would be shifted toward the median barrier, in both directions, and Type K concrete railing would be installed along the edge of the traveled way, around the construction zone. During Stage 1, roadway widening and retaining wall construction would occur, as would clearing and grubbing.
e. In Stage 2 of construction, traffic would be shifted away from the median barrier onto the newly widened Route 1 , to allow for construction of the center OC pier and the concrete median barrier, shoulder and roadway section. Type K railing would be installed around the median work zone, but none would be required to the outside. Erection of OC falsework requiring a lane closure would occur at night.
f. At the end of Stage 2, the landscaping work would require shoulder closure.
g. The final HMA-OC overlay would require a nighttime mainline closure.

It is anticipated that project construction would take 18 to 24 months. The planting work would be followed by a 1 to 3 year plant establishment period.

1.3 Effects on Traffic During Construction

a. Traffic volumes would be collected during PS\&E for use in refining lane closure charts for the project. It is anticipated that during the day, two lanes in the northbound direction, two lanes in the southbound direction would be open except during nighttime striping, traffic control set-up and short-term bridge construction operations. Ramps are expected to remain open except during striping operations.
b. During lane closures, changeable message signs would display alternate routes on arterials in order to relieve congestion on the mainline. Some delays can be expected due to:

- Narrowed lanes and no shoulders around bridge construction zones - increase in non-recurring congestion from stalls, debris, slow moving vehicles and accidents
- Reduced speed--longer travel time through the project limits
- New lane shifts may cause braking--drivers need time initially to adjust to the temporary traffic condition.

2.0 TRANSPORTATION MANAGEMENT PLAN (TMP) SUMMARY

This plan is a comprehensive strategy for reducing traffic demand and disruption and assuring the safe movement of vehicles through and around the proposed project area during construction. This would be accomplished through public information campaign in advance of construction, and effective signage for the safe passage of the motoring public. Strategies for providing safe passage with minimum delays would include a combination of portable changeable message signs (PCMS), construction area signs, and other appropriate signage and traffic control devices. Lastly, to maintain continuous traffic flow through the project area, the TMP includes a plan for dealing with incidents such as traffic accidents, vehicle stalls, or equipment failure. Establishing a protocol for immediate incident response can be accomplished with construction zone enforcement with CHP (COZEEP) and providing standby personnel to monitor and respond to traffic emergency situations.

2.1 TMP Team: Members, Roles and Responsibilities

The implementation of this plan must be a team effort and its success lies in consensus between Caltrans and Santa Cruz County agencies. Although this TMP proposes various strategies that are independent of each other, no one or two strategies alone would achieve the overall TMP goals. A combination of all TMP measures, along with teamwork and cooperation of member agencies, would help to ensure that the goals of the TMP are met. See Work Plan below for roles and responsibilities for the development and the implementation of this TMP.
a. The TMP Team should develop general working guidelines related to cooperation, communication channels, and coordination;
b. The TMP Team should evaluate the proposed elements under this TMP and agree upon member responsibilities of individual TMP elements;
c. Various proposed TMP elements may already be in place, however, the team should identify the program expansion requirements or provide redirection to meet the needs proposed under this TMP;
d. Prior to actual construction, the TMP Team should verify the need for any refinement to the proposed TMP elements as a result of late changes;
e. At all times, the TMP team should maintain effective communication channels with employers, motorists, residents, public and law enforcement officials;
f. The TMP should be continuously monitored and updated during all stages of construction.

TMP Team Member List:

Project Manager:	Luis Duazo
Construction Resident Engineer:	TBD
District Traffic Manager (DTM):	TBD
Public Information Officer (PIO):	Karena Pushnik, RTC and TBD, Caltrans
Project Engineer:	Parag Mehta
TMP Coordinator:	TBD
Safety and Signing:	TBD
Traffic Reviewer:	TBD
CHP:	TBD
RTC Contact:	Kim Shultz
County of Santa Cruz Contact:	John Presleigh
Traffic Management Center Contact:	TBD
Santa Cruz City Schools (SCCS):	Alvaro Meza

TMP Work Plan
Roles and Responsibilities / Cost Estimate

	Transportation Management Measure	Responsible Party	Action Required	Cost (Est)	Comments
1	Freeway Service Patrol (FSP)	Caltrans/RTC/ CHP	Extended service hours from 6 hours to 15 hours per day	\$120K	To supplement existing RTC FSP program.
2	COZEEP	CHP, RE	Increase CHP presence during roadway closures	\$150K	RE to contact CHP to request COZEEP
3	Ground Mounted Signs	RE	Provide project and warning information to motorists.	\$50K	Included in PS\&E
4	Changeable Message Signs	RE	Install portable CMS's announcing reduced speed, delays, detours, and upcoming construction.	\$100K	Included in PS\&E
5	Traffic Control System	RE	Establish closures, signing, detours	\$200K	Included in PS\&E
6	Press releases	PIO	Provide project and construction information through media.	\$30K	Scope and frequency determined by PIO
7	Telephone Hotline, Website	RE, PIO	Construction provides real time information.	--	Public Affairs provide assistance in setting up hotline.
8	Website	Caltrans PIO	Provide real time traffic information on Caltrans' and RTC's websites.	--	PIO in-house effort
9	Contingency Plan	RE, CHP, PIO, TMC, RTC, SCC, FSP	Incident Response Protocol	--	RE to report Incidents to TMC, CHP and FSP
10	Traffic Monitoring	RE, RTC, SCC, FSP, CHP	Observe traffic, provide travel information feedback and contingency	--	TMP team members to update TMP based on monitoring
Total Estimated Costs				\$650K	

3.0 TRANSPORTATION MANAGEMENT PLAN STRATEGIES

The TMP proposes a program of public information, incident management, motorist information, and contingency plans. The public information program would consist of media notification, a telephone hotline, press releases, a website updates and 511 updates for information dissemination and travel time. The incident detection and response program would initiate the COZEEP and a roving tow truck patrol that would promptly remove minor incidents and alert the California Highway Patrol of accidents. The motorist information program would notify drivers of changing conditions ahead using existing changeable message signs (CMS), portable CMS, and construction area signs.

This section describes possible TMP strategies to mitigate construction-related traffic delays and driver safety issues. The TMP strategies proposed here are of a general nature and address the overall concerns caused by construction. The strategies are grouped into four broad transportation management strategies:
A. Public Information
B. Motorist Information Strategies

C. Incident Management
 D. Contingency Plan

Traffic management strategies that require action by the construction contractor are described briefly in the TMP and presented in detail in the Project Plans and Special Provisions. Traffic management strategies that are to be implemented by Caltrans and Santa Cruz County agencies appear only in the TMP and are not included in the contract specifications.

3.1 Public Information

3.1.1 Internet Website: PIO

a. Post link to construction update on SCCRTC website and keep current.
b. Post links to webpage on Caltrans District 5 website
c. Provide webpage link to local internet site, including 511.org

3.1.2 Flyers, Mailers or Brochures

a. Develop email list
b. Develop and distribute flyers and mailers to public agencies for public distribution.

3.1.3 Press Release

a. Develop press releases and distribute to local media with project and construction information
b. Send updates to media as needed

3.1.4 Telephone Hotlines

At a minimum, hotline recordings should include a brief description of ongoing or imminent construction activity hours of impact and detours. Bilingual recordings should be considered.

Telephone information hotline messages should announce the following events:
a. Start of construction
b. Safe travel tips through project site
c. Ramp or lane closures

3.2 Motorist Information

The motorist information system provides advance warning regarding changing roadway conditions ahead, potential delays and/or available detours during construction. The strategies include two measures: Changeable Message Signs (CMS) and Ground Mounted Signs for contingencies.

3.2.1 Changeable Message Signs (Portable and Fixed CMS)

The function of Changeable Message Signs (CMS) is to alert drivers of changing travel conditions in the construction zone (such as congestion and lane shifts) and to improve their opportunity to stop or adjust travel speeds. CMS can also be used to announce upcoming freeway or ramp closures. Messages should conform to Caltrans guidelines.

- The RE is responsible for monitoring message content and PCMS deployment. At least 3 PCMS would be used in each direction on Route 1 for advance warning of roadway conditions. PCMS may be deployed on $41^{\text {st }}$ or Soquel Ave in advance of Route 1 on-ramps. When traffic is detoured, additional CMS would be provided.

3.2.2 Ground Mounted Signs

Ground mounted construction and warning signs provide information about immediate road hazards to motorists. Plans and specification would include the quantity and type of signs.

3.3 Incident Management

The incident detection and response system includes the Freeway Service Patrol (FSP) and Construction Zone Enhanced Enforcement Program (COZEEP).

3.3.1 Freeway Service Patrol (FSP)

Extend existing service (6-9 AM and 3:30-6:30 PM) from 6 to 15 hours per day (from 6 AM to 9 PM) during the first three days of a new temporary lane shift. Program also proposes to provide weekend service during the summer months (Memorial Day to Labor Day) from 1PM to 7 PM in recognition of out-of- town tourist travelers.

3.3.2 Construction Zone Enhanced Enforcement Program (COZEEP)

This program involves continuous and a more visible presence of the California Highway Patrol (CHP) in the construction zone, provides enforcement of speed restrictions, and faster incident response. It is recommended that a COZEEP program be established for the entire construction period.

3.3.3 Traffic Monitoring

Continuous traffic monitoring would be required even when no roadwork is being done. The RE is to ensure a proper level of personnel is provided to monitor traffic, report incidents to TMC and CHP, and help pick up fallen cones. Santa Cruz County agencies may consider modification of signal timing at adjacent intersections during construction.

3.4 Contingency Plans

The project specifications would require the Contractor to submit a traffic control plan at least one week prior to any ramp or lane closures. The traffic control plan shall contain a detailed contingency plan addressing equipment standby, emergency detours and emergency notification, in the event problems arise in opening the ramp or lane by the designated time. During construction activities requiring lane closures at night or traffic splits, the contractor shall provide appropriate personnel to monitor activities and make decisions regarding activation of contingency plans.
a. The contingency plan shall identify key operational decision points with a schedule listing the expected completion time of each critical path activity. Clearly defined trigger points shall be identified with each critical path activity to establish when the contingency plan would be activated.
b. A communication plan shall include a decision tree with clearly defined lines of communication. The names, telephone numbers and pager numbers of the Contractor's Project Manager, Caltrans TMC, Resident Engineer, Caltrans Permit and/or Construction Inspector, CHP Area Commander, and other applicable personnel shall be provided.
c. When a major lane-blocking incident occurs and severe congestion is about to develop, TMC should receive a report from CHP, Caltrans or the Contractor field personnel. TMC staff shall take the following incident response actions.

Beginning of the Report:

1. Notify Communication Center (DOTCC)
2. Verify details with CCTV or CHP unit
3. Activate CMS
4. Notify Caltrans Traffic Management Team (TMT)
5. Notify media, 511 and management via Sigalert and/or pager notification
6. Notify/coordinate with adjacent districts' TMCs, if applicable
7. Notify/coordinate with local TMCs, if applicable
8. Activate EMS
9. Make an entry on the CHP CAD bulletin board and route to the media, if applicable
10. Coordinate with DTM to have lane closures picked up on alternate routes, if applicable
11. Notify locally affected transit, city police, and traffic engineers for city street congestion, if applicable

During Incident

1. Update incident status notifications, if applicable
2. Update DOTCC and TMT

End of Incident

1. Notify DOTCC and TMT when incident is over
2. Deactivate CMS, and EMS
3. Send final Sigalert and/or pager notification
4. Delete CHP CAD bulletin board entry and route to the media, if applicable
5. Notify adjacent districts' TMCs, local TMCs, Signal Operations, local transit, city police, and city traffic engineers when incident is over, if applicable
6. Update shift briefing binder, if applicable

This Transportation Management Plan has been prepared under the direction of the following registered engineers. The registered Civil Engineers attest to the technical information contained herein and have judged the qualifications of any technical specialists providing engineering data upon which recommendations, conclusions and decisions are based.

Prepared By:

Suzanne Sarro, PE

Nolte Associates, Inc.

ATTACHMENT F

STORM WATER DATA REPORT COVER

Dist-County-Route: 05-SCR-01

Post Mile Limits: Tier I: PM R7.24/16.13 (KP R11.64/25.96); Tier II: PM 13.5/14.9		
Project Type: Highway Widening		
Project ID (or EA): 05000000230 (05-0C7300)		
Program Identification: STIP		
Phase:	\square	PID
	区	PA/ED
	\square	PS\&E

Regional Water Quality Control Board(s): Central Coast (Region 3)
Is the Project required to consider Treatment BMPs?
If yes, can Treatment BMPs be incorporated into the project?
Yes \boxtimes No
Yes $\boxtimes \quad$ No
If No, a Technical Data Report must be submitted to the RWQCB at least 30 days prior to the projects RTL date. List RTL Date: \qquad

Total Disturbed Soil Area: Tier I Project: 250 ac (101 ha) for HOV Lane Alternative and 101 ac (41 ha) for TSM Alternative; Tier II Project: 18.5 ac
Risk Level: 2 \& 3
Estimated: Construction Start Date: Tier I Project: TBD; Construction Completion Date: Tier I Project: TBD;
Tier II Project: March 2019
Tier II Project: May 2020
Notification of Construction (NOC) Date to be submitted: TBD (At least one month prior to the start of construction)
Erosivity Waiver
Notification of ADL reuse (if Yes, provide date)
Separate Dewatering Permit (if yes, permit number)

Yes \square	Date:	No \boxtimes
Yes \square	Date:	No \boxtimes
Yes \square	Permit \#_no	No \boxtimes

This Report has been prepared under the direction of the following Licensed Person. The Licensed Person attests to the technical information contained herein and the date upon which recommendations, conclusions, and decisions are based. Professional Engineer or Landscape Architect stamp required at PS\&E.

ATTACHMENT G

DRAFT ENVIRONMENTAL DOCUMENT COVER

ATTACHMENT H

RIGHT OF WAY AND UTILTIY PLANS

[Right of Way Impact and Utility Impact Plans included for reference only]

RIGHT OF WAY DATA SHEET

Right of Way Cost Estimate

| | Current
 Value | Escalation
 Rate | Escalated
 Value |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1. Right of Way Cost Estimate | | | |

2. Current Date of Right of Way Certification: October 2018

3. Parcel Data:

Type Number Dual/Appr Utilities RR involvement Misc. R/W Work
X U4-1 0 None x RAP Displ 0

A 0
B 1
C 5
D 0
Total 6

U4-1 0
-2 0 C\&M Agmt -3 0 Svc Contract -4 5 Design
U5-7 0 Const. -8 0 Lic/RE/Clauses -95

Area: In R/W 0.31 Acres
No. of Excess Parcels: 0
4. Are there any major items of construction contract work?

During the period of construction, temporary fencing may be required to maintain the integrity and security of some of the parcels.

5. Provide a general description of the right of way and excess lands required

 (zoning, use, major improvements, critical or sensitive parcels, etc.).The project is in an area of mixed zoning and uses. The predominant uses are low to medium density residential, commercial and some industrial. There are a total of 5 privately owned and 1 publicly owned parcels impacted by the project. Additionally, 1 parcel requires an encroachment permit for work on the city street. The project requires a total of 0.31 acres of public and privately owned property from 6 parcels. The property will be acquired in fee for the project except for the public street area. The acquisition areas are improved with typical residential and commercial site improvements. This alternative has minimal impact on adjacent properties. Abutters' rights will be required from the parcels acquired in fee for the Department of Transportation. Total costs include $\$ 200,000$ to purchase environmental mitigation credits (if required) and pay for required fees.

6. Is there an effect on assessed valuation?

No significant impact.
7. Are utility facilities or rights of way affected?

Yes, several involvements are anticipated. See Utility Information Sheet for details.
8. Are Railroad facilities or rights of way affected?

No.
9. Were any previously unidentified sites with hazardous waste and /or material found?
None evident.

10. Are RAP displacements required?
 Relocation of personal property from storage shed and yard.

11. Are material or borrow and/or disposal sites required?

No.
12. Are there any potential relinquishments and/or abandonments? No
13. Are there any existing and/or potential airspace sites? No

14. Indicate the anticipated Right of Way schedule and lead-time requirements.

 Right of way lead time should be twenty months.15. Is it anticipated that Caltrans staff will perform all Right of Way Work. Yes.

Data for evaluation prepared and revised by:
Right of Way: Michael Lahodny
Date: April 17, 2013, rev Sept 1, 2015
Railroad: Michael Lahodny
Date: April 17, 2013, rev Sept 1, 2015
Utilities: Note Associates, Inc. \& Michael Lahodny

Date: February 25, 2013, updated Sept 1, 2015

Recommended for Approval:

$$
9-22-2015
$$

Bender Rosenthal, Inc.
California Certified General
Appraiser [No. 044258]

UTILITY INFORMATION SHEET

1. Name of utility companies involved in Project:

Pacific Gas and Electric - electricity and natural gas
County of Santa Cruz - sanitary sewer and storm drain Comcast Communications-cable TV
2. Types of facilities and agreements required:

PG\&E 21 kv transmission and OH power poles - Notice \& Agreement
PG\&E standard/high pressure UG gas lines - Notice \& Agreement
Comcast Communications- OH Cable - Notice \& Agreement
County of Santa Cruz -10 12 inch VCP UG sanitary sewer- Notice \& Agreement
County of Santa Cruz- 18 \& 36 inch RCP, $4 x 4$ RCB culvert and 9 foot concrete arch storm drain facilities - Notice \& Agreement
2. Is any facility a longitudinal encroachment in existing or proposed access controlled right of way?

No.
4. Additional Information concerning utility involvements on this project, i.e., long lead time materials, growing or species seasons, customer service seasons:

None observed.
5. Total estimated cost of State's obligation for utility relocation on this project:

The nature of the work includes costs to extend, relocate and protect in place existing utilities.
The total estimated cost (before escalation) to the project is $\$ 176,000$. A cost to Utility Owners is estimated at $\$ 424,000$. It is anticipated that when verifications and liability determinations are completed, these costs will need to be adjusted.

Prepared By: Nolte Associates \&
Michael Lahodny, Bender Rosenthal Inc.

Right of Way Data Sheet Premise, Assumptions, Limiting Conditions and Extra Ordinary Assumptions

Estimate Premise

1. Estimates are forecasts of anticipated costs for properties that will be acquired at a future date. The Current Value was escalated to the Right of Way Certification date based on market observations.
2. Estimate requires looking into the future and projecting the anticipated highest and best use of the properties at the time they are required for the project. The estimate will not consider increases in real estate value due to changes in land use resulting from anticipation of the proposed project.
3. The estimate will be developed using appraisal principles without the depth of investigation and verification. The estimate may consider indicators of value which may not be acceptable in appraising under USPAP provisions.
4. The estimate will consider costs known as Construction Contract Work (CCW) as severance damages and included as compensation to the owner.
5. The estimator has based the estimate on the highest supported anticipated costs and a "worst case" scenario.
6 When in doubt because of inadequate or marginal requirement information, a full acquisition will be assumed.

Assumptions

1. Estimate mapping is assumed to adequately provided information on which partial acquisition and damages are based.
2. The right of way area calculations are assumed to reflect the needs for the project or alternative. Changes in the areas may dramatically impact the estimated right of way costs.

Limiting Conditions

1. Utility locations and information of property rights have not been fully researched and utility costs are based on field observations and cost information provided by others. More accurate costs will be developed as the project approaches selection of final alignment and design. Rights and obligations of parties will be verified and a liability determination will be established. Master agreements with Utility Companies may establish the costs to the owners and project.

Extraordinary Assumptions

1. A contingency factor was previously applied at the observed rate of 15% then 20%. The Department of Transportation Reviewer cited that it should be at 25% and the value was adjusted. This additional estimated cost provides for possible business goodwill claims, outdoor advertising signs, administrative settlements, condemnation awards, utility overruns and interest payments. This adjustment was applied to the Acquisition and Utility Relocation costs. The Relocation and Demolition costs already reflect an appropriate contingency adjustment around 23%.
2. Environmental permitting fees will also be estimated as they are generally paid at the right of way acquisition phase. The Department of Transportation Reviewer cited that Caltrans Environmental Units require some escalation. The mitigation place holder for this project $\$ 200,000$ exceeds the current fee requirements for agencies identified as requiring payments. A nominal escalation factor will be used. There are no requirements to purchase land or credits at this time.
3. Lead time has been adjusted from eighteen to twenty months pursuant to Caltrans review.

ATTACHMENT I

Co-Rte-PM (SCr-1 PM 13.5/14.9)
Date 9/23/2015
Proj Mngr Parag Mehta Telephone Number 408-392-7200

	PROJECT RISK MANAGEMENT PLAN													
	Identification						Qualitative Analysis				Response Strategy		Monitoring and Control	
$\left\lvert\, \begin{aligned} & \frac{2}{2} \\ & \frac{0}{2} \\ & \frac{2}{2} \\ & \hline 1010 \end{aligned}\right.$	Status	$\begin{array}{\|} \hline \text { ID } \\ \# \\ \hline \end{array}$	Date Identified Project Phase	Functional Assignment	ThreatOpportunity Event	Risk Trigger	Type	Probability	Impact	Risk Matrix	Strategy	Response Actions including advantages and disadvantages	Responsibilty (Task Manager)	Last date changes made to risk and Comments
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(15)	(16)	(17)	(18)
	Active		9/15/2011 PA\&ED	Design	Aesthetic Features identified by community exceed scope or monetary allocation of visual impact mitigation	Preliminary Cost Estimate of desirable features shows cost significantly exceeds cost budgeted	Quality	Low	Moderate		Transference	An Aesthetics Review Board, to be formed as part of the HOV Project, will prepare a visual plan for the corridor, including Aux Area. Cost is in HOV Prjct.	Parag Mehta	10/1/2411
	Active		9/15/2011 PA\&ED	Design	ADL removal budget exceeds estimate	Additional ADL testing during PS\&E shows more ADL to be removed than budget allows	Cost	Low	Moderate		Acceptance	Track cost impact; adjust budget up to programmed amount. Look for other funding or cost trade-offs if ADL estimate exceeds expectations.	Parag Mehta	10/1/2411
	Active		9/15/2011 PA\&ED	Planning	Project Funding not identified, delaying project	SCCRTC CIP does not identify Tier 2 project construction funding	Schedule	Moderate	High		Avoidance	Identify possible construction funding in next few years' CIP	SCCRTC	10/25/2011
	Active		9/15/2011 PA\&ED	Design	Caltrans maintenance requirements increase project costs	Maintenance review of PS\&E	Cost	Low	Moderate		Acceptance	Get early review by Caltrans Maintenance	Parag Mehta	10/25/2011
	Active		3/24/2012 PA\&ED	Design	Caltrans maintenance requirements conflict with stormwater treatment commitments	Maintenance disallows retention	Schedule	Moderate	Moderate		Acceptance	Get early review by Caltrans Maintenance	Parag Mehta	4/5/2012
	Dormant		6/20/2012 PA\&ED	Construction	Utility relocation delays construction	Utility relocation lags schedule	Schedule	Moderate	Moderate		Avoidance	Work with PG\&E to keep schedule--confirm early the PG\&E has what it needs to move forward-correct forms, agreements, letters, etc.	Parag Mehta	5/30/2013
	Dormant		6/20/2012 PA\&ED	Design	Utility agreements fall behind schedule	Utility agreements not finished for RTL checklist	Schedule	Moderate	Moderate		Avoidance	Work with PG\&E to keep schedule--confirm early the PG\&E has what it needs to move forward-correct forms, agreements, letters, etc.	Parag Mehta	5/30/2013

ATTACHMENT J

CHANTICLEER BIKE/PED OVERCROSSING ADVANCE PLANNING STUDY

ATTACHMENT K

LIFECYCLE COST ANALYSIS

ROUTE 1 HOV PROJECT
 6-Lane Alternatives

Life Cycle Cost Analysis Form

Alternative 1 (Pavement-alternative-identified-to-program-project cost):
6-lane, 20 year Flexible - Option 3: 0.10^{\prime} HMA OGFC, 0.50 ' HMA, 0.50 ' LCB, 1.15 ' AS

Pavement Design Life: 20 Years				
Initial Construction Costs:	\$	134,664		
Initial Project Support Costs:	\$	33,666		
Future Maintenance \& Rehabilitation Costs:**	\$	1,738		
TOTAL AGENCY COSTS:			\$	170,068
USER COSTS:			\$	1,431
TOTAL LIFE-CYCLE COSTS:			\$	171,499

Alternative 2:*
6-lane, 20 year Flexible - Option 2: 0.65^{\prime} HMA, 0.55^{\prime} AB, 1.15 ' AS

Pavement Design Life: $\quad 20$ Years
Initial Project Support Costs:

$\$$	133,093
$\$$	33,273

Future Maintenance \& Rehabilitation
Costs:**
$\$ \quad 2,440$

TOTAL AGENCY COSTS:
USER COSTS:
TOTAL LIFE-CYCLE COSTS:

$\$$	168,806
$\$$	8,436
$\$$	177,242

Reason that this is not Alternative 1:
This alternative has total Life-Cycle Costs 3.35% greater than Alternative 1. Alternative 2 has lower initial construction and project support costs but the overall life-cycle cost is larger.

[^37]
RealCost Input Data

1. Economic Variables	
Value of Time for Passenger Cars (\$/hour)	$\$ 11.51$
Value of Time for Single Unit Trucks (\$/hour)	$\$ 27.83$
Value of Time for Combination Trucks (\$/hour)	$\$ 27.83$

2. Analysis Options	
Include User Costs in Analysis	Yes
Include User Cost Remaining Service Life Value	Yes
Use Differential User Costs	Yes
User Cost Computation Method	Calculated
Include Agency Cost Remaining Service Life Value	Yes
Traffic Direction	Both
Analysis Period (Years)	
Beginning of Analysis Period	
Discount Rate (\%)	

3. Project Details and Quantity Calculations	
State Route	Route 1
Project Name	Route 1 HOV Project
Region	Central Coast
County	Santa Cruz
Analyzed By	CZ
Mileposts	
Begin	
End	Compare Flexible Pavement Sections - 20 year design life (3 lanes in each direction)
Length of Project (miles)	7.30
Comments	

4. Traffic Data	
AADT Construction Year (total for both directions)	97,000
Cars as Percentage of AADT (\%)	96.6
Single Unit Trucks as Percentage of AADT (\%)	2.2
Combination Trucks as Percentage of AADT (\%)	1.2
Annual Growth Rate of Traffic (\%)	2.3
Speed Limit Under Normal Operating Conditions (mph)	65
No of Lanes in Each Direction During Normal Conditions	3
Free Flow Capacity (vphpl)	1950
Rural or Urban Hourly Traffic Distribution	Urban
Queue Dissipation Capacity (vphpl)	1530
Maximum AADT (total for both directions)	289,830
Maximum Queue Length (miles)	5.0

Alternative 1

Initial Construction	Construct Hot Mix AC HOV Lane/Aux Lane	
Agency Construction Cost (\$1000)	$\$ 166,367.00$	
User Work Zone Costs (\$1000)	400	
Work Zone Duration (days)	3	
No of Lanes Open in Each Direction During Work Zone	20.0	1
Activity Service Life (years)	35.4	
Maintenance Frequency (years)	1.25	
Agency Maintenance Cost (\$1000)	55	
Work Zone Length (miles)	1360	
Work Zone Speed Limit (mph)		
Work Zone Capacity (vphpl)		End
Time of Day of Lane Closures (use whole numbers based on		
a 24-hour clock)		
Inbound	Start	
First period of lane closure		
Second period of lane closure		
Third period of lane closure		
Outbound	Start	
First period of lane closure		
Second period of lane closure		
Third period of lane closure		

Rehabilitation \#1	Year 20-5 year CapM HMA	
Agency Construction Cost (\$1000)	\$1,508.10	
User Work Zone Costs (\$1000)		
Work Zone Duration (days)	40	
No of Lanes Open in Each Direction During Work Zone	2	
Activity Service Life (years)	5.0	
Maintenance Frequency (years)	1	
Agency Maintenance Cost (\$1000)	11.8	
Work Zone Length (miles)	1.25	
Work Zone Speed Limit (mph)	55	
Work Zone Capacity (vphpl)	1360	
Time of Day of Lane Closures (use whole numbers based on a 24-hour clock)		
Inbound	Start	End
First period of lane closure	0	5
Second period of lane closure	22	24
Third period of lane closure		
Outbound	Start	End
First period of lane closure	0	5
Second period of lane closure	22	24
Third period of lane closure		

Page 2

Rehabilitation \#2	Year 25-20 year Rehab HMA	
Agency Construction Cost (\$1000)	$\$ 4,749.90$	
User Work Zone Costs (\$1000)		
Work Zone Duration (days)	43	
No of Lanes Open in Each Direction During Work Zone	20.0	
Activity Service Life (years)	1	
Maintenance Frequency (years)	31.1	
Agency Maintenance Cost (\$1000)	1.25	55
Work Zone Length (miles)	1360	
Work Zone Speed Limit (mph)		
Work Zone Capacity (vphpl)	Start	End
Time of Day of Lane Closures (use whole numbers based on		
a 24-hour clock)		
Inbound		
First period of lane closure		
Second period of lane closure		
Third period of lane closure		
Outbound		
First period of lane closure		
Second period of lane closure		
Third period of lane closure		

Rehabilitation \#3	Year 45-5 year CapM HMA	
Agency Construction Cost (\$1000)	\$1,508.10	
User Work Zone Costs (\$1000)		
Work Zone Duration (days)	40	
No of Lanes Open in Each Direction During Work Zone	2	
Activity Service Life (years)	5.0	
Maintenance Frequency (years)	1	
Agency Maintenance Cost (\$1000)	11.8	
Work Zone Length (miles)	1.25	
Work Zone Speed Limit (mph)	55	
Work Zone Capacity (vphpl)	1360	
Time of Day of Lane Closures (use whole numbers based on a 24 -hour clock)		
Inbound	Start	End
First period of lane closure	0	5
Second period of lane closure	22	24
Third period of lane closure		
Outbound	Start	End
First period of lane closure	0	5
Second period of lane closure	22	24
Third period of lane closure		

Rehabilitation \#4	Year 50-20 year Rehab HMA	
Agency Construction Cost (\$1000)	$\$ 4,749.90$	
User Work Zone Costs (\$1000)	43	
Work Zone Duration (days)	2	
No of Lanes Open in Each Direction During Work Zone	20.0	
Activity Service Life (years)	1	
Maintenance Frequency (years)	31.1	
Agency Maintenance Cost (\$1000)	1.25	55
Work Zone Length (miles)	1360	
Work Zone Speed Limit (mph)		
Work Zone Capacity (vphpl)	Start	End
Time of Day of Lane Closures (use whole numbers based on		
a 24-hour clock)		
Inbound		
First period of lane closure		
Second period of lane closure	Start	
Third period of lane closure		
Outbound		
First period of lane closure		
Second period of lane closure		
Third period of lane closure		

Rehabilitation \#5		
Agency Construction Cost (\$1000)	$\$ 0.00$	
User Work Zone Costs (\$1000)	0	
Work Zone Duration (days)	3	
No of Lanes Open in Each Direction During Work Zone	1.0	1
Activity Service Life (years)	0	
Maintenance Frequency (years)	1.25	
Agency Maintenance Cost (\$1000)	55	
Work Zone Length (miles)	1360	
Work Zone Speed Limit (mph)		
Work Zone Capacity (vphpl)		End
Time of Day of Lane Closures (use whole numbers based on		
a 24-hour clock)		
Inbound		
First period of lane closure		
Second period of lane closure		End
Third period of lane closure		
Outbound		
First period of lane closure		
Second period of lane closure		
Third period of lane closure		

Rehabilitation \#6		
Agency Construction Cost (\$1000)	$\$ 0.00$	
User Work Zone Costs (\$1000)		
Work Zone Duration (days)	0	
No of Lanes Open in Each Direction During Work Zone	1.0	
Activity Service Life (years)	1	
Maintenance Frequency (years)	0	
Agency Maintenance Cost (\$1000)	1.25	
Work Zone Length (miles)	55	
Work Zone Speed Limit (mph)	1360	
Work Zone Capacity (vphpl)		
Time of Day of Lane Closures (use whole numbers based on		End
a 24-hour clock)		
Inbound	Start	
First period of lane closure		
Second period of lane closure		
Third period of lane closure	Start	
Outbound		
First period of lane closure		
Second period of lane closure		
Third period of lane closure		

Alternative 2

Initial Construction	Construct Hot Mix AC HOV Lane/Aux Lane w/ OGFC	
Agency Construction Cost (\$1000)	$\$ 168,330.00$	
User Work Zone Costs (\$1000)	400	
Work Zone Duration (days)	3	
No of Lanes Open in Each Direction During Work Zone	22.0	
Activity Service Life (years)	1	
Maintenance Frequency (years)	24.7	
Agency Maintenance Cost (\$1000)	1.25	
Work Zone Length (miles)	55	
Work Zone Speed Limit (mph)	1360	
Work Zone Capacity (vphpl)		
Time of Day of Lane Closures (use whole numbers based on		End
a 24-hour clock)		
Inbound	Start	
First period of lane closure		
Second period of lane closure		
Third period of lane closure		
Outbound	Start	
First period of lane closure		
Second period of lane closure		
Third period of lane closure		

Rehabilitation \#1	Year 22-10 year CapM HMA w/ OGFC	
Agency Construction Cost (\$1000)	\$2,108.80	
User Work Zone Costs (\$1000)		
Work Zone Duration (days)	49	
No of Lanes Open in Each Direction During Work Zone	2	
Activity Service Life (years)	10.0	
Maintenance Frequency (years)	1	
Agency Maintenance Cost (\$1000)	39.7	
Work Zone Length (miles)	1.25	
Work Zone Speed Limit (mph)	55	
Work Zone Capacity (vphpl)	1360	
Time of Day of Lane Closures (use whole numbers based on a 24 -hour clock)		
Inbound	Start	End
First period of lane closure	0	5
Second period of lane closure	22	24
Third period of lane closure		
Outbound	Start	End
First period of lane closure	0	5
Second period of lane closure	22	24
Third period of lane closure		

Rehabilitation \#2	Year 32-22 year Rehab HMA w/ OGFC	
Agency Construction Cost (\$1000)	\$5,385.90	
User Work Zone Costs (\$1000)		
Work Zone Duration (days)	27	
No of Lanes Open in Each Direction During Work Zone	2	
Activity Service Life (years)	22.0	
Maintenance Frequency (years)	1	
Agency Maintenance Cost (\$1000)	38.7	
Work Zone Length (miles)	1.25	
Work Zone Speed Limit (mph)	55	
Work Zone Capacity (vphpl)	1360	
Time of Day of Lane Closures (use whole numbers based on a 24-hour clock)		
Inbound	Start	End
First period of lane closure	0	24
Second period of lane closure		
Third period of lane closure		
Outbound	Start	End
First period of lane closure	0	24
Second period of lane closure		
Third period of lane closure		

Rehabilitation \#3	Year 54-10 year CapM HMA w/ OGFC	
Agency Construction Cost (\$1000)	\$2,108.80	
User Work Zone Costs (\$1000)		
Work Zone Duration (days)	49	
No of Lanes Open in Each Direction During Work Zone	2	
Activity Service Life (years)	10.0	
Maintenance Frequency (years)	1	
Agency Maintenance Cost (\$1000)	39.7	
Work Zone Length (miles)	1.25	
Work Zone Speed Limit (mph)	55	
Work Zone Capacity (vphpl)	1360	
Time of Day of Lane Closures (use whole numbers based on a 24-hour clock)		
Inbound	Start	End
First period of lane closure	0	5
Second period of lane closure	22	24
Third period of lane closure		
Outbound	Start	End
First period of lane closure	0	5
Second period of lane closure	22	24
Third period of lane closure		

Rehabilitation \#4		
Agency Construction Cost (\$1000)	\$0.00	
User Work Zone Costs (\$1000)		
Work Zone Duration (days)	0	
No of Lanes Open in Each Direction During Work Zone	3	
Activity Service Life (years)	1.0	
Maintenance Frequency (years)	1	
Agency Maintenance Cost (\$1000)	0	
Work Zone Length (miles)	1.25	
Work Zone Speed Limit (mph)	55	
Work Zone Capacity (vphpl)	1360	
Time of Day of Lane Closures (use whole numbers based on a 24-hour clock)		
Inbound	Start	End
First period of lane closure		
Second period of lane closure		
Third period of lane closure		
Outbound	Start	End
First period of lane closure		
Second period of lane closure		
Third period of lane closure		

Rehabilitation \#5		
Agency Construction Cost (\$1000)	$\$ 0.00$	
User Work Zone Costs (\$1000)	0	
Work Zone Duration (days)	3	
No of Lanes Open in Each Direction During Work Zone	1.0	1
Activity Service Life (years)	0	
Maintenance Frequency (years)	1.25	
Agency Maintenance Cost (\$1000)	55	
Work Zone Length (miles)	1360	
Work Zone Speed Limit (mph)		
Work Zone Capacity (vphpl)	Start	End
Time of Day of Lane Closures (use whole numbers based on		
a 24-hour clock)		
Inbound		
First period of lane closure		End
Second period of lane closure		
Third period of lane closure		
Outbound		
First period of lane closure		
Second period of lane closure		
Third period of lane closure		

Rehabilitation \#6		
Agency Construction Cost (\$1000)	$\$ 0.00$	
User Work Zone Costs (\$1000)		
Work Zone Duration (days)	0	
No of Lanes Open in Each Direction During Work Zone	1.0	
Activity Service Life (years)	1	
Maintenance Frequency (years)	0	
Agency Maintenance Cost (\$1000)	1.25	
Work Zone Length (miles)	55	
Work Zone Speed Limit (mph)	1360	
Work Zone Capacity (vphpl)		
Time of Day of Lane Closures (use whole numbers based on		End
a 24-hour clock)		
Inbound	Start	
First period of lane closure		
Second period of lane closure		
Third period of lane closure	Start	
Outbound		
First period of lane closure		
Second period of lane closure		
Third period of lane closure		

Deterministic Results

Total Cost		Alternative 1: Route 1 Rehabilitation - 20 year design		Alternative 2: Route 1 Rehabilitation - 20 year design HMA w/ OGFC		
		Ogency Cost $(\$ 1000)$		User Cost $(\$ 1000)$	Agency Cost $(\$ 1000)$	
Undiscounted Sum	$\$ 171,249.80$	$\$ 16,983.79$	$\$ 172,126.75$	$\$ 2,955.73$		
Present Value	$\$ 168,806.45$	$\$ 8,436.13$	$\$ 170,068.20$	$\$ 1,431.42$		
EUAC	$\$ 9,044.20$	$\$ 451.99$	$\$ 9,111.80$	$\$ 76.69$		

ROUTE 1 - HOV PROJECT
Pavement Design for 20 year life
Pavement Area for 6-Lane Roadway $=62,208 \mathbf{m 2}=669,600$ SF

$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$		DESCRIPTION	TOTAL QUANTITY	UNIT	$\begin{aligned} & \text { UNIT } \\ & \text { COST } \end{aligned}$	AMOUNT / \$1,000
20 Year Flexible - Option 2 (0.65' HMA, 0.55' AB, 1.15' AS)						
1	HMA OGFC (0.1')		0	TON	95	-
2	HOT MIX ASPHALT		32,643	TON	80	2,611
3	AGGREGATE BASE		13,640	CY	35	477
4	LEAN CONCRETE BASE		0	CY	140	-
5	AGGREGATE SUBBASE		28,520	CY	20	570
TOTAL						3,659
TOTAL DIRECT CONSTRUCTION COST =						96,027
CONSTRUCTION + MOBILIZATION (10\%), TRO (5\%) \& CONTINGENCY (20\%) COST =						133,093
INITIAL SUPPORT COST (25\%) =						33,273
TOTAL INITIAL AGENCY COST =						166,367
20 Year Flexible - Option 3 (0.10' HMA OGFC, 0.50' HMA, 0.50' LCB, 1.15' AS)						
1	HMA OGFC (0.1')		5,022	TON	95	477
2	HOT MIX ASPHALT		25,110	TON	80	2,009
3	AGGREGATE BASE		0	CY	35	-
4	LEAN CONCRETE BASE		12,400	CY	140	1,736
5	AGGREGATE SUBBASE		28,520	CY	20	570
TOTAL						4,792
TOTAL DIRECT CONSTRUCTION COST =						97,160
CONSTRUCTION + MOBILIZATION (10\%), TRO (5\%) \& CONTINGENCY (20\%) COST =						134,664
INITIAL SUPPORT COST (25\%) =						33,666
TOTAL INITIAL AGENCY COST =						168,330

ROUTE 1 - HOV PROJECT

Alternatives for 6-Lane Roadway, 20 year design life

Work Zone Length (miles) $=$	1.25		Total LaneMiles =		10.74					
20 Year Flexible - Option 2, Maintenance Service Level = 1 (HMA)										
$\begin{gathered} \text { Initial Cost, } \$ 1000 \\ = \end{gathered}$	\$166,367	Service Life $=20$								
Initial Maint, $\$ 1000=$ $\$ 35.4$										
			Table 4 Rehab Cost, \$	Multiplier Table 3	Total Future Cost, in $\$ 1000$	Maintenance Cost	Future Maintenance Cost, in \$1000	Productivity Estimate, Table 8	Work Zone Duration, Days	Time of Day of Lane Closure
Rehab 1 =	Year 20	5 yr CapM HMA	\$1,267,320	0.19	\$1,508.1	\$1,100	\$11.8	0.27	40	$\begin{gathered} \hline 0-5 \\ 22-24 \\ \hline \end{gathered}$
Rehab 2 =	Year 25	20 yr Rehab HMA	\$3,769,740	0.26	\$4,749.9	\$2,900	\$31.1	0.25	43	0-24
Rehab 3 =	Year 45	5 yr CapM HMA	\$1,267,320	0.19	\$1,508.1	\$1,100	\$11.8	0.27	40	$\begin{gathered} 0-5 \\ 22-24 \\ \hline \end{gathered}$
Rehab 4 =	Year 50	$\begin{gathered} 20 \text { yr Rehab } \\ \text { HMA } \\ \hline \end{gathered}$	\$3,769,740	0.26	\$4,749.9	\$2,900	\$31.1	0.25	43	0-24
20 Year Flexible - Option 3, Maintenance Service Level = 1 (HMA w/ OGFC)										
$\begin{gathered} \text { Initial Cost, } \$ 1000 \\ = \end{gathered}$	\$168,330	Service Life $=22$								
Initial Maint, $\$ 1000=$	\$24.7									
			$\begin{gathered} \text { Rehab Cost, } \\ \$ \\ \hline \end{gathered}$	Multiplier	Total Future Cost, in $\$ 1000$	Maintenance Cost	Future Maintenance Cost, in \$1000	Productivity Estimate, Table 8	Work Zone Duration, Days	Time of Day of Lane Closure
Rehab 1 =	Year 22	10 yr CapM HMA w/ OGFC	\$1,772,100	0.19	\$2,108.8	\$3,700	\$39.7	0.22	49	$\begin{gathered} \hline 0-5 \\ 22-24 \end{gathered}$
Rehab 2 =	Year 32	22 yr Rehab HMA w/ OGFC	\$4,274,520	0.26	\$5,385.9	\$3,600	\$38.7	0.4	27	0-24
Rehab 3 =	Year 54	10 yr CapM HMA w/ OGFC	\$1,772,100	0.19	\$2,108.8	\$3,700	\$39.7	0.22	49	$\begin{gathered} \hline 0-5 \\ 22-24 \end{gathered}$

ATTACHMENT L

ACCIDENT SUMMARY

California Department of Transportation

OTM22130

Table B - Selective Accident Rate Calculation

Policy controlling the use of Traffic Accident Surveillance and Analysis System (TASAS) - Transportation Systems Network (TSN) Reports

1. TASAS - TSN has officially replaced the TASAS - "Legacy" database.
2. Reports from TSN are to be used and interpreted by the California Department of Transportation (Caltrans) officials or authorized representative.
3. Electronic versions of these reports may be emailed between Caltrans' employees only using the State computer system.
4. The contents of these reports shall be considered confidential and may be privileged pursuant to 23 U.S.C. Section 409, and are for the sole use of the intended recipient(s). Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message. Do not print, copy or forward.

OTM22130

Table B - Selective Accident Rate Calculation

Report Parameters-
Event ID: 3510554
Request Name: 0c730
Ref Date: 01/29/2013

Request\& Line		Route/Location		Begin Date	End Date	Rate Type	Out Seq	Override Rates			Override ADT		Req. Type	Combine?	Excl Ramp?
								Rate	Inj\%	Fat\%	Main	Cross			
11	H T I	05 SCR 001013.500 05 SCR 001014.900	-	01-JUL-08	30-JUN-11	N	L						N	N	Y
12	R T I	$\begin{array}{ll} 05 \text { SCR } 001 & 013.801 \\ 05 & \text { SCR } 001 \\ 013.802 \end{array}$	-	01-JUL-08	$30-J U N-11$	N	L						N	N	N
13	R T I	$\begin{array}{ll} 05 \text { SCR } 001014.734 \\ 05 \text { SCR } 001 & 014.735 \end{array}$	-	01-JUL-08	30-JUN-11	N	L						N	N	N
14	R T I	$\begin{array}{ll} 05 \text { SCR } 001 & 014.821 \\ 05 & \text { SCR } 001 \\ 014.822 \end{array}$	-	01-JUL-08	30-JUN-11	N	L						N	N	N
15	R T I	$\begin{array}{ll} 05 \text { SCR } 001013.594 \\ 05 \text { SCR } 001 & 013.595 \end{array}$	-	01-JUL-08	$30-J U N-11$	N	L						N	N	N
16	R T I	$\begin{array}{ll} 05 \text { SCR } 001 & 013.774 \\ 05 \text { SCR } 001 & 013.775 \end{array}$	-	01-JUL-08	30-JUN-11	N	L						N	N	N

Event Log:

Job id is : 487135 Accidents Table B Request Oc730 Submitted by T5SCADEN
05 SCR 001 13.5-05 SCR 001 14.9 07/01/2008 TO 06/30/2011
05 SCR 001 13.801-05 SCR 001 13.802 07/01/2008 TO 06/30/2011 05 SCR 001 14.734-05 SCR 001 14.735 07/01/2008 TO 06/30/2011 05 SCR 001 14.821-05 SCR 001 14.822 07/01/2008 TO 06/30/2011 05 SCR 001 13.594-05 SCR 001 13.595 07/01/2008 TO 06/30/2011 05 SCR 001 13.774-05 SCR 001 13.775 07/01/2008 TO 06/30/2011

```
OTM22130
01/29/2013
10:53 AM
```

Page\#
Event ID: 3510554

Location Description				Rate Group (RUS)	Tot	No. of Accidents / Significance						Pers Kld Inj	ADT Main X-St	Total MV+ or MVM	Accident Rates					
						Fat	Inj	F+I		Wet	Dark				Fat	$\mathrm{F}+\mathrm{l}$	Tot	Fat	F+l	Tot
05 SCR $001013.500-05$ SCR 001014.899			1.400 MI H		166	1	$\begin{array}{r} 53 \\ \mathrm{H} 95 \end{array}$	$\begin{array}{r} 54 \\ \mathrm{H} 95 \end{array}$	137	21	34	$\begin{array}{r} 1 \\ 76 \end{array}$	91.6	140.38	0.007	. 38	1.18	0.008	. 30	. 82
0001-0001	2008-07-01	2011-06-30	36 mo.	NA	H99															
05 SCR 001	. 801 001/SB	41ST AVE		$\begin{gathered} \text { R } 10 \\ U \end{gathered}$	14	0	3	3	14	$\begin{array}{r} 6 \\ \text { H97 } \end{array}$	3	0 3	9.1	$9.96+$	0.000	. 30	1.41	0.003	. 35	1.01
0001-0002	2008-07-01	2011-06-30	36 mo.									3	. 0							
05 SCR 001 014.734 001/NB OFF TO SOQUEL/COMMER				$\begin{gathered} \text { R } 30 \\ U \end{gathered}$	7	0	1	1	4	$\begin{array}{r} 4 \\ \mathrm{H} 95 \end{array}$	1	01	$\begin{array}{r} 8.9 \\ .0 \end{array}$	$9.71+$	0.000	. 10	. 72	0.001	. 17	. 54
0001-0003	2008-07-01	2011-06-30	36 mo.																	
05 SCR 001014.821 001/SB ON FR SOQUEL DR				$\begin{gathered} \text { R } 28 \\ U \end{gathered}$	2	0	1	1	2	0	1	01	$\begin{array}{r} 7.1 \\ .0 \end{array}$	7.81 +	0.000	. 13	. 26	0.001	. 13	. 46
0001-0004	2008-07-01	2011-06-30	36 mo.																	
05 SCR 001013.594 001/NB ON FR NB 41ST AVE				$\begin{gathered} \text { R } 40 \\ U \end{gathered}$	1	0	0	0	1	0	0	00	$\begin{array}{r} 6.2 \\ .0 \end{array}$	$6.79+$	0.000	. 00	. 15	0.002	. 21	. 73
0001-0005	2008-07-01	2011-06-30	36 mo.																	
05 SCR 001013.774 001/NB ON FR SB 41ST AVE				$\begin{gathered} \text { R } 20 \\ \mathrm{U} \end{gathered}$	1	0	0	0	0	1	0	0	2.6	$2.79+$	0.000	. 00	. 36	0.003	. 18	. 57
0001-0006	2008-07-01	2011-06-30	36 mo.									0	. 0							

Accident Rates expressed as: \# of accidents / Million vehicle miles

+ denotes that Million Vehicles (MV) used in accident rates instead (for intersections and ramps).
For Ramps RUS only considers R(Rural) U(Urban)

ATTACHMENT M

DISTRICT DISTRIBUTION LIST

Division / Program / Office	Project Type	D5	
FHWA		Gary Sweeten/Dominic Hoang	1
HQ Division of Design	All Projects	Design Report Routing	1
HQ Division of Engineering Serv	All Projects	Division of Engineering Services (electronic copy OK)	1
HQ Environmental	All Projects	Chris Flynn	1
HQ Maintenance	STIP	Patti-jo Dickinson	1
Project Manager	All Projects	Luis Duazo	1
Design Manager	All Projects	John Fouche	2
Resident Engineer	All Projects	Jennifer Wilson	1
District Maintenance	All Projects	Lance Gorman	1
District Traffic Management	All Projects	Jacques Van Zeventer	1
District Traffic Safety	Mon/SCr	Scott Morris	1
Region Materials	All Projects	Doug Lambert	1
Region Environmental	All Projects	Susan Schilder	1
Region Right of Way	All Projects	Marshall Garcia	1
District Planning	All Projects	Claudia Espino	1
District SFP	All Projects	No Copy	0
PPM	All Projects	Linda Araujo	1
District Surveys	All Projects	Hanna Kassis (electronic copy only)	0
	All Projects	Jeremy Villegas	1
HQ DES/OPPM	Proj w/ Structures	Andrew T S Tan	1
District Records (send electronic copy only)	All Projects	Kristina Jaime	0
TOTAL COPIES		District 5 =	19

Kimley»)Horn

APPENDIX Q.

SIMILAR KAISER MEDICAL OFFICE TRIP GENERATION COUNT DATA

Kimley»)Horn

MEMORANDUM

From: Frederik Venter, P.E., Kimley-Horn and Associates
Jacob M irabella, Kimley-Horn and Associates
To: Matt M achado, P.E., L.S., Public Works, County of Santa Cruz
Rodolfo Rivas, P.E., Public Works, County of Santa Cruz
Kathleen M olloy, P.E., Planning Department, County of Santa Cruz

Date: January 20, 2020

Re: Kaiser Medical Office Building Similar Sites Trip Generation Summary

This memorandum summarizes the results of a trip generation data collection effort at the driveways of four medical facilities and calculates trip generation rates for each site. This memo then compares these observed trip generation rates to the rate used for a proposed Kaiser M edical Office Building (MOB) in Santa Cruz County, California.

As requested by Santa Cruz County, traffic at four similar medical sites were observed to determine their existing trip generation. The following two (non-Kaiser) medical facilities (located in Santa Cruz County), and two existing Kaiser medical facilities (located in San Jose and Dublin, California) were selected in consultation with Santa Cruz County staff:

- Sutter Health Palo Alto Medical Foundation (PAMF) Urgent Care: Located at 2025 Soquel Ave, Santa Cruz, CA, this facility is a 67,000 square foot medical clinic and urgent care.
- Sutter Health Maternity and Surgery Center: Located at 2900 Chanticleer Avenue Santa Cruz CA, this 63,306 square foot facility has no emergency room supporting only scheduled and walk-in patients
- Kaiser Permanente Skyport Medical Offices: Located at 1721 Technology Drive, San Jose CA, this 143,700 square foot facility is a similar medical office building to the proposed M OB in Santa Cruz.
- Kaiser Permanente Dublin M edical Offices and Cancer Center: Located at 3100 Dublin Boulevard, Dublin CA, this 215,000 square foot facility provides a full suite of medical offices housed in a central building including emergency medical personnel.

Driveway counts (attached) at each of these four similar sites was collected on Tuesday October 22, 2019 to determine the daily and peak hours of trip generation for each location. The proposed new Kaiser M OB will be constructed in the southwest quadrant of the intersection of Soquel Avenue \& M attison Lane in Santa Cruz County, California. The M OB will have approximately 160,000 square feet of gross floor area and is anticipated to construct one driveway onto Soquel Avenue, at the north side of the site. Table 1 shows the assumed trip generation of the proposed project (based on data from the ITE Trip Generation Manual $10^{\text {th }}$ Edition) as well as the observed trip generation of the four similar sites.

Kimley»Horn

Table 1: Trip Generation Rate Comparison for the Medical Office Buildings

		Indep Var		Daily	Trips			M PEAK H	HOUR TRIP					M PEAK	OUR TRIP		
Development	Data Source	Size ${ }^{4}$	Unit	Rate	$\begin{array}{\|l} \hline \text { TOTAL } \\ \text { DAILY } \end{array}$	Rate	$\begin{gathered} \% \\ \text { Entering } \end{gathered}$	\% Exiting	Trips Entering	Trips Exiting	$\begin{array}{\|c} \text { TOTAL } \\ \text { AM } \end{array}$	Rate	\% Entering	\% Exiting	Trips Entering	Trips Exiting	$\begin{array}{\|c} \hline \text { TOTAL } \\ \hline \end{array}$
Proposed Project																	
Kaiser MOB	$\begin{gathered} \hline \text { ITE LUC } 630 \\ \text { (Clinic) }^{1} \\ \hline \end{gathered}$	160.000	KSF	38.16	6,106	3.69	78\%	22\%	461	130	591	3.28	29\%	71\%	152	373	525
	$\begin{gathered} \hline \text { ITE LUC } 720 \\ (\mathrm{MOB})^{2} \end{gathered}$	160.000	KSF	34.80	5,568	2.78	78\%	22\%	347	98	445	4.10	39\%	61\%	256	400	656
Similar Sites (2019) ${ }^{3}$																	
Sutter/PAMF (Urgent Care)	Counts	67.000	KSF	46.03	3,084	4.51	57\%	43\%	172	130	302	3.51	36\%	64\%	84	151	235
Sutter/PAMF (OB Office)	Counts	63.306	KSF	16.85	1,067	1.04	50\%	50\%	33	33	66	1.44	32\%	68\%	29	62	91
SkyportMOB (Kaiser)	Counts	143.700	KSF	17.65	2,537	1.54	68\%	32\%	150	71	221	1.52	23\%	77\%	51	167	218
Dublin MOB (Kaiser)	Counts	215.000	KSF	16.28	3,501	1.41	83\%	17\%	251	53	304	1.46	30\%	70\%	93	220	313
Similar Sites Average:		122.252	KSF	24.21	--	2.13	64\%	36\%	--	--	--	1.98	30\%	70\%	--	--	--

Notes:
2. ITE Land Use Code 720 (M edical Office Building) was used in the Santa Cruz Assumptions Memo based on ITE 10th Edition Data.
3. Similar sites driveway counts were performed on October 22, 2019 and used to determine trip generation characteristics.
4. Building size information provided by developer.

Kimley»)Horn

Findings

Based on average trip generation rates for ITE $10^{\text {th }}$ Edition LUC 630 (Clinic), the proposed Kaiser M OB generates 38.16 daily trips per 1,000 square feet, 3.69 AM peak hour trips per 1,000 square feet, and 3.28 PM peak hour trips per 1,000 square feet. Based on LUC 720 (M edical Office Building), the proposed Kaiser MOB generates $34.80,2.78$, and 4.1 daily, AM peak hour, and PM peak hour trips per 1,000 square feet respectively.

The average size of the similar sites counted is 122,252 square feet compared to the proposed Kaiser M OB size of 160,000 square feet. The average daily trip generation rate for the similar sites is 24.21 trips per 1,000 square feet, AM peak hour trip generation rate is 2.13 trips per 1,000 square feet, and PM peak hour trip generation rate is 1.98 trips per 1,000 square feet.

These observed generation rates are significantly smaller (ranging from 23% to 52% smaller) than the ITE LUC 630 and LUC 720 trip generation rates. As a result, the trip generation rates used in the Santa Cruz Kaiser M OB present a conservative estimate of trip generation for the proposed M OB.

IDAX Data Solutions
Project: 19464 - Bay Area - MOB Driveway Counts
Date: 10/22/2019
Driveway In/Out @ Bay Area Driveways

	UC Dwy 1						UC Dwy 2					
	IN			OUT			IN			OUT		
	EB Left	NB Thru	WB Right	SB Right	SB Thru	SB Left	NB Right	WB Thru	SB Left	WB Right	EB Thru	WB Left
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
12:15 AM	0	0	1	0	0	0	0	0	0	0	0	0
12:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
12:45 AM	0	0	0	0	0	1	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:15 AM	0	1	0	1	1	3	0	0	0	0	0	0
1:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:45 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:15 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:45 AM	0	0	0	0	0	0	0	0	1	0	0	1
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:15 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:45 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:15 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:45 AM	0	0	1	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:15 AM	0	0	0	0	0	1	0	0	0	0	0	0
5:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:45 AM	0	0	1	0	0	0	1	0	0	1	0	0
6:00 AM	0	0	2	0	0	1	0	0	0	0	0	0
6:15 AM	2	0	2	1	0	2	5	0	1	0	0	1
6:30 AM	0	2	7	1	0	1	1	0	0	0	0	2
6:45 AM	5	1	11	0	1	2	0	0	2	1	0	2
7:00 AM	4	2	9	1	0	3	4	0	2	0	0	1
7:15 AM	1	4	9	3	1	8	2	0	3	0	0	2
7:30 AM	4	6	7	1	2	2	5	0	4	0	0	4
7:45 AM	3	11	12	6	1	3	5	0	6	0	0	4
8:00 AM	3	5	16	2	3	4	6	0	4	1	0	5
8:15 AM	3	11	22	3	1	8	3	0	5	2	0	2
8:30 AM	7	10	18	7	6	5	5	0	7	4	0	5
8:45 AM	6	7	24	9	5	7	6	0	2	2	0	6
9:00 AM	8	9	18	2	3	9	7	0	6	0	0	8
9:15 AM	6	8	22	8	9	5	7	0	1	3	0	7
9:30 AM	4	7	15	8	3	8	6	0	3	0	0	15
9:45 AM	5	4	25	10	12	12	7	0	4	5	0	3
10:00 AM	2	7	19	8	6	15	6	0	3	3	0	11
10:15 AM	3	7	21	7	7	10	7	0	4	3	0	12
10:30 AM	8	4	27	13	6	14	8	0	3	3	0	10
10:45 AM	10	5	19	11	4	14	4	0	1	4	0	13
11:00 AM	1	5	18	4	2	16	6	0	5	2	0	10
11:15 AM	3	3	14	9	7	19	9	0	6	2	0	6
11:30 AM	6	9	11	8	4	13	7	0	7	1	0	10
11:45 AM	4	5	14	11	6	19	3	0	3	2	0	9
12:00 PM	7	5	10	5	7	7	6	0	3	3	0	5
12:15 PM	4	5	9	5	6	13	7	0	3	2	0	11
12:30 PM	5	1	8	7	7	17	3	0	2	1	0	13
12:45 PM	2	7	17	9	4	7	6	0	2	1	1	6
1:00 PM	7	2	13	5	3	7	4	0	2	1	0	5
1:15 PM	6	7	13	5	3	9	5	0	3	3	0	6
1:30 PM	9	6	14	6	2	10	7	0	3	2	0	5
1:45 PM	5	11	10	4	4	13	6	0	3	1	0	7
2:00 PM	8	4	13	1	10	10	9	0	3	1	0	8
2:15 PM	5	4	19	9	8	16	7	0	6	2	0	6
2:30 PM	3	5	17	4	4	9	4	0	1	2	0	10
2:45 PM	1	4	17	6	9	16	5	0	4	1	0	4
3:00 PM	11	4	18	3	6	15	6	0	8	1	0	15
3:15 PM	3	5	16	6	10	14	5	0	9	2	0	6
3:30 PM	4	7	6	3	5	12	5	0	3	3	0	9
3:45 PM	8	3	14	4	12	16	1	0	5	2	0	2
4:00 PM	4	1	15	5	11	15	3	0	3	3	0	12
4:15 PM	2	6	7	7	6	8	6	0	6	3	0	5
4:30 PM	1	0	8	7	7	16	3	0	6	2	1	7
4:45 PM	2	1	6	6	5	16	1	0	3	3	0	6
5:00 PM	0	4	10	5	9	15	3	0	4	2	0	4
5:15 PM	3	5	6	5	4	9	3	0	5	2	0	5
5:30 PM	1	1	7	9	7	13	5	0	1	4	0	2
5:45 PM	0	1	4	1	4	7	2	0	5	3	0	4
6:00 PM	4	3	4	2	1	9	1	0	1	0	0	3

6:15 PM	0	1	3	0	4	12	1	0	3	0	0	0
6:30 PM	2	1	1	0	1	0	1	0	1	1	0	1
6:45 PM	1	1	4	2	4	2	1	0	0	1	0	3
7:00 PM	1	1	3	3	1	2	0	0	0	0	0	2
7:15 PM	1	0	6	0	0	5	0	0	1	0	0	0
7:30 PM	1	1	3	1	1	3	0	0	0	1	0	3
7:45 PM	0	1	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	1	3	0	3	0	0	0	0	0	1
8:15 PM	0	0	1	5	0	3	2	0	0	1	0	0
8:30 PM	0	0	0	1	0	0	0	0	0	0	0	1
8:45 PM	1	0	2	1	0	7	1	0	0	0	0	0
9:00 PM	0	0	1	1	2	2	0	0	0	0	0	1
9:15 PM	1	0	0	4	0	4	0	0	1	0	0	1
9:30 PM	0	0	2	4	1	3	0	0	0	0	0	0
9:45 PM	0	0	0	1	1	5	0	0	1	0	0	1
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:15 PM	0	1	0	1	0	1	0	0	0	1	0	1
10:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:45 PM	0	0	0	0	0	1	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:15 PM	0	1	0	0	1	0	0	0	0	0	0	0
11:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:45 PM	1	0	0	0	0	0	0	0	0	0	0	0
Total	212	243	673	290	260	557	239	0	184	94	2	330

OB Dwy 1						OB Dwy 2						OB Dwy 3					
IN			OUT			IN			OUT			IN			OUT		
EB Right	SB Thru	NB Right	NB Left	NB Thru	WB Left	NB Right	WB Thru	SB Left	WB Right	EB Thru	WB Left	NB Right	WB Thru	SB Left	WB Right	EB Thru	WB Left
0	0	2	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	0	0	0	0	0	2	1	0	0
0	0	0	1	0	0	0	0	1	2	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0
2	0	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	2	0	0	4	0	0	0	0	0	0	0	0	0
3	0	1	0	0	2	0	0	2	0	0	0	0	0	2	1	0	0
4	0	1	0	0	3	0	0	1	1	0	0	0	0	2	0	0	0
6	0	0	0	0	2	0	0	1	0	0	0	0	0	5	2	0	1
5	0	0	0	0	3	0	0	7	3	0	0	1	0	4	1	0	0
1	0	0	0	0	0	0	0	1	2	0	0	0	0	4	2	0	0
1	0	0	0	0	2	0	0	2	2	0	0	0	0	7	1	0	0
3	0	0	0	0	2	0	1	1	1	0	0	0	0	3	1	0	1
0	0	0	0	0	2	0	0	2	4	0	0	1	0	3	3	0	0
1	0	0	0	0	1	0	0	5	1	0	0	0	0	3	1	0	0
2	0	0	0	0	2	0	0	2	2	0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0	4	3	0	0	1	0	3	0	0	1
0	0	0	0	0	3	0	0	6	5	1	0	0	0	7	2	0	1
2	0	1	0	0	0	0	0	4	4	0	0	0	0	1	2	0	0
0	0	0	0	0	2	0	0	3	2	0	0	0	0	2	1	0	1
1	0	0	0	0	0	1	0	5	4	1	0	0	0	0	3	0	1
1	0	1	0	0	0	0	0	3	7	0	1	1	0	5	6	0	0
1	0	2	0	0	1	1	0	7	2	0	0	2	0	3	6	0	2
0	0	1	0	0	1	0	0	4	6	0	0	0	0	1	1	0	0
0	0	1	0	0	0	0	0	3	3	0	0	1	0	2	5	0	0
0	0	0	0	0	0	0	0	8	4	0	0	0	0	0	2	0	0
0	0	0	0	0	0	1	0	10	5	0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	1	5	4	0	0	0	0	0	2	0	0
1	0	1	0	0	0	0	2	2	4	3	0	0	0	1	3	0	0
2	0	0	1	0	1	0	1	2	0	0	0	0	0	0	7	0	1
0	0	0	0	0	2	0	0	4	3	1	0	1	0	0	4	0	1
0	0	1	0	0	0	1	0	8	7	0	0	0	0	1	1	0	2
1	0	1	0	0	2	0	1	6	2	0	0	0	0	2	4	0	0
1	0	0	2	0	2	0	0	8	6	0	0	0	0	2	2	0	0
2	0	0	2	0	1	0	0	10	3	0	0	0	0	2	2	0	0
0	0	2	1	0	4	0	1	11	6	0	0	0	0	4	4	0	0
1	0	1	3	0	2	1	0	7	6	0	0	0	0	4	3	0	0
2	0	1	0	0	0	0	0	5	9	0	0	0	0	6	3	0	0
1	0	4	1	0	0	0	0	7	4	2	0	0	0	3	5	0	1
0	0	2	1	0	0	0	1	4	4	0	0	0	0	0	4	0	0
3	0	2	4	0	0	0	0	3	3	0	0	0	0	1	2	0	0
2	0	3	1	0	1	0	0	3	4	0	0	0	0	2	4	0	0
0	0	3	1	0	0	0	1	6	6	0	0	1	0	1	11	0	2
2	0	3	2	0	2	0	0	4	1	0	0	0	0	0	6	0	0
0	0	1	2	0	1	1	0	3	1	0	0	0	0	1	4	0	1
1	0	1	0	0	0	0	0	2	1	1	0	0	0	1	3	0	0
1	0	1	1	0	0	0	0	8	3	0	0	0	0	1	10	0	0
0	0	0	1	0	1	0	1	3	2	0	0	1	0	0	5	0	1
4	0	6	0	0	1	0	0	4	4	1	0	0	0	0	4	0	0
0	0	0	2	0	0	0	0	1	0	0	0	0	0	2	5	0	0
0	0	2	0	0	0	0	0	4	6	0	1	1	0	4	18	0	0
0	0	0	0	0	0	0	0	4	7	0	0	0	0	0	6	0	0
0	0	7	0	0	0	0	0	3	3	0	0	0	0	2	8	0	0
1	0	0	1	0	0	0	0	0	4	0	0	0	0	1	8	0	0
0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	5	0	0

0	0	0	1	0	2	0	0	4	1	0	0	0	0	0	2	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	4	0	0
1	0	0	0	0	0	0	0	3	1	0	0	0	0	0	2	0	0
0	0	4	0	0	1	0	0	1	1	0	0	0	0	1	2	0	0
0	0	0	1	0	1	0	0	1	4	0	0	0	0	1	3	0	0
1	0	1	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0
0	0	2	0	0	1	0	0	1	3	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0
0	0	4	3	0	2	0	0	1	1	0	0	0	0	0	0	0	0
0	0	1	3	0	0	0	0	1	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0
2	0	2	1	0	0	0	0	3	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	0	0	3	0	0	0	0	0	1	0	0	0	0	0	3	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
79	0	74	50	0	60	6	10	239	190	11	3	11	1	107	209	0	17

KS Dwy 1						KS Dwy 2					
IN			OUT			IN			OUT		
NB Left	WB Thru	SB Right	EB Right	EB Thru	EB Left	SB Right	WB Thru	NB Left	EB Left	EB Thru	EB Right
0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	8	0	0	0	0	0	0	2	0	0
0	0	6	0	0	0	2	0	0	0	0	0
0	0	17	0	0	0	9	0	0	1	0	0
0	0	18	0	0	1	8	0	0	5	1	0
0	0	39	0	0	0	6	0	0	3	0	0
0	0	40	0	0	0	7	0	1	3	1	0
0	0	35	0	0	0	7	0	0	9	0	0
0	0	46	0	0	0	6	0	0	10	0	1
0	0	33	1	0	0	2	0	0	16	0	1
0	0	28	0	0	0	2	0	0	17	0	0
1	0	31	0	0	0	1	0	0	25	0	0
0	1	33	0	0	0	3	0	0	23	0	1
0	0	39	1	0	0	1	0	0	32	1	1
0	1	32	0	0	0	3	0	0	28	0	0
0	0	40	1	0	0	2	0	0	32	0	0
0	0	37	0	0	0	2	0	0	33	0	1
1	0	27	0	0	0	0	0	0	35	0	0
0	0	33	0	0	0	1	0	0	56	0	0
0	0	25	0	0	0	1	0	0	43	0	1
0	0	24	0	0	0	1	0	0	40	0	0
0	0	16	0	0	0	2	0	0	36	0	0
0	0	24	0	0	0	1	0	0	41	1	0
1	0	22	0	0	0	1	0	0	39	0	1
0	0	13	0	0	0	1	1	0	28	0	0
0	0	24	0	0	0	3	0	1	16	0	1
0	0	34	0	0	0	5	0	0	15	1	0
0	1	37	0	0	0	1	1	0	18	2	0
0	0	25	0	0	0	1	0	0	17	1	0
0	0	25	0	0	0	3	0	1	25	0	0
0	0	31	0	0	0	3	0	0	30	0	0
0	0	32	1	0	0	2	0	0	35	0	1
0	0	37	0	0	0	2	0	0	27	0	0
0	0	30	0	0	0	1	0	0	35	0	0
0	0	30	0	0	0	1	0	0	41	0	0
0	0	35	0	0	0	2	0	0	37	1	0
0	1	33	1	0	0	0	0	0	33	0	0
0	0	18	0	0	0	0	0	0	30	0	0
0	0	15	0	0	0	1	0	0	40	0	0
0	0	21	0	0	0	0	0	0	43	1	1
0	0	7	0	0	0	0	0	1	39	0	0
0	0	6	0	0	0	0	0	0	42	1	0
0	0	6	0	0	0	0	0	0	32	0	1
0	1	3	0	0	0	1	0	0	30	1	0
0	0	6	0	0	0	1	0	0	24	0	0
0	0	5	1	0	0	0	0	0	13	0	0

1	0	6	1	0	0	1	0	0	5	0	0
0	0	2	0	0	0	0	0	0	14	0	0
2	0	3	0	0	0	0	0	0	8	0	0
0	0	0	0	0	0	0	0	0	3	0	0
0	0	0	0	0	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	0	2	0	0
0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	3	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	3	0	0	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	0	2	0	0
0	0	1	1	0	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	1	2	0	0
0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2	0	0
0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
6	6	1151	17	0	1	98	2	6	1226	12	12

KD Dwy 1						KD Dwy 2					
IN			OUT			IN			OUT		
EB Right	SB Thru	WB Left	NB Right	NB Thru	NB Left	EB Right	SB Thru	WB Left	NB Right	NB Thru	NB Left
0	0	0	0	0	2	0	0	0	2	0	0
0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	3	0	0	0	2	0	0
1	0	0	0	0	2	0	0	0	1	0	0
0	0	0	1	0	1	0	0	0	1	0	0
0	0	0	1	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0
1	0	0	2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0
1	0	0	0	0	1	0	0	0	1	0	0
1	0	2	0	0	0	1	0	3	0	0	0
6	0	0	0	0	0	1	0	6	0	0	0
1	0	0	0	0	0	1	0	3	3	0	0
8	0	0	0	0	1	2	0	7	1	0	0
8	0	0	0	0	2	0	0	10	1	0	0
6	0	1	0	0	2	3	1	11	0	0	0
16	0	1	1	1	0	2	0	10	0	0	1
18	0	0	2	0	2	8	0	7	0	0	0
21	0	1	1	1	3	0	0	25	3	0	1
26	0	1	0	1	4	4	0	30	4	0	2
23	0	2	4	0	6	4	0	26	2	0	1
37	1	1	1	0	3	8	0	32	3	0	0
30	0	0	1	0	12	5	2	19	6	0	3
24	0	2	2	2	13	7	0	14	4	0	2
20	1	3	1	0	12	2	1	13	8	0	4
13	1	0	3	0	9	3	1	15	8	0	4
15	0	1	3	0	15	9	0	20	10	0	3
22	1	1	1	0	16	2	0	23	13	0	3
19	1	0	3	0	10	7	0	16	14	0	1
17	0	1	2	2	15	4	0	17	7	0	6
15	0	1	2	0	9	5	0	13	10	0	5
16	0	2	2	0	25	4	0	16	16	0	6
10	1	1	3	0	8	2	0	15	10	2	2
9	0	2	5	0	17	2	1	12	15	0	4
9	0	1	2	0	14	2	0	15	16	0	9
22	0	0	2	0	8	2	1	6	13	0	6
9	0	0	6	0	18	2	0	4	22	1	6
13	0	1	0	0	20	1	0	8	36	0	4
11	1	0	5	1	15	2	0	14	29	0	1
16	0	1	1	1	4	2	0	18	14	0	6
16	0	2	1	0	10	2	0	17	11	0	2
26	1	2	2	1	7	4	0	35	7	0	0
30	0	0	4	0	16	2	2	18	6	0	0
25	1	0	8	0	15	4	0	11	10	0	0
16	0	0	1	0	16	1	1	10	14	0	2
27	0	2	6	2	21	3	0	14	14	1	4
17	0	1	4	0	13	2	0	11	17	0	2
18	0	2	4	0	15	4	0	7	17	0	4
16	0	1	3	1	16	6	0	7	22	0	3
17	0	3	5	0	25	5	1	14	17	0	3
16	2	0	3	1	14	4	2	8	29	1	2
15	0	1	3	0	15	4	2	8	22	0	5
10	1	0	3	2	22	2	0	10	23	1	3
17	0	1	2	0	16	0	3	12	23	0	3
16	0	0	2	0	21	3	1	4	37	1	3
9	0	1	2	1	18	0	0	3	31	0	6
5	0	0	0	1	26	1	0	4	32	1	7
5	0	0	1	0	17	0	1	4	20	1	4
13	0	0	3	1	21	1	0	3	16	1	3
8	0	0	0	0	11	1	0	2	16	0	0
5	1	0	0	0	7	2	0	3	19	0	0

| 6 | 0 | 0 | 3 | 1 | 3 | 0 | 0 | 2 | 6 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0 | 0 | 0 | 0 | 8 | 1 | 0 | 4 | 16 | 0 | 1 |
| 5 | 0 | 0 | 1 | 0 | 6 | 1 | 0 | 5 | 6 | 0 | 0 |
| 4 | 0 | 1 | 2 | 0 | 5 | 1 | 0 | 2 | 3 | 0 | 1 |
| 2 | 0 | 0 | 0 | 0 | 5 | 4 | 0 | 2 | 5 | 0 | 1 |
| 3 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 2 | 3 | 0 | 0 |
| 2 | 0 | 1 | 2 | 0 | 6 | 2 | 0 | 2 | 2 | 0 | 0 |
| 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 2 |
| 3 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 3 | 5 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 | 8 | 2 | 1 | 1 | 8 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 5 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 5 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 3 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 3 | 0 | 1 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 1 |
| 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 4 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 |
| 841 | 13 | 44 | 127 | 21 | 675 | 164 | 23 | 675 | 761 | 12 | 145 |

Kimley»)Horn

APPENDIX R. PIVOTAL MARKET DATA

	Total	Other Healthcare System B																		Total
in your Neighborhoo d		Aptos Center	Aptos WalkIn Care	Capitola Center Lab	Commercial Crossing Center	Freedom PAMF	$\begin{array}{\|c} \hline \text { Santa Cruz } \\ \text { Allergy } \\ \hline \end{array}$	Santa Cruz Cardiothoraci c Surgery	Santa Cruz Center	$\begin{array}{\|c\|} \hline \text { Santa Cruz } \\ \text { Chanticleer } \\ \text { Center (2907) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Santa Cruz } \\ \text { Chanticleer } \\ \text { Center (2911) } \\ \hline \end{array}$	Santa Cruz Gastroentero logy	Santa Cruz Neurology	Santa Cruz Physical Therapy	Scotts Valley Center	Scotts Valley El Rancho Drive Center	Soquel Center	Watsonville PAMF	Westside Center	
0		P	Q	R	S	T	U	V	w	X	Y	z	AA	AB	AC	AD	AE	AF	AG	
223 Mt . Hermon Road		7600 Old Dominion Court	26 Rancho Del Mar	815 Bay Ave	$\begin{array}{\|c\|} \hline 2850 \\ \text { Commercial } \\ \text { Crossing } \\ \hline \end{array}$	160 Green Valley Road	3035 North Main Street	$\begin{array}{\|c\|} \hline 1575 \text { Soquel } \\ \text { Drive } \\ \hline \end{array}$	2025 Soquel Ave	$\begin{gathered} \hline 2907 \\ \text { Chanticleer } \\ \text { Ave } \\ \hline \end{gathered}$	$\begin{gathered} 2911 \\ \text { Chanticleer } \\ \text { Ave } \\ \hline \end{gathered}$	\qquad	$\begin{gathered} 1661 \text { Soquel } \\ \text { Drive } \end{gathered}$	$\begin{gathered} 1529 \\ \text { Seabright } \\ \text { Ave } \end{gathered}$	4663 Scotts Valley Drive	$\begin{array}{c\|} 2980 \text { El } \\ \text { Rancho Drive } \\ \hline \end{array}$	$\begin{gathered} 2950 \\ \text { Research } \\ \text { Park Drive } \end{gathered}$	$\begin{aligned} & 550 \text { S Green } \\ & \text { Valley Rd } \end{aligned}$	1301 Mission Street	
Scotts Valley		Aptos	Aptos	Capitola	Santa Cruz	Freedom	Soquel	Santa Cruz	95066	95060	95073	95076	Santa Cruz							
95066		95003	95003	95010	95065	94539	95073	95065	95062	95065	95065	95065	95065	95062	AC	AD	AE	AF	95060	
15.3		11.4	11.3	10.6	10.7	16.5	11	10.7	10.7	11	11	11.1	11	11.1	14.1	12.9	10.9	15.5	12	
0	4,292	15	0	0	0	1,269	4	46	7,077	7	48	4	0	0	0	4	0	30	16	8,528
0	573	70	0	0	0	6	0	0	425	96	32	0	0	0	78	139	10,430	157	244	11,677
0	76	0	0	869		40	0	0	6	0	0	0	0	0	2	2	0	219	0	1,138
0	835	145	0	0	0	0	8	0	307	0	75	27	102	0	107	10	3,674	104	62	4,621
1,825	46,814	15,582	243	4,543	9,462	2,467	723	705	59,532	10,339	16,880	4,328	5,019	0	11,052	6,888	13,772	9,763	10,002	181,300
0	1,136	36	0	0	4	0	0	0	88	0	40	5,784	0	0	41	2	3	0	6	6,004
0	117	0	0	0	15	2	0	0	133	9	1,046	12	0	0	4	0	108	0	3	1,332
0	1,562	53	0	0	0	111	0	0	6	1,043	12	0	0	0	17	23	0	28	51	1,344
0	8,832	749	0	696	707	97	57	33	4,558	898	1,478	2,197	178	0	393	242	148	592	619	13,642
0	6,941	2,227	0	553	3,338	67	2,334	26	7,433	134	418	56	119	0	2,146	758	5	1,619	1,849	23,082
0	15	0	0	0	0	0	0	0	1,244	0	0	0	0	0	0	0	0	0	0	1,244
0	113	12	0	0	0	0	0	0	87	0	9	0	835	0	12	6	73	27	6	1,067
0	20	0	0	0	0	0	0	0	0	4	268	0	0	0	0	4	12	0	0	288
0	450	0	0	0	1,396	0	0	0	4	0	109	13	0	0	0	0	0	0	0	1,522
0	469	92	0	0	0	0	0	0	7,448	0	0	0	0	0	30	25	14	205	22	7,836
0	697	6	0	0	0	0	13	8	485	3,579	69	0	13	0	25	20	1,350	27	71	5,666
0	207	6	0	0	0	0	0	0	0	11	1,757	0	17	0	6	0	0	6	44	1,847
0	2,547	586	0	0	123	0	33	0	824	333	321	4	477	9,525	195	156	405	221	585	13,788
0	32	0	0	0	0	0	0	0	0	422	0	0	0	0	0	6	0	0	18	446
0	5	380	0	0	0	0	0	0	7,358	0	0	0	0	0	0	0	0	690	0	8,428
0	870	57	0	0	O	3	160	39	722	0	5	0	0	0	0	93		55	12	1,152
0	4,965	102	0	17	111	24	19	165	46,592	419	476	24	81	0	39	13	14	252	52	48,400
0	81	0	0	0	0	0	126	4	0	0	0	0	147	0	0	0	0	0	0	277
0	23	0	0	0		2	0	21	14	0	3	0	0	0	0	0	0	0	0	46
0	905	0	0	0	0	0	0	0	3	375	0	0	0	0	0	0	54	3	6	441
0	1,016	3	0	0	26	3	0	0	23	26	4,065	0	0	0	0	6	0	6	0	4,158
0	610	14	0	0	36	0	0	13	849	4	103	19	0	0	0	4	5	0	0	1,047
1,825	84,236	20,135	$\underline{243}$	6,678	$\underline{15,224}$	4,091	3,477	1,060	145,218	17,699	$\underline{27,214}$	$\underline{12,468}$	6,992	9,525	14,151	8,401	30,165	14,004	$\underline{13,668}$	350,413

Provider Location Location Letter		Total Visits	Kaiser Santa Cruz County						Total	Potential Kaiser Redistributed Visits as a Result of the Project							$\underline{\text { Total }}$	
			Downtown															
			Santa Cruz Facility	Scotts Valley	Scotts Valley	Watsonville	Watsonville	Kaiser Santa Cruz County		Watsonville	Santa Clara	Giroy	San Jose	Dominican Hospital	Campbell	Skyport		
			AW	Al	AJ	AK	AL	AQ		AM	AN	AO	AP	AS	AU	AV		
Distribution Address of Total Visits			$\begin{gathered} 110 \text { Cooper } \\ \text { St } \end{gathered}$	5615 Scotts Valley Dr	5617 Scotts Valley Dr	1927-1951	$\begin{gathered} 180 \\ \text { Westgate Dr } \end{gathered}$	5940 Soquel		75 Nielson St	$\begin{gathered} 700 \\ \text { Lawrence } \end{gathered}$ Expy	7520 Arroyo Cir	250 Hospital Pkwy	1555 Soquel	$\begin{gathered} 200 \mathrm{E.} \\ \text { Hacienda Ave } \end{gathered}$	$\begin{array}{\|c\|} \hline 1721 \\ \text { Technology } \end{array}$ Dr		
${ }_{\text {city }}^{\text {City }}$			Santa Cruz	Scotts Valley	Scotts Valley	Watsonville	Watsonville	Capitola		Watsonville	Santa Clara	Gilroy	San Jose	Santa Cruz	Campbell	San Jose		
		95060	95066	95066	95035	95076	95062	95076		95051	95020	95119	95065	95008	95110			
Weighted Distance Pivotal Service			8.4	14.8	14.7	15.2	15	10.6		14.8	37.8	43.4	40	10.6	31.9	39		
Cardiology - Outpatient Cosmetic Procedures - Outpatient	2.35\%		3,254	0	0	0	0	0	3,239	3,239	0	3	0	12	0	0	0	15
	0.82\%		1,138	0	0	0	0	0	894	894	0	0	0	0	0	244	0	244
Dermatology - Outpatient	2.78\%	3,848	0	0	0	0	0	3,848	3,848	0	0	0	0	0	0	0	0	
Endocrinology - Outpatient	0.31\%	424	0	0	0	0	0	424	424	0	0	0	0	0	0	0	0	
Evaluation and Management - Outpatient	1.10\%	1,524	0	0	0	0	0	1,524	1,524	0	0	0	0	0	0	0	0	
	41.19\%	57,931	22,806	17,185	0	15,095	0	797	55,883	0	932	28	1,024	0	52	12	2,048	
Gastroenterology - OutpatientGeneral Surgery - Outpatient	0.46\%	644	0	0	0	0	0	644	644	0	0	0	0	0	0	0	0	
	1.01\%	1,396	0	0	0	0	0	1,396	1,396	0	0	0	0	0	0	0	0	
Gynecology \& Obstetrics	5.43\%	7,637	3,416	1,629	0	2,455	0	53	7,553	0	12	0	72	0	0	0	84	
Lab - Outpatient Miscellaneous Services - Outpatient	0.68\%	936	0	0	0	0	0	936	936	0	0	0	0	0	0	0	0	
	1.57\%	2,183	0	0	0	0	0	2,183	2,183	0	0	0	0	0	0	0	0	
Nephrology - OutpatientNeurology - Outpatient	0.12\%	173	0	0	0	0	0	173	173	0	0	0	0	0	0	0	0	
	1.72\%	2,387	0	0	0	0	0	2,285	2,285	0	33	0	69	0	0	0	102	
Neurosurgery - Outpatient	0.01\%	8	0	0	0	0	0	8	8	0	0	0	0	0	0	0	0	
Oncology - Outpatient Ophthalmology - Outpatient	1.60\%	2,211	0	0	0	0	0	2,107	2,107	0	21	0	83	0	0	0	104	
	4.72\%	6,541	0	0	0	0	0	6,302	6,302	0	173	0	66	0	0	0	239	
Ophthaimology- - Outpatient Orthopedics - Outpatient Pain Management - Outpatient	2.90\%	4,026	0	0	0	0	0	4,026	4,026	0	0	0	0	0	0	0	0	
	1.48\%	2,052	0	0	0	0	0	1,660	1,660	0	47	0	345	0	0	0	392	
Physical Therapy/Rehabilitation - Outpatient	1.03\%	1,434	0	0	0	0	0	1,434	1,434	0	0	0	0	0	0	0	0	
	1.05\%	1,458	0	0	0	0	0	1,458	1,458	0	0	0	0	0	0	0	0	
Podiatry - Outpatient Psychiatry- Outpatient	10.35\%	14,537	6,389	0	3,115	3,369	1,638	21	14,532	0	0	0	5	0	0	0	5	
Pulmonology - Outpatient	0.17\%	237	0	0	0	0	0	237	237	0	0	0	0	0	0	0	0	
Radiology - Outpatient	5.64\%	7,822	0	0	0	0	0	7,822	7,822	0	0	0	0	0	0	0	0	
Spine - Outpatient Thoracic Surgery - Outpatient	0.10\%	132	0	0	0	0	0	132	132	0	0	0	0	0	0	0	0	
	0.00\%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Thoracic Surgery - Outpatient Trauma- Outpatient	10.65\%	14,759	0	0	0	0	0	14,759	14,759	0	0	0	0	0	0	0	0	
Urology - Outpatient Vascular - Outpatient	0.64\%	881	0	0	0	0	0	881	881	0	0	0	0	0	0	0	0	
	0.13\%	186	0	0	0	0	0	182	182	0	4	0	0	0	0	0	4	
	100\%	139,759	32,611	18,814	3,115	20,919	1,638	59,425	136,522	$\underline{0}$	1,225	$\underline{28}$	1,676	$\underline{0}$	$\underline{296}$	12	3,237	

Kimley»)Horn

APPENDIX S. PROPOSED TENANT MEMBERSHIP FORECASTS

Santa Cruz Residence Area Membership Long Range Forecast and Projection

2020-2034 Forecast
2020-2034 Forecast
2035-2041 Projection

CSA			Membership Long Range Forecast															Projection						
	MAJOR	FACAREA	2020	2021	2022	2023	2024	2025	2026	-2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
SAN JOSE	SANTA CRUZ	SANTA CRUZ	18,353	19,281	20,589	22,657	25,165	27,428	29,126	30,382	31,400	32,367	33,489	34,636	35,798	36,989	38,187	39,424	40,701	42,019	43,380	44,785	46,236	47,733
SAN JOSE	SANTA CRUZ	WATSONVILLE	8,115	8,492	9,106	10,078	11,259	12,328	13,126	13,713	14,190	14,646	15,172	15,712	16,267	16,833	17,421	18,030	18,659	19,311	19,986	20,684	21,406	22,154
SAN JOSE	SANTA CRUZ	SCOTTS VALLEY	8,603	9,028	9,603	10,512	11,615	12,608	13,345	13,884	14,317	14,726	15,194	15,656	16,119	16,575	17,037	17,511	17,998	18,499	19,014	19,543	20,086	20,645
		Total	35,071	36,801	39,298	43,247	48,039	52,364	55,597	57,978	59,907	61,739	63,855	66,003	68,184	70,398	72,645	74,965	77,359	79,829	82,380	85,012	87,729	

Kimley»)Horn

APPENDIX T. PROJECT AND NO PROJECT MEMBERSHIP BASIS

Project Membership Basis

Plus Project		
Member Type	Members	Member Share
Existing Members	35,071	40.0%
Organic Growth	4,394	5.0%
Other Members	48,264	55.0%
Total Members	$\mathbf{8 7 , 7 2 9}$	$\mathbf{1 0 0 . 0 \%}$

Kimley»"Horn

APPENDIX U.
SOUTHBOUND HIGHWAY 1 \& SOQUEL AVENUE IMPROVEMENTS SYNCHRO OUTPUT SHEETS

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

	4		\leftarrow	4		\downarrow
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	\uparrow	性	「	\% ${ }^{\text {\% }}$	F
Traffic Volume (veh/h)	364	289	604	167	393	588
Future Volume (veh/h)	364	289	604	167	393	588
Initial $Q(Q b)$, veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			0.98	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow, veh/h/ln	1885	1885	1870	1870	1885	1885
Adj Flow Rate, veh/h	375	298	623	172	405	0
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	1	1	2	2	1	1
Cap, veh/h	498	1358	1341	585	537	
Arrive On Green	0.28	0.72	0.38	0.38	0.15	0.00
Sat Flow, veh/h	1795	1885	3647	1552	3483	1598
Grp Volume(v), veh/h	375	298	623	172	405	0
Grp Sat Flow(s),veh/h/ln	1795	1885	1777	1552	1742	1598
Q Serve(g_s), s	13.4	3.7	9.3	5.4	7.8	0.0
Cycle Q Clear(g_c), s	13.4	3.7	9.3	5.4	7.8	0.0
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h	498	1358	1341	585	537	
V/C Ratio(X)	0.75	0.22	0.46	0.29	0.75	
Avail Cap(c_a), veh/h	498	1358	1341	585	911	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	0.72	0.72	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	23.1	3.3	16.5	15.3	28.3	0.0
Incr Delay (d2), s/veh	7.5	0.3	1.2	1.3	2.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	6.4	1.1	3.8	2.0	3.3	0.0
Unsig. Movement Delay, s/veh						
LnGrp Delay (d),s/veh	30.6	3.5	17.6	16.5	30.5	0.0
LnGrp LOS	C	A	B	B	C	
Approach Vol, veh/h		673	795		405	A
Approach Delay, s/veh		18.6	17.4		30.5	
Approach LOS		B	B		C	
Timer - Assigned Phs		2		4	5	6
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s		55.0		15.0	24.0	31.0
Change Period ($Y+R \mathrm{R}$), s		4.6		* 4.2	4.6	4.6
Max Green Setting (Gmax), s		42.9		* 18	19.4	18.9
Max Q Clear Time (g_c+11), s		5.7		9.8	15.4	11.3
Green Ext Time (p_c), s		2.0		1.0	0.5	3.0
Intersection Summary						
HCM 6th Ctrl DelayHCM 6th LOS			20.7			
			C			

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Kimley»)Horn

APPENDIX V. TRUCK TURNING TEMPLATE

Kimley»)Horn
$\overline{\text { xx-097XXXXXX JUNE } 2020}$
FIGURE 1

Kimley»)Horn

APPENDIX W. VIRTUAL CARE BACKUP

KP Santa Cruz County Virtual Care back up

Santa Cruz County						
Exam Room Visits						
2017-2019						
AGE2GRP	(All)	\cdots				
REGULAR_APPT_HOUR	R	T				
MEMFL	(All)	\checkmark				
PROV	(All)	\checkmark				
CLASS	(All)	\checkmark				
PROCEDURE	(All)	\checkmark				
GROUP	(All)	\checkmark				
FAC_ID (Multiple Items) -						
SERVICE TYPE \bar{T}	I VISIT TYPE	\checkmark	DEPARTMENTS \boldsymbol{T}	2017	2018	2019
\bullet PRIMARY CARE	EIN PERSON		MEDICINE PRIMARY	33,219	51,076	64,661
PRIMARY CARE	IN PERSON		PEDIATRICS	4,812	6,915	7,330
PRIMARY CARE	IN PERSON		OB/GYN	3,459	5,653	6,506
PRIMARY CARE	IN PERSON Total			41,490	63,644	78,497
PRIMARY CARE	- VIRTUAL		MEDICINE PRIMARY	11,237	20,801	21,524
PRIMARY CARE	VIRTUAL		PEDIATRICS	470	759	1,035
PRIMARY CARE	VIRTUAL		OB/GYN	608	1,016	1,069
PRIMARY CARE	VIRTUAL Total			12,315	22,576	23,628
PRIMARY CARE SUm				53,805	86,220	102,125
©SPECIALTY CARE	EIN PERSON		ALLERGY	471	1,136	1,800
SPECIALTY CARE	IN PERSON		DERMATOLOGY	576	1,121	3,157
SPECIALTY CARE	IN PERSON		HEAD/NECK SUR	670	1,000	1,205
SPECIALTY CARE	IN PERSON		MEDICINE SPECIALTY	690	2,033	2,555
SPECIALTY CARE	IN PERSON		NEUROLOGY	120	84	
SPECIALTY CARE	IN PERSON		OPHTHALMOLOGY	978	1,470	1,673
SPECIALTY CARE	IN PERSON		OPTOMETRY	1,420	1,797	2,445
SPECIALTY CARE	IN PERSON		ORTHOPEDICS	2,165	3,634	4,369
SPECIALTY CARE	IN PERSON		SURGERY	208	380	514
SPECIALTY CARE	IN PERSON		UROLOGY	62	191	217
SPECIALTY CARE	IN PERSON Total			7,360	12,846	17,935
SPECIALTY CARE	\bullet VIRTUAL		ALLERGY	55	229	277
SPECIALTY CARE	VIRTUAL		DERMATOLOGY		41	434
SPECIALTY CARE	VIRTUAL		HEAD/NECK SUR	31	40	67
SPECIALTY CARE	VIRTUAL		MEDICINE SPECIALTY	410	462	753
SPECIALTY CARE	VIRTUAL		NEUROLOGY	12	11	
SPECIALTY CARE	VIRTUAL		OPHTHALMOLOGY		3	1
SPECIALTY CARE	VIRTUAL		ORTHOPEDICS	186	453	449
SPECIALTY CARE	VIRTUAL		SURGERY	86	106	101
SPECIALTY CARE	VIRTUAL		UROLOGY	104	189	312
SPECIALTY CARE	VIRTUAL Total			884	1,534	2,394
SPECIALTY CARE Sum				8,244	14,380	20,329
Grand Total				62,049	100,600	122,454

Primary Care	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
In Person	77%	$\mathbf{7 4} \%$	77%
Virtual	23%	26%	23%
Specialty Care	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
In Person	89%	89%	88%
Virtual	11%	11%	12%
ALL SERVICE TYPES	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
In Person	79%	76%	79%
Virtual	21%	24%	21%

Notes:

1) It is expected that more visits will be offered virtually with social distancing due to COVID 19

Kimley»)Horn

APPENDIX X. $17^{\text {TH }}$ AVENUE OVERCROSSING MODEL RESULTS

Chanticleer Overcrossing－ 2040 Daily

$\frac{\boxed{13.630}}{14,133}$

Mug CoffeeHous
（0．7 5

Beverly＇s Fabric \＆Crafts

lest Nursery

Greystone Ct

12.635

迢

Cabrillo Hwo
Toyota of Santa Cruz 3

图圆

周圈

Coffee Ln
迢圆

Peet＇s Coffee

Chanticleer Overcrossing - 2040 AM

Mobile Home Park

\qquad
(3) TreeHouse
Nursery

$$
\mathrm{y}_{5}
$$

Jgly Mug CoffeeHous $\sqrt{53}$)

Kimley»)Horn

APPENDIX Y. COUNTY OF SANTA CRUZ VMT/TDM POLICY

and Watsonville regarding Senate Bill (SB) 743 analysis and tool development; and adopt resolution accepting unanticipated revenue in the amount of $\$ 45,491$ from the four cities for

 implementation of SB 743 , relating to Transportation Impacts of CEQA requirements, as recommended by the Planning Director
Attachments

Board Memo
Resolution 146-2020 Vehicle Mileage Threshold (eSign)

Board Letter

Recommended Action(s):

 meeting Senate Bill (SB) 743 and the California Environmental Quality Act, as recommended by the Planning Director.

Executive Summary

California Environmental Quality Act (CEQA) law now requires that Vehicle Miles Traveled (VMT) instead of Level of Service (LOS) be used for determining the significance of

 residential, and no net increase in VMT for retail.

Background

Governor Brown signed SB 743 (Steinberg) in 2013, which changed the way transportation impacts were to be analyzed under CEQA. Lead agencies had historically used LOS (a measure of vehicle delay) as the metric for determining transportation impacts. Calculated LOS impacts of a project then influenced the type of CEQA document and/or mitigations required for a proposed project (exemption, negative declaration with or without mitigations, or environmental impact report). Mitigation measures needed to address LOS impacts are often capacity-increasing, and the resultant transportation improvements typically facilitate increases in driving by residents and employees, but do not address improvements needed to support alternate modes such as transit, walking, and biking.

 greenhouse gas emissions.

 impact.

OPR's recommendations for the threshold-setting process and for the methodology to screen projects required an analysis of VMT by land use type at a local level. Working with a
 agencies must be in compliance with SB 743 by July 1, 2020.

Analysis

 requirements of SB 743:

> - Residential Projects: 15% below the countywide per capita average VMT
> - Office and Service Projects: 15% below the countywide per employee average VMT
> - Retail: no net increase in the countywide average
> - All other land uses: no net increase in VMT

 VMT, and the availability of new data.

 purposes, and thus the type of CEQA documentation required of projects will change.

 Environment.

Financial Impact

 studies accepted by the County that are prepared for proposed development projects.

Body

Strategic Plan Element(s)

This action supports Strategic Plan Elements of Reliable Transportation and Sustainable Environment, specifically meeting the goals of Community Mobility and Climate Change.

Meeting History

Jun 16, 2020 9:00 AM Video Board of
Resolution No. 146-2020
RESULT:
MOVER:
SECONDER:

AYES:
APPROVED [UNANIMOUS]
John Leopold, First District Supervisor
Ryan Coonerty, Third District Supervisor
John Leopold, Zach Friend, Ryan Coonerty, Greg Caput, Bruce McPherson

Discussion
8 Add Comment

BEFORE THE BOARD OF SUPERVISORS OF THE COUNTY OF SANTA CRUZ, STATE OF CALIFORNIA

RESOLUTION NO. 146-2020

On the motion of Supervisor: Coonerty Duly seconded by Supervisor: Friend The following Resolution is adopted:

RESOLUTION ADOPTING THE USE OF VEHICLE MILES TRAVELED AS THE NEW TRANSPORTATION MEASURE OF ENVIRONMENTAL IMPACTS FOR THE CALIFORNIA ENVIRONMENTAL QUALITY ACT

WHEREAS, Governor Edmund G. Brown signed Senate Bill (SB) 743 in 2013, which directed the Office of Planning and Research (OPR) to develop updated criteria for measuring transportation impacts using alternative metrics that promote a reduction in greenhouse gases, the development of multimodal transportation, and a diversity of land uses; and

WHEREAS, in November 2017, OPR released its proposed updates to California Environmental Quality Act (CEQA) Guidelines that stated vehicle miles traveled (VMT) shall be the new metric for measuring transportation impacts instead of using the level of service metric; and

WHEREAS, in November 2018, the California Natural Resources Agency released its Final Statement of Reasons for Regulatory Action that amended the State CEQA Guidelines; and

WHEREAS, on December 28, 2018, the Office of Administrative Law approved the amended CEQA Guidelines; and

WHEREAS, all lead agencies are required to comply with the updated CEQA Guidelines, which means using VMT to measure transportation impacts by July 1, 2020; and

WHEREAS, CEQA Guidelines Section 15064.7(b) allows lead agencies to adopt thresholds of significance for the lead agency's general use in its environmental review process; and

WHEREAS, the County of Santa Cruz intends to update VMT thresholds of significance, based on a data-driven evaluation, to meet the intent of SB 743.

NOW, THEREFORE, BE IT RESOLVED that the Board of Supervisors for the County of Santa Cruz adopts VMT as the County's thresholds of significance for transportation-related environmental impacts pursuant to CEQA as follows:

- Residential Projects: 15% below the countywide per capita average VMT;
- Office and Service Projects: 15% below the countywide per employee average VMT;
- Retail: no net increase in the countywide average; and
- All other land uses: no net increase in VMT.

BE IT FURTHER RESOLVED that the Board of Supervisors authorizes the Planning Director to update the VMT thresholds of significance for land use projects and plans, as necessary and appropriate to reflect current conditions, provided any update is consistent with the intent of SB 743 and in compliance with procedural and substantive requirements of CEQA and all other applicable state and local laws.

PASSED AND ADOPTED by the Board of Supervisors of the County of Santa Cruz, State of California, this 16th day of \qquad 2020 by the following vote:

AYES: SUPERVISORS Leopold, Friend, Coonerty, McPherson, Caput
NOES: SUPERVISORS None
ABSENT: SUPERVISORS None
ABSTAIN: SUPERVISORS None

Greg Caput
Chairperson, Board of Supervisors

Certificate Of Completion

Envelope Id: DAFD32CF2D4B461C8D861E11587C90B8
Subject: Resolution 146-2020 adopted Jun 16 BOS (DOC-2020-520) eSignature
Source Envelope:
Document Pages: 2
Certificate Pages: 2
Signatures: 4
Initials: 0

AutoNav: Enabled
Envelopeld Stamping: Enabled
Time Zone: (UTC-08:00) Pacific Time (US \& Canada)

Status: Completed

Envelope Originator:
Susan Galloway
2633 Camino Ramon Ste 500
San Ramon, CA 94583
susan.galloway@co.santa-cruz.ca.us
IP Address: 69.5.90.9

Record Tracking

Status: Original
7/13/2020 4:07:12 PM
Signer Events
Daniel Zazueta
Daniel.Zazueta@co.santa-cruz.ca.us
eSign
Security Level: Email, Account Authentication
(None)

Electronic Record and Signature Disclosure:

Not Offered via DocuSign
Greg Caput
Greg.Caput@co.santa-cruz.ca.us
eSign
Security Level: Email, Account Authentication (None)

Electronic Record and Signature Disclosure:
Not Offered via DocuSign
Susan Galloway
Susan.Galloway@co.santa-cruz.ca.us
Chief Deputy, Clerk of the Board of Supervisors
County of Santa Cruz
Security Level: Email, Account Authentication (None)

Electronic Record and Signature Disclosure:

 Not Offered via DocuSignCBD eSignature
CBD.eSignature@co.santa-cruz.ca.us
Clerk of the Board of Supervisors
County of Santa Cruz
Security Level: Email, Account Authentication (None)

Electronic Record and Signature Disclosure:

 Not Offered via DocuSignHolder: Susan Galloway
susan.galloway@co.santa-cruz.ca.us

Signature

DocuSigned by:

Signature Adoption: Drawn on Device Using IP Address: 63.194.190.100

Location: DocuSign

Timestamp

Sent: 7/13/2020 4:07:13 PM
Viewed: 7/13/2020 4:44:49 PM
Signed: 7/13/2020 4:44:59 PM

Sent: 7/13/2020 4:45:00 PM
Viewed: 7/14/2020 9:00:30 AM
Signed: 7/14/2020 9:00:41 AM

Sent: 7/14/2020 9:00:42 AM
Viewed: 7/14/2020 2:38:34 PM
Signed: 7/14/2020 2:38:46 PM

Sent: 7/14/2020 2:38:47 PM
Viewed: 7/14/2020 2:49:13 PM
Signed: 7/14/2020 2:49:31 PM
Freeform Signing

Editor Delivery Events	Status	Timestamp
Agent Delivery Events	Status	Timestamp
Intermediary Delivery Events	Status	Timestamp
Certified Delivery Events	Status	Timestamp
Carbon Copy Events	Status	Timestamp
Planning Department bernice.shawver@santacruzcounty.us Security Level: Email, Account Authentication (None)	COPIED	Sent: 7/14/2020 2:49:32 PM
Electronic Record and Signature Disclosure: Not Offered via DocuSign		
Witness Events	Signature	Timestamp
Notary Events	Signature	Timestamp
Envelope Summary Events	Status	Timestamps
Envelope Sent	Hashed/Encrypted	7/14/2020 2:49:32 PM
Certified Delivered	Security Checked	7/14/2020 2:49:32 PM
Signing Complete	Security Checked	7/14/2020 2:49:32 PM
Completed	Security Checked	7/14/2020 2:49:32 PM
Payment Events	Status	Timestamps

Kimley»)Horn

APPENDIX Z. DETAILED VMT ANALYSIS METHODOLOGY

Appendix Z

To determine the distance each Member travels to the closest facility, the Geographical Information System ("GIS") and Planning functions in the TransCAD software modeling package were used. TransCAD is the most used travel demand modeling/routing software package by Metropolitan Planning Organizations ("MPOs") in the United States. As part of this analysis, each Traffic Analysis Zone ("TAZ") within the model was converted to a centroid, which was subsequently associated to the nearest point feature on the closest roadway as the basis of its start point. TAZs are the smallest spatial area that a Travel Demand Model represents and are used as the basis for aggregating localized household and employment data for analysis purposes.

Subsequently, this dataset was used as the basis for a multi-path analysis utilizing TransCAD to identify logical paths and estimate trip lengths for calculating VMT. The roadway network used for this analysis is the statewide streets layer provided by Caltrans that contains functional classification (e.g. freeway, arterial, local) and speed information for the roadways throughout California. The speed and length information were converted into time in minutes it takes a vehicle to travel the length of the roadway segment, which was then used as the basis of impedance for route choices. It should be noted that many trips will not occur during the peak periods of daily travel within the region because medical services are provided predominantly throughout the day, and as a result, individual travel times on roadway segments will be closer to this calculation than during peak commute times. The resultant shortest path to each facility, both inside and outside of the County from each TAZ, was summarized in a matrix for use in subsequent analysis steps.

To determine the VMT for each of the Scenario A and Scenario B No Project and Plus Project conditions (Existing and 2040), the distribution of visits to each facility were separated into twentyeight distinct services, as shown in Appendix R. 'The distribution was apportioned among the services as not all services are provided at every facility and to provide the most accurate analysis. The distribution of visits is based on both information provided by the Proposed Tenant and a market analysis produced by Pivotal Analytics for specific medical services. The market analysis is based on Healthcare Consumer information for the County, while the information provided by the Proposed Tenant is for facilities located inside and outside of the County operated by the Proposed Tenant used by Members located within the County. The data provided by the Proposed Tenant was used for the facilities it operates as it is the best available resource for the travel patterns of the Proposed Tenant's Members. Pivotal insurance claims visit data was used as the best available data to analyze Other Healthcare System's patient travel distribution. The data provided by the Proposed Tenant covers January 1, 2019 to December 31, 2019 while the data provided by Pivotal Analytics covers April 1, 2019 to March 31, 2020. The 2020 Membership is estimated to be 35,071 , while the 2040 Membership is projected to be 87,729 , for a 20 -year growth of 52,658 Members as shown in Appendix S. For Cumulative plus Project conditions (Scenario B2) conditions assume that Membership is made up of 40-percent Existing Members, 5 -percent Population Growth Members, and 55-percent Transferee Members as shown in Appendix \mathbf{T}.

Once the distribution of visits was split among the services, a production-attraction (PA) table was created where visits to facilities were summed by service and used as attractions and the productions were distributed into the TAZs within the County based on the 2019 and 2040 population distribution in the SCC TDM. TransCAD was used to convert the PA table into twentyeight PA matrices, one for each service to balance the production and attractions based on the shortest path matrix. These matrices were summed to mimic a single origin-destination (OD) matrix that is used as an input to assign Member visits along the roadway network. TransCAD was again used to assign the visits within the OD matrix using an all or nothing assignment (i.e. all visits from each origin location that end at the same facility are assigned to a single shortest path regardless of capacity) that optimized travel time along the roadway segments. Based on information provided by the Proposed Tenant it is understood that for the No Project scenario, nearly 29-percent of Member trips include facilities outside of the County, while only 2.4-percent of member trips include facilities outside of the County in the Plus Project scenario.

The visits along each roadway segment were converted to trips using a conversion factor developed using information regarding the size of a facility in square-feet, number of visitors to each facility, and the trip generation rate for Clinics, which is the same as the TIOA rate, in the Trip Generation Manual, 10th Edition published by the Institute of Transportation Engineers (ITE). The visitor to trip ratio was calculated based on the facilities where both the square footage and number of visitors were known. The total square footage was multiplied by the ITE rate and then divided by the total number of visitors. Based on the information provided, the trips per visitor ratio was calculated to be 0.01462 daily trips per annual visitor. The number of total daily trips per scenario and facility type were calculated by multiplying the total visitors by the daily trips per annual visitor ratio. Trips were then factored up on a standard factor based on the ratio of calculated total trips to and from the Project and the total number of trips calculated based on the ITE trip gen rate for the Project, 6,106 daily trips. The trips were then reduced by 10-percent to account for employee trips (based on a ratio developed using the Project of approximately 600 daily trips for 300 employees) whose trip length were calculated separately. The Member trips were then multiplied by the roadway segment length to calculate the total Member VMT. The VMT was then totaled to determine the Member VMT for either No Project or Plus Project scenarios in both Existing and 2040 conditions.

The total VMT for employees was developed by multiplying the employee trips (10-percent of the total trips) by the average employee trip length by facility based on Longitudinal EmployerHousehold Dynamics ("LEHD") data. The employee VMT is added to the total Member VMT to determine the No Project and Project VMT (for both Existing Conditions and 2040 conditions in Scenario A and for Cumulative conditions in Scenario B).

[^0]: ${ }^{1}$ Kaiser Permanente ("Kaiser") is proposed to occupy and operate the Project if the Project is approved. Therefore, Kaiser-specific data and assumptions were used in this TIOA to provide the most accurate information possible about the Project's potential transportation-related impacts. Considering the Project's size and location, it is believed that there would be a reduction in VMT for any healthcare services provider that may occupy the Project because medical uses primarily serve pre-existing needs (i.e., they do not generate new trips so much as meet existing demand). Because of this, when a new facility is introduced, most often it can be presumed to reduce trip lengths. The primary reason for this is because a typical doctor visit is assumed to occur regardless of the proximity of the facility, but the proximity of the facility will determine the length of that trip and the resultant impact to the overall transportation system.

[^1]: and Service Project" is typically analyzed with respect to employee travel patterns, whereas travel associated with a MOB is dominated by patient, rather than employee trips.

[^2]: ${ }^{7}$ Market data refers to data provided by the Proposed Tenant as to what services are provided in specific facilities operated by the Proposed Tenant.

[^3]: ${ }^{8}$ The Scenario A Existing No Project and No Project 2040, in contrast, assume that all Members in the No Project condition receive healthcare at one of the Proposed Tenant's existing facilities.

[^4]: ${ }^{9}$ Technical Advisory on Evaluating Transportation Impacts in CEQA (2018), California Governor's Office of Planning and Research, Page 16

[^5]: ${ }^{10}$ Market data for Other Healthcare Systems is based on insurance claims data provided by Pivotal Analytics regarding patient demand by service type and the types of services offered by Other Healthcare Systems.

[^6]: ${ }^{11}$ See Policy 3.12.4.
 ${ }^{12}$ See Santa Cruz County Code, § 5.52.010 et seq.

[^7]: ${ }^{13}$ See https://safety.fhwa.dot.gov/ped_bike/univcourse/pdf/swless124.pdf.

[^8]: ${ }^{14}$ Kaiser Permanente ("Kaiser") is proposed to occupy and operate the Project if the Project is approved. Therefore, Kaiser-specific data and assumptions were used in this TIOA to provide the most accurate information possible about the Project's potential transportation-related impacts. Considering the Project's size and location, it is believed that there would be a reduction in VMT for any healthcare services provider that may occupy the Project because medical uses primarily serve pre-existing needs (i.e., they do not generate new trips so much as meet existing demand). Because of this, when a new facility is introduced most often it can be presumed to reduce trip lengths. The primary reason for this is because a typical doctor visit is assumed to occur regardless of the proximity of the facility, but the proximity of the facility will determine the length of that trip and the resultant impact to the overall transportation system.

[^9]: ${ }^{15}$ California Air Resources Board (Nov. 2018) 2018 Progress Report on California's Sustainable Communities and Climate Protection Act, pp. 4, 5.
 ${ }^{16}$ Technical Advisory on Evaluating Transportation Impacts in CEQA (2018), California Governor's Office of Planning and Research, Page 5 [addition of through lanes, including general purpose lanes, HOV lanes, peak period lanes, auxiliary lanes or lanes through grade-separated interchanges would likely lead to measurable and substantial increases in vehicle travel]).
 ${ }^{17}$ Board of Supervisors of the County of Santa Cruz, Resolution No. 146-2020, adopted June 16, 2020.
 ${ }^{18}$ Technical Advisory on Evaluating Transportation Impacts in CEQA (2018), California Governor's Office of Planning and Research, Page 5
 ${ }^{19}$ Board of Supervisors of the County of Santa Cruz, Resolution No. 146-2020, adopted June 16, 2020 providing that a project will have a significant transportation impact unless it generates VMT meeting the following thresholds: (i)

[^10]: Residential Projects: 15 percent below Countywide per capita average VMT; (ii) Office and Service Projects: 15 percent below the Countywide per employee average VMT; (iii) Retail Projects: no net increase in the Countywide average VMT; (v) All Other Land Uses: no net increase in VMT. The Project is not a Residential or Retail Project and should not be classified as an "Office and Service Project" either for purposes of analyzing VMT given that an "Office and Service Project" is typically analyzed with respect to employee travel patterns, whereas travel associated with a MOB is dominated by patient, rather than employee trips $\underset{\underline{\underline{*}}}{ }$

[^11]: ${ }^{20}$ Technical Advisory on Evaluating Transportation Impacts in CEQA (2018), California Governor's Office of Planning and Research, Page 16

[^12]: ${ }^{21}$ Market data refers to data provided by the Proposed Tenant as to what services are provided in specific facilities operated by the Proposed Tenant.

[^13]: ${ }^{22}$ The Pivotal Analytics platform employs claims-based service utilization rates provided by Optum (a health insurance company with access to insurance claims data across the United States), and trended local population demographic data provided by Geolytics (one of the largest US census aggregators) as a basis for these calculations.
 ${ }^{23}$ Geolytics is one of the largest US census aggregators.

[^14]: 24 The Scenario A Existing No Project and No Project 2040, in contrast, assume that all Members in the No Project condition receive healthcare at one of the Proposed Tenant's existing facilities.

[^15]: ${ }^{25}$ Technical Advisory on Evaluating Transportation Impacts in CEQA (2018), California Governor's Office of Planning and Research, Page 16

[^16]: ${ }^{26}$ See Policy 3.12.4
 ${ }^{27}$ See Santa Cruz County Code, $\S 5.52 .010$ et seq.

[^17]: ${ }^{28} \mathrm{~A}$ marketing technique to encourage engagement with a product of service.

[^18]: ${ }^{29}$ Turner, S., Wood, G., Hughes, T., \& Singh, R. (2011). Safety Performance Functions for Bicycle Crashes in New Zealand and Australia. Transportation Research Record, 2236(1), 66-73. https://doi.org/10.3141/2236-08

[^19]: ${ }^{30}$ Federal Highway Administration. FHWA Course on Bicycle and Pedestrian Transportation Instructor's Guide. https://safety.fhwa.dot.gov/ped bike/univcourse/pdf/swless124.pdf.

[^20]: ${ }^{31}$ The Santa Cruz County Code is current through Ordinance 5331, passed April 14, 2020.

[^21]: ${ }^{32}$ Average peak rate $=3.23$ spaces per $1,000 \mathrm{sq}$. ft.
 ${ }^{33} 85^{\text {th }}$ percentile rate $=4.59$ spaces per 1,000 sq. ft.
 ${ }^{34}$ Medical Office (ITE LU 720)

[^22]: ${ }^{35}$ The LOS Policy also requires consideration of consistency with the Congestion Management Plan, but the County is no longer governed by a Congestion Management Plan.

[^23]: ${ }^{36}$ The LOS Policy described in the General Plan refers to the "sum of all critical movements" at such an intersection increasing by more than 1%. As a matter of practice, the County does not sum critical movements at an intersection. The County LOS Policy is outdated and, pursuant to modern industry standards, the County considers whether the v / c ratio at any critical movement at the intersection increases by more than 1% to analyze the deficiency and will produce the actual deficiency on a movement, rather than summing all the movements and then calculating a weighted average. This method of calculating each critical movement individually has been approved and utilized in other studies by the County Public Works Department and generally provides for a more conservative analysis.

[^24]: ${ }^{37}$ California Department of Transportation. May 20, 2020. Vehicle Miles Traveled-Focused Transportation Impact Study Guide. Pages 4-5. https://dot.ca.gov/-/media/dot-media/programs/transportation-planning/documents/sb-743/2020-05-20-approved-vmt-focused-tisg-a11y.pdf
 ${ }^{38}$ California Department of Transportation. Senate Bill (SB) 743 Implementation. Website Accessed August 31, 2020.
 ${ }^{39}$ Santa Cruz County Regional Transportation Commission. Highway 1 Corridor Investment Program. Website Accessed August 31, 2020.

[^25]: ${ }^{40}$ See Highway 1 Corridor Investment Program website at https://sccrtc.org/projects/streets-highways/hwy1corridor/ for additional information and documents.

[^26]: *This trip generation estimate does not attempt to quantify the redistribution of trips that is expected to occur from trips that would otherwise be made to MOBs in the San Jose area and to other MOBs in the immediate area. As explained in the introduction to the Trip Generation Estimates Section of this TIOA, the proposed MOB will be redirecting trips that are already using the road network. The VMT Chapter (Chapter 2) of this report evaluates the redistribution of trips that are expected to occur due to MOBs in the Santa Cruz County and San Jose areas.
 **Transportation demand management ("TDM") measures will be implemented with the Project which would
 potentially reduce Project trips. Trip generation and assignment were not reduced to reflect this reduction.

[^27]: ${ }^{41}$ See http://www.trafficware.com/synchro.html for additional software/modeling details.

[^28]: ${ }^{42}$ See http://www.trafficware.com/synchro.html for additional software/modeling details.

[^29]: ${ }^{43}$ See https://sccrtc.org/projects/streets-highways/hwy1corridor/.

[^30]: ${ }^{44}$ See https://sccrtc.org/projects/streets-highways/hwy1corridor/ for more information.

[^31]: ${ }^{45}$ See http://www.trafficware.com/synchro.html for additional software/modeling details.

[^32]: ${ }^{46}$ Available at https://dot.ca.gov/-/media/dot-media/programs/transportation-planning/documents/sb-743/2020-05-20-approved-vmt-focused-tisg-a11y.pdf.

[^33]: ${ }^{47}$ See Highway 1 Corridor Investment Program website at https://sccrtc.org/projects/streets-highways/hwy1corridor/ for additional information and documents. The EIR is currently under litigation.

[^34]: ${ }^{48}$ Based on FHWA Crash Prediction Module Engineer's Manual- IHSDM (2019) SPF Formula for segments reference: Nspf-rs-Total $=$ AADT*L*365*10-6*e-0.312

[^35]:

[^36]: ${ }^{1}$ Traffic Operations Report, April 2012, Tables 8-1, 8-3, 8-4, 8-5.

[^37]: * Repeat as often as needed, with appropriate numbering, to cover all pavement alternatives investigated.
 ** Includes both future maintenance, construction, and project support costs.

